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Abstract. The conventional definition of reconnection rate
as the electric field parallel to an x-line is problematic in
global MHD simulations for several reasons: the x-line itself
may be hard to find in a non-trivial geometry such as at the
magnetopause, and the lack of realistic resistivity modelling
leaves us without reliable non-convective electric field. In
this article we describe reconnection characterization meth-
ods that avoid those problems and are practical to apply in
global MHD simulations. We propose that the reconnection
separator line can be identified as the region where magnetic
field lines of different topological properties meet, rather
than by local considerations. The global convection asso-
ciated with reconnection is then quantified by calculating the
transfer of mass, energy or magnetic field across the bound-
ary of closed and open field line regions. The extent of the
diffusion region is determined from the destruction of elec-
tromagnetic energy, given by the divergence of the Poynting
vector. Integrals of this energy conversion provide a way to
estimate the total reconnection efficiency.

Keywords. Magnetospheric physics (Instruments and tech-
niques) – Space plasma physics (Magnetic reconnection; Nu-
merical simulation studies)

1 Introduction

A little over 50 years agoDungey (1953) introduced the
idea that magnetic “lines of force can be broken and re-
joined”. Since then the concept of magnetic reconnection has
found important applications in diverse space environments.
Dungey(1961) himself applied it to the terrestrial magneto-
sphere, sketching the basic magnetospheric convection pat-
tern with reconnection occurring on the magnetopause and
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in the tail. Study of solar flares promptedSweet(1958) and
Parker(1957) to develop the first quantitative reconnection
model.Petschek(1964) then invented a model that could ex-
plain the fast energy release rates observed in the solar erup-
tions. Reconnection is also a somewhat disputed ingredient
in dynamo theories (for a review seeKulsrud, 1999) that aim
to explain the magnetic fields of stars and galaxies.

All of the abovementioned phenomena, and several oth-
ers where reconnection may play a role, are nowadays mod-
elled using magnetohydrodynamic (MHD) simulations. Re-
connection has been shown to occur in, for example, global
simulations of the magnetosphere (e.g.Walker et al., 1993;
Fedder et al., 1995; Raeder, 1999; Laitinen et al., 2005).
However, quantitative analyses of reconnection processes in
MHD simulations and of their significance to the phenomena
being simulated are difficult, because theoretical characteri-
zations of reconnection are often impractical or even impos-
sible to apply. We will discuss this in Sect. 3.

Reconnection has been studied quite extensively by de-
voted simulations. For example, the GEM magnetic recon-
nection challenge (Birn et al., 2001, and references therein)
compared reconnection rates in different types of simulation
codes under standard boundary conditions. These “theoreti-
cal simulations” are useful for learning about the reconnec-
tion process itself and about the capabilities of different sim-
ulation schemes, but they often seem to be more reminis-
cent of theoretical considerations than practically oriented
simulations. Our aim in this article is to develop methods
for studying reconnection as a part of a larger, more self-
contained physical process, methods that work in large-scale
MHD simulations. We focus on the magnetosphere, but we
expect that some of the ideas presented here might prove use-
ful also in other applications of plasma physics.

To test and illustrate the methods presented here, we use
the Gumics-4 ideal MHD code (Janhunen, 1996, introduces
the previous version Gumics-3; version 4 is described in
more detail for example inJanhunen and Palmroth, 2001, and
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Fig. 1. Simple reconnection at an x-line, or a separator. The
four separatrices that meet at the separator divide the space into
four topologically distinct segments, which are labeled as F(ree),
T(oward), A(way) and C(losed) for comparison with Fig.2. The
shaded area represents the diffusion regionDR , and its dimensions
are referred to as 2L×2l when the Sweet-Parker model is discussed
in Sect. 6.

Palmroth et al., 2001). It is a global three-dimensional simu-
lation of the coupled solar wind–magnetosphere–ionosphere
system. The magnetospheric part, which is of interest in this
study, solves the ideal MHD equations in their conservative
form. There is no explicit resistivity; diffusion in the simu-
lation is produced by the numerical solution. The code ap-
plies the finite volume method where quantities are treated as
cell averages, and uses the Roe solver to solve the Riemann
problem of calculating fluxes of conserved quantities through
the cell interfaces (LeVeque, 1992). In the rare cases when
the Roe method produces intermediate states with negative
pressure the Harten-Lax-van Leer (HLL) solver is used (Jan-
hunen, 2000). Elliptic cleaning is used to maintain∇·B=0,
since this is not otherwise guaranteed by the finite volume
method. The grid in Gumics-4 is an adaptive Cartesian oc-
togrid with semiautomatic refinement. While running, the
time-accurate code splits and recombines grid cells using
steepness of gradients as the spatial resolution refinement cri-
terion. In diffusion regions gradients are strong and accord-
ingly the cell size turns out to be the smallest allowed, which
is 0.25RE .

Sections 2 and 3 of this paper are of introductory nature:
we discuss briefly the three-dimensionalization of the fa-
miliar two-dimensional reconnection problem, global MHD
simulation schemes, and the interplay of resistivity, numer-
ical diffusion and parallel electric fields. In Sect. 4 we in-
troduce a classification of magnetospheric field lines by their
topological properties and derive thereof a separator line, cer-
tain parts of which can be associated with the reconnection
x-line. In Sect. 5 we describe how to utilise the field line
classification to produce quantitative estimates of the trans-
fer of mass, energy and magnetic field. Finally, in Sect. 6
we examine the energy conversion property of reconnection
making use of the Poynting vector and its divergence.

2 Problems with the concept of x-line in three dimen-
sions

In two dimensions reconnection occurs at an x-point. The
plane around the x-point is divided into four topologically
distinct segments by four separatrices; magnetic field lines
are brought towards the x-point in two opposite segments,
reconnected at the x-point and then transported away in the
two other segments (Fig.1). Reconnection thus allows, and
is always associated with, flow of plasma across the separa-
trices. In a static case the flow pattern implies an electric field
perpendicular to the plane. As shown byVasyliunas(1975),
this electric field is proportional to the reconnection rate, that
is, the amount of magnetic flux reconnected per time inter-
val. The outflow segments are usually narrow and contain a
current sheet. This configuration can be extended into three
dimensions by assuming translational invariance in the third
direction. The x-point then becomes an x-line, also known
as the separator, having an electric field parallel to it.

An ideal setting for this kind of essentially two-
dimensional reconnection in nature can be found between the
tail lobes of the magnetosphere. There the central surface of
the current sheet can be determined by locating the magnetic
field direction change or the current density maximum. Then
the x-line is just the sign change location of the magnetic
field component normal to this surface. This simple method
has been applied and illustrated inLaitinen et al.(2005) and
is not treated here.

In a fully three-dimensional setting, where the reconnect-
ing fields need not be antiparallel and symmetries need not be
present, an x-like field geometry alone is not a sufficient indi-
cator of reconnection: a simple example provided byHesse
and Schindler(1988) is the field(Bx, By, Bz)=(y, x, 1),
where any given point(x0, y0, z0) is an x-point in a suitably
oriented plane and thus any field line would geometrically be
an x-line. Furthermore they showed that in this configuration
plasma can flow across the apparent “separatrices”, although
there is no electric field component along the “separator” and
field lines are conserved. This is because there are no topo-
logically distinct field regions and thus no real separatrices in
the configuration even though two-dimensional cuts so sug-
gest. This example shows that a reconnection x-line cannot in
general be identified by considering only the local magnetic
field geometry and plasma flow. In Sect. 4 we describe how
this problem can be avoided in magnetospheric context by
basing the separator definition on global properties of field
lines, without reference to local field geometry. A similar
definition could be applied also in other environments where
the field lines in some of the segments in Fig. 1 connect to a
nearby surface. Solar corona and tokamaks are examples of
such environments.
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3 E‖ and its problems in MHD

Several authors (e.g.Axford, 1984; Schindler et al., 1988)
avoid the problems of defining separatrices in three dimen-
sions by defining reconnection simply as “localized break-
down of the frozen-in field condition”. Schindler et al.
(1988) showed that such “general magnetic reconnection”
has global effects if and only if it is associated with a par-
allel electric field, more precisely, if and only if∫

E‖ds 6= 0 (1)

on a measurable set of field lines in a limited diffusion region
DR. The integral is to be taken along a field line withinDR.
On the other hand,Priest and Forbes(2000) prefer to adopt a
more restrictive definition of reconnection which essentially
requires a field line with a parallel electric field and an x-like
magnetic field geometry on the perpendicular plane.

As the significance ofE‖ is so unanimously acknowl-
edged, why not use it as the reconnection proxy in MHD sim-
ulations? Electric field is often not calculated by the actual
MHD solver. It is a post-processing variable calculated after-
wards from the primary variables through the Ohm’s law,

E = −v × B + R. (2)

HereR is a general non-idealness term. A necessary and suf-
ficient condition for the existence of a parallel electric field
is thatR be non-zero and not perpendicular toB. In nature
R can have several contributions from, for example, colli-
sions, fluctuations, and particle inertia. When the concept
of reconnection is applied, it is assumed thatR is non-zero
in a limited diffusion regionDR and (approximately) van-
ishes elsewhere so that field-line conservation holds outside
the diffusion region.

MHD simulations have different approaches to determin-
ing R. The simplest one is ideal MHD, which is also the
choice taken in Gumics-4:R≡0. This implies through
Eq. (2) that there is no parallel electric field.E either van-
ishes at the separator, ifB or v vanishes, or otherwise is
perpendicular to the separator (which is a field line). Ideal
MHD simulations thus do not produce the reconnection elec-
tric field.

Reconnection in ideal MHD models is made possible by
numerical diffusion. This in turn depends on the discretiza-
tion scheme and numerical solver used, and is difficult to
quantify. Discretization and numerical diffusion may also
produce local small-scale discrepancies at such special lo-
cations as the surroundings of a separator, wherev andB

change appreciably over the size of a grid cell. As an ex-
ample, at the magnetotail reconnection site in Gumics the
magnetic x-line and the plasma flow reversal line are usually
separated by a distance of several grid cells. This is discussed
more closely byLaitinen et al.(2005). What is relevant here
is that the electric field calculated from Eq. (2) with R=0 be-
comes reversed in a small region between the x-line and the

flow reversal line. This result is a consequence of the numer-
ical method chosen for this calculation and is independent of
the grid size. Thus calculating the electric field along or near
the separator is clearly out of the question, since that is just
the place where it is not modelled correctly.

Depending on the procedure for calculatingE from the
primary variables, someE‖ may be produced by purely nu-
merical effects as explained bySiscoe et al.(2001). While
this numericalE‖ naturally maximizes in regions wherev
andB have large gradients, such as at reconnection sites, it is
in our opinion not evident that it should be straightforwardly
associated with the physicalE‖ of a reconnection process.

In the magnetosphere, the plasma density is sufficiently
low to make the classical collisional resistivity effectively
zero. Thus, any resistive effects arise from other processes
such as wave-particle interactions or turbulence. The form
of the resistivity and its dependence on the local parameters
is largely an open issue. However, in resistive MHD elec-
tric resistance is modelled explicitly by insertingR=ηJ into
Ohm’s law. Hereη is the resistivity and is usually either as-
sumed constant or made to depend on the current densityJ

in a step function-like manner (Raeder, 1999).

In resistive MHD a physically meaningful electric field
can be produced even in the diffusion region of a recon-
nection process.E‖ may then be applicable as a proxy for
reconnection. However, the problematic numerical effects
discussed above in the context of ideal MHD are present in
the resistive approach as well, and it may be difficult to de-
termine whether the total electric field is physically realistic
even at the reconnection site where numerical contributions
are large. Furthermore,η has to be chosen on a somewhat ad
hoc basis, and the use of differentη’s in different runs and
different simulation codes complicates comparisons.

Hall effects are not included in basic MHD, but the Hall
termR=J×B/ne is sometimes added to model them. Be-
cause it is of second order inB (sinceµ0J=∇×B), it ren-
ders the system of equations non-hyperbolic. This makes
the use of Godunov techniques problematic, but the Hall ef-
fect can be added to numerical solvers as a correction term.
Hall effects are observed in magnetospheric reconnection
(Øieroset et al., 2001; Vaivads et al., 2004) and the GEM sim-
ulation challenge (Birn et al., 2001, and references therein)
showed that they have an important effect on MHD recon-
nection rate under standard boundary conditions. However,
the Hall term is perpendicular toB and thus does not directly
produceE‖.

The methods described hereafter aim to be independent
of the exact simulation scheme. Their applicability does not
depend on what kind of non-idealness termR is assumed in
the Ohm’s law.
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Fig. 2. The four topologically different magnetic field regions in
the magnetosphere during southward IMF. T stands for toward the
Earth, A for away, C for closed and F for free field lines. The figure
is drawn for southward IMF, and under these conditions the four re-
gions are seen to meet at the magnetopause and magnetotail recon-
nection sites. Figure3 will show that the separator drapes around
the Earth along the flanks of the magnetopause. Compare also with
Figs. 1a, b, 2a and 4a inPark et al.(2006).

4 The four-field junction

As discussed in Sect. 2, the x-line can unfortunately be found
reliably by local considerations only in few special situations
where the the relationship between local geometry and global
topology is extraordinarily evident. This led us to consider
searching for the separator as the “meeting place” of mag-
netic field lines with different global properties. Qualita-
tively the separator line was described in this sense byCow-
ley (1973). While such a global definition is not useful in lo-
cal reconnection theory and is problematic to generalize, in
space applications it is exactly the global consequences of re-
connection processes that are of most interest, and therefore
it is useful to characterize reconnection by its global proper-
ties.

As shown by Fig.1, separator is the line where four sepa-
rate regions of magnetic field meet. Figure2 illustrates how
these four regions can be identified by the global properties
of their field lines in the terrestrial magnetosphere. The field
lines can be classified in four classes:

1. Free, or disconnected. These are solar wind field lines
not attached to the Earth.

2. Away. These are open field lines whose “back end” is
attached to the Earth. They emanate from a region of
northern magnetic polarity. In the magnetosphere the
southern tail lobe is formed by away-type field lines.

3. Toward. Open field lines whose “front end” is attached
to the Earth. They emanate from a region of southern
polarity and form the northern tail lobe.

4. Closed. Attached to the Earth from both ends.

Configurations of closed and open field lines at the mag-
netopause reconnection region in a global MHD simulation
have recently been examined and illustrated byPark et al.
(2006).

In a global MHD simulation the junction of these four re-
gions of magnetic field can be found in the following man-
ner. First, set up a Cartesian grid with spacingδ in a region
where a separator line is expected to exist. Starting from
each grid point, trace the magnetic field both forwards and
backwards, that is, integrate the field line. If the tracing en-
counters the Earth in some direction, that end of the field line
is called attached; otherwise, i.e. if the integration ends at the
outer boundary of the simulation box or continues for a pre-
specified maximum length without encountering a boundary,
that end of the field line is said to be open. Then, if both
ends of the field line are open, the grid point is classified as
free. If the forward end is open (attached) and the backward
end attached (open), the grid point is of away-type (toward-
type). And if both ends are attached, the grid point is closed.
Finally, loop through the grid once more: if within a distance
1 from a given point lies grid points of all four categories,
then the point under inspection belongs to the set of four-
field junction points. In practice the field line integration is
the computationally heavy part of this procedure, so it is wise
to save the classification of grid points as an intermediate re-
sult.

The final result is strictly speaking not a line but a set of
points. However, these points tend to form a line or ribbon as
illustrated in Fig.3. The figure was produced from a test run
on Gumics-4 with slowly (10 degrees every 10 min) rotating
interplanetary magnetic field (IMF). At the time depicted the
field was pointing dawnward. The IMF magnitude was 10
nT, solar wind speed 400 km/s, density 7.47 cm−3 and tem-
perature 1×105 K. The above-mentioned parameters of the
four-field junction search wereδ=0.25RE and1=3δ.

The separator line in Fig.3 crosses the subsolar magne-
topause in a tilted orientation, which depends on the IMF
clock angleθ= arctan(By/Bz). Along the flanks of the mag-
netopause the line reaches tailward beyondx=−20RE . It
crosses the tail between the tail lobes and thus forms a loop
around the Earth. This is consistent with the qualitative pic-
ture presented byCowley(1973) for southward IMF. The two
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gaps in the cross-tail part are caused by the coarseness of the
grid used: the x-configuration in the tail is so thin that no
nearby grid points happened to touch the closed and open
segments (compare Fig.1) in those parts of the tail. This also
happens sometimes at the nose of the magnetopause. Very
small IMF clock angles (|θ |.30◦) are also problematic for
the four-field junction technique: northern and southern cusp
reconnection create toward- and away-type field lines which
cross the nose region adjacent to each other and create four-
field junction points there, although there is no reconnection-
related separator line at the nose. Otherwise the four-field
junction is a stable and well-behaved representation of the
separator line, and it also evolves smoothly in time as solar
wind conditions change.

When IMF acquires a large positiveZ component the
separator line becomes genuinely discontinuous: the cross-
tail part recedes away or disappears when tail reconnection
ceases, and also the subsolar part disappears when the IMF
clock angle is small enough, that is, when the IMF is strongly
northward. The behaviour of the separator line as a function
of the IMF clock angle will be analyzed more closely in a
subsequent paper.

The green line in Fig.3 is the x-line of tail reconnection
found independently by considering the local geometry of
the field. The current sheet centre was first determined from
Bx sign change, and then the x-line fromBn=0, whereBn

is the magnetic field component normal to the current sheet
(Laitinen et al., 2005). The geometrical method was thus
designed to find an x-line that is roughly perpendicular to the
x-axis, which may explain why the agreement is very good
in the central part of the tail x-line but not so good in the
tailward-receding side parts.

Finally it must be stressed that the sole existence of a four-
field junction does not imply that reconnection would be tak-
ing place there. The four-field junction represents a separa-
tor line in the global topology of the magnetosphere, and by
itself tells nothing about the dynamics. Only after consid-
eration of other signatures of reconnection, such as plasma
flow pattern or Poynting vector divergence, it may be justi-
fiable to interpret some parts of the separator line as recon-
nection x-lines. Also, small-scale reconnection may occur
elsewhere; an example of this are the so-called flux transfer
events, which are probably caused by small sporadic recon-
nection events (Russell and Elphic, 1978; Fedder et al., 2002;
Sonnerup et al., 2004). They do not normally involve field
lines of all the four topological categories defined above, and
hence are not revealed by the four-field junction technique.
Similarly, tail reconnection escapes the four-field junction
technique if it occurs on closed field lines; when it advances
to lobe field lines, the x-line becomes a topological separator
in the sense required by the method, and the line is detected.
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Fig. 3. The four-field junction in Gumics-4, seen from north (upper
panel) and from the Sun (lower panel). The points are coloured by
theirX coordinate to aid in identifying different parts of the junction
in the lower panel. The green line is the magnetotail x-line given by
an independent search procedure based on the local field geometry.

5 Topological transfer quantities

The classification of grid points as belonging to either free,
toward, away, or closed magnetic domain, introduced in the
previous section, can also be used to measure quantitatively
the transfer of mass and energy from one topological domain
to another. In the following toward-type, away-type, and free
field lines are collectively called open.

The procedure is as follows: Choose a domain of interest,
say, the closed field line region. The points of the grid are
now interpreted as the centres of cubic cells. Go through the
grid cellsi and for each closed cell, check also the status of
the six neighbouring cellsj . When an open cellj is found,
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Fig. 4. The amount of magnetic field transferred from topologically
closed to other regions. In the top panel, the transfer is calculated on
the dayside (X>0) in six sectors; the colour-coding of the sectors is
illustrated by a small front view of the magnetopause. In the lower
panel the total amount of opening magnetic field in the dayside and
the nightside are compared.

let n̂ be a unit vector in the direction fromi to j . The mass
flow from cell i to cellj is thenδTm=ρv·n̂ A, where density
ρ and velocityv are evaluated at the cell interface between
i andj , andA is the area of that interface. Summing these
contributions from all closed–open cell pairs gives the total
mass flux out of the domain of closed field lines. This is a
discretization of the integral

Tm =

∫
S

ρv · dS, (3)

whereS is the outer surface of the closed field line region, or
some chosen part of that surface.

This analysis assumes that the topological configuration is
quasi-stationary, in other words, that the boundary of closed
and open field lines moves only very slowly compared to
plasma velocities. This approximation may not always be
valid if for example the magnetosphere is compressed by a
sudden pressure pulse in the solar wind, but we will not treat
this question here.

Mass transfer is of course not the only transfer quantity
that can be computed. Replacingρv with the total energy
flux K leads to the energy transferTE . An interesting quan-
tity would be the rate of opening or closure of magnetic
flux, that is, the reconnection voltage. Analoguously with

the mass transfer, the amount of magnetic field transferred
across the closed–open field line boundary is

TB =

∫
S

|BS |v · dS, (4)

whereBS is the component ofB parallel to the surfaceS.
However, the dimensionality of this quantity is not a volt-
age but Tm3/s=Wbm/s=Vm. This magnetic transfer could
thus be described as “the sum of the lengths of magnetic field
lines cut open by reconnection”, whereas the reconnection
voltage would simply be “the number of field lines cut open
by reconnection”. To arrive at a voltage, one would need to
calculate the transfer of magnetic field not through a surface
but across a curve, and there is no natural way to choose such
a curve from a three-dimensional simulation space. But de-
spite being of unconventional dimensionality, the magnetic
transfer can convey interesting information on magnetopause
reconnection as demonstrated by Fig.4.

Figure4 is based on a simulation run where the IMF di-
rection rotated through one full rotation in theYZ-plane
while the IMF magnitude and all other solar wind parame-
ters stayed constant. The full rotation took six hours, IMF
clock angle changing 10◦ every 10 min. The time that the
tail reconnection takes to settle to a new steady state after a
change in IMF is 20–30 min, so the figure must not be read
as a sequence of steady states, but the IMF rotation is slow
enough to allow comparison of dusk-, south- and dawnward
IMF’s, for example. The horizontal axis represents time but
is labeled with clock angle in degrees for clarity.

The upper panel in the figure shows transfer of magnetic
field from closed to open field lines in the dayside (X>0)
only. The domain of integration is subdivided into six sec-
tors, which are colour-coded as illustrated by the inserted
small front view of the magnetosphere. Opposite sectors
show nearly identical behaviour; even many transient fluc-
tuations such as those aroundθ=270◦ in the red and orange
curves are similar. This indicates that the calculation method
is robust and describes global processes, not local fluctua-
tions.

Figure4 further shows that during southward IMF mag-
netic flux opens preferentially in those sectors that lie along
the IMF direction in theYZ-plane. In the low-latitude sectors
magnetic transfer is very small. This is consistent withPalm-
roth et al.(2003), who report similar sector-dependence for
energy flow through the magnetopause in the Gumics simula-
tion. In the lower panel of the same figure the red curve is ob-
tained by summing the six curves of the upper panel, and the
black curve is the corresponding total magnetic field opening
rate in the nightside (X<0). The curves roughly sum to zero,
which is not surprising, as it only means that during south-
ward IMF the field lines that open on the dayside close in the
tail. During strongly northward IMF the signs are opposite
and interpretation is not as straightforward, but high-latitude
reconnection probably produces new closed field lines on the
dayside.
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The mass, energy or magnetic transfer through any topo-
logical boundary could be calculated similarly, but in the
magnetospheric context the open–closed boundary seems to
be the most natural choice because it is the only one that
forms a closed surface. Thus the flux can be integrated over
the whole surface, whereas on the other boundary surfaces
the integration area would have to be selected arbitrarily. On
the other hand, arbitrary dividing of the integration surface
can be informative as was seen in Fig.4.

6 Poynting vector divergence

We now turn from the topological properties of reconnection
to its other central feature: energy conversion. Reconnec-
tion is invoked as a means to rapidly release magnetic energy
in, for instance, the near-Earth neutral line model of magne-
tospheric substorms (Baker et al., 1996). Qualitatively,Pa-
padopoulos et al.(1999) discuss the energy conversion lo-
cation by mapping Poynting vector flow lines from the solar
wind through the magnetopause and showing how they focus
in the inner magnetotail to the tail reconnection site. A more
quantitative tool to measure the rate at which electromagnetic
energy is converted into other forms (in a steady state, when
∂t=0) is the divergence of the Poynting vector,∇·S.

6.1 Energy conversion in Sweet-Parker model

As an introduction to the subject we calculate∇·S for the
Sweet-Parker reconnection. In this most basic of reconnec-
tion models magnetic annihilation and plasma acceleration
take place in an elongated diffusion region betweeen two re-
gions of antiparallel magnetic fields. Following the notation
of Priest and Forbes(2000, pp. 120–123), let the length of
the diffusion region be 2L and thickness 2l (see Fig.1). Sub-
scriptsi ando refer to the inflow and outflow regions outside
the diffusion region, respectively. It can be shown that the
inflow velocity is

vi = vAi/
√
Rmi (5)

and the outflow velocityvo=vAi , wherevAi is the inflow
Alfvén speed andRmi is the magnetic Reynolds number
based on the inflow Alfvén speed.

Generally speaking, the Reynolds number is a mea-
sure of the relative importance of magnetic convection ver-
sus diffusion. If diffusion is caused by scalar resistiv-
ity η, the magnetic Reynolds number can be estimated by
Rm=µ0LV0/η, whereV0 is the “typical” speed scale of the
system. When calculated using the Alfvén speed, like above,
whereRmi=µ0LvAi/η, it is also known as the Lundquist
number. But as the “typical” speed scale here is set by the
outflow velocity which equals the inflow Alfvén speed, this
number can be identified as the global magnetic Reynolds
number, and so we will call it simply the magnetic Reynolds
number and drop the subscripti.

The thickness of the diffusion region is determined by

l = L/
√
Rm, (6)

and the magnitude of the Poynting vector towards the diffu-
sion region is

Si =
EiBi

µ0
=

viB
2
i

µ0
. (7)

In the outflow regions the density of Poynting flux away from
the diffusion region is

So =
1

µ0
voB

2
o =

1

µ0

L

l
vi

(
l

L
Bi

)2

=
l

L
Si . (8)

As it is assumed thatl�L, the outgoing Poynting flux can
be neglected in this order-of-magnitude estimate. The con-
sumption of Poynting flux in the diffusion region is then
∇·S=−(2Si)/(2l). Combining this with Eqs. (5–7) leads to

∇ · S = −
vAiB

2
i

µ0L
. (9)

It is interesting to note that this result is independent ofRm

and that the maximal value of−∇·S in simulated reconnec-
tion should thus not depend on numerical diffusion, if the
reconnection is of Sweet-Parker nature. However, the thick-
ness of the diffusion region does depend onRm (Eq. 6) and
therefore the reconnection process as a whole is of course not
independent of diffusion.

Figure 5 shows∇·S in the magnetotail reconnection re-
gion together with magnetic field lines. The figures are
drawn from a simulation run where the solar wind dy-
namic pressure was 8 nPa (fromv=400 km/s, density
=13.3 cm−3) and magnetic field strength 10 nT. The IMF
direction rotated slowly and is indicated in the figure for each
panel. A Sweet-Parker-like Poynting flux sink region appears
at the same time when the magnetic field geometry under-
goes a qualitative transformation into an x-type configura-
tion (panels a and b). As the driving of the reconnection
grows stronger, the Poynting sink intensifies. In panel (c),
−∇·S peaks at a little over 10−10 W/m3. At the same time
in the tail lobes outside the diffusion region typical numbers
areB=40 nT andvA=3000 km/s, which is also the max-
imal tailward outflow velocity. The half-length of the dif-
fusion region, or the global length scale, is aboutL=5RE .
Inserting these into Eq. (9) gives−∇·S=1.2×10−10 W/m3.
Equation (9) gives good estimates to the upper limit of−∇·S

of tail reconnection also in other simulation runs with some-
what different numbers.

6.2 A proxy for the spatial distribution of reconnection ef-
ficiency on a surface

In panels (b) and (c) of Fig.5a narrow white stripe appears in
the middle of the blue diffusion region. This is most likely a
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Fig. 5. The magnetotail reconnection region depicted on anXZ

plane. Black lines represent magnetic field and colouring shows the
Poynting divergence∇·S. In blue areas electromagnetic energy is
transformed into mechanical energy.(a) Reconnection has not yet
started.(b) Weak and(c) strong reconnection.

numerical feature having no physical relevance. At the mag-
netopause we also observe a layered structure, but there is
no symmetry across the diffusion region and∇·S sometimes
attains even positive values. What if we tried to determine
the extent of the diffusion region by plotting∇·S on the tail
current sheet or on the magnetopause? The tail current sheet
intersects theXZ-plane of Fig.5 exactly in the white stripe,
wherefore the result would be spectacularly erroneous. Sim-
ilarly the result on the magnetopause would be fatally sen-
sitive to small variations in determining the magnetopause
surface location.

An obvious solution to this problem is to integrate out the
layers.Laitinen et al.(2005) quantified the total energy con-
version rate of tail reconnection by defining the reconnection
power as

Prec = −

∮
∂V

S · n̂ da, (10)

where the volumeV is to encompass the whole reconnection
region. (By Gauß’s theorem this is equivalent to volume inte-
gral of∇·S.) But what if the extent of reconnection region is
not known from other considerations? If reconnection can be

expected to occur on a known surface, such as the tail current
sheet or the magnetopause, then one may define energy con-
version surface density by integrating∇·S along the normal
of that surface over a suitably chosen interval[−l1, l2]:

σEc = −

∫ l2

−l1

∇ · S dl. (11)

In the Sweet-Parker model this is, by Eqs. (6) and (9), and
settingl1=l2=l,

σEc =
2vAiB

2
i

µ0
√
Rm

. (12)

This equation can also be solved forRm to give an esti-
mate of the numerical diffusion in a simulation, since all
other quantities can be calculated from the simulation results.
When applied to the tail reconnection in Gumics, Eq. (12)
gives the order-of-magnitude resultRm∼100. This estimate
has to be considered with some caution, as the use of Eq. (12)
is based on the assumption that Sweet-Parker-merging is oc-
curring at its maximal rate. That assumption predicts the
local value of∇·S correctly. However, the Sweet-Parker
model is based on resistive MHD while reconnection in the
ideal MHD simulation is allowed by numerical diffusion; the
two phenomena appear very similar, but it is not necessarily
meaningful to identify them with each other in every aspect.

Two side remarks on the energy conversion surface density
are in order. First, although its integral is the reconnection
power (Eq.10), we prefer not to use the word “reconnection”
when referring toσEc. That word should be reserved for pro-
cesses that change the connectivity of field lines, while en-
ergy conversion can take place in other ways, for example,
as simple diffusion. Second, Eq. (11) neglects the curvature
of the surface on whichσEc is calculated. A more correct
formulation would weigh more the values on the convex side
of the surface and less those on the concave side, such that
the integral ofσEc over some surface area would equal the
volume integral of∇·S over a volume obtained by inflating
that surface area into a sheet. The error in the approximation
of Eq. (11) is of the order of max(l1, l2)/R, whereR is the
smallest curvature radius of the surface at the given point.
The curvature radius of the magnetopause isR&10RE and
we usually usel1=l2=1.5RE , so the computationally sim-
ple Eq. (11) is well applicable to produce surface maps. Vol-
ume integrals are more robustly done without the intermedi-
ate step ofσEc.

Figure6 illustrates the usability of energy conversion sur-
face density by showing it on the magnetopause under four
different IMF orientations. Solar wind dynamic pressure was
2 nPa and IMF magnitude 10 nT. (This is the same run that
was used for Fig.3.) The integration range of Eq. (11) was
1.5RE to both directions from the magnetopause surface,
which was determined using plasma flow lines as defined by
Palmroth et al.(2003). The figure reveals that during south-
ward IMF magnetic energy is consumed in a wide region
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around the subsolar point. Behind the polar cusps there are
also regions that produce magnetic energy; magnetopause re-
connection is thus associated with considerable dynamo ac-
tion. All this supports the view that at least in MHD recon-
nection is a large-scale process that cannot be described ex-
haustively by inspecting only the x-line or its surroundings.

6.3 Generalization beyond specific reconnection models

The previous discussion is based on the simple Sweet-Parker
model. That is well suited for Gumics, where reconnection
appears as a large diffusion region. This seems to be the case
also for other global MHD codes: for example,Dorelli et
al. (2004) describe the reconnection produced in the GGCM
(Geospace General Circulation Model) global MHD simula-
tion as occurring in a macroscopic current sheet “rather than
in Petschek-like configurations”. On the other hand, there are
observational evidence of Petschek-like slow mode shocks in
the magnetotail (e.g.Ho et al., 1994; Eriksson et al., 2004),
and also some hybrid tail simulations report Petschek con-
figurations (Krauss-Varban and Omidi, 1995). It is thus an
interesting question to what extent the Sweet-Parker-based
discussion on Poynting vector divergence can be generalized.

The Petschek reconnection model and its many more ad-
vanced or generalized variants (Priest and Forbes, 2000) still
contain a small Sweet-Parker-like diffusion region which al-
lows the actual re-connection of field lines. The discussion in
Sect. 6.1 can still be applied to this diffusion region, with the
caveat thatL is now only the size of the diffusion region and
not a global length scale. The magnetic Reynolds number
Rm, which hasL in its definition, also is no more globally
meaningful.

However, from the global point of view the energy bud-
get of the diffusion region is not very interesting when most
of the energy processing takes place on shock fronts outside
it. A more fruitful approach for a global simulator is to an-
alyze the energetics of the whole reconnection process. The
reconnection power and energy conversion surface density
(Eqs. 10 and 11) are suited exactly to this purpose, since
their definitions contain no assumptions on the nature of the
processes causing the energy conversion. Equation (12) is
specific to the Sweet-Parker-model, but similar predictions
could be given for different reconnection models using their
respective theoretically predicted inflow speeds. Otherwise
the discussion in Sect. 6.2 is model-independent.

When applying these Poynting-derived proxies to
Petschek-type reconnection, for example, the integration
domains must be chosen so that they contain all the shock
fronts. If the shock pairs have a relatively small opening
angle, σEc still describes informatively the distribution of
energy conversion on a surface. It does not tell the difference
between a diffusion region and a shock pair; in order to
assess the three-dimensional structure of the reconnection,
one can in addition examine the distribution of∇·S on a
surface perpendicular to the neutral line, as is done in Fig.5.

Fig. 6. Energy conversion surface density on the magnetopause un-
der four different IMF orientations. The IMF direction is shown by
an arrow and also given in degrees above each panel. The lines
are intersections of the magnetopause with the planesX=0 and
X=−30. The white hole at the subsolar point is a technical feature
caused by the plotting procedure. Note the different colour scale in
the lower-right panel!

In practice one also needs to do this to determine suitable
integration limits to use in definition (11).

7 Discussion and conclusions

For a long time, reconnection has been known to be the key
process in energy coupling between the solar wind and the
magnetosphere (e.g.Baker et al., 1996). However, observing
the reconnection process poses significant challenges, as the
key processes occur at a very small-scale diffusion region,
while the consequences of the diffusion region dynamics oc-
cur over a wide region of space. While for example the Clus-
ter measurements have brought significant new information
about processes near the diffusion region (e.g.Øieroset et al.,
2001; Vaivads et al., 2004), the large-scale effects of recon-
nection can only be inferred using empirical proxies or from
large-scale simulation results (e.g.Pulkkinen et al., 2006).
For improved understanding of the nature of the solar wind–
magnetosphere coupling it is important to develop quantita-
tive methods to analyze the locations and large-scale effects
of reconnection in the simulation, such as those discussed in
this paper.

We have described practical approaches to characteriz-
ing magnetic reconnection in global MHD simulations: The
four-field junction is a way to define the separator line as
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a meeting place of magnetic field lines with different topo-
logical properties; this definition works well on the magne-
topause where the complicated geometry makes it difficult
to find an x-line by local considerations. However, the four-
field junction alone is not sufficient to characterize reconnec-
tion. Strong conversion of magnetic energy, evidenced by
negative divergence of the Poynting vector, in a region tra-
versed by a separator line, is already a good indicator of re-
connection. The divergence of the Poynting vector provides
an estimate of reconnection efficiency locally and can also be
integrated to give the reconnection power, that is, total rate
of energy conversion by reconnection. The global convec-
tion associated with reconnection can be estimated from the
transfer of mass, energy or magnetic field across the bound-
aries of topologically separate magnetic domains.

The Gumics-4 simulation produces two reconnection sites
that fulfill the criteria of a separator line and energy conver-
sion. They are large diffusion regions that lie in the tail and at
the magnetopause. Energy conversion takes place in a region
vastly larger than the separator line, which highlights the
importance of large-scale analysis of the reconnection pro-
cess. The tail reconnection in Gumics-4 resembles closely
the Sweet-Parker model (Laitinen et al., 2005). Analytical
considerations show that the Poynting vector divergence in a
Sweet-Parker diffusion region is independent of the magnetic
Reynolds number, that is, independent of the value or nature
of numerical diffusion in the code. This result provides a
fixed point for inter-code comparisons and gives credibility
to the analysis of numerically induced reconnection.

Methods developed in this paper and byPalmroth et al.
(2003) allow us to examine the large-scale reconnection pro-
cess in the magnetospheric boundaries and in the magnetotail
as a function of the driving solar wind and IMF conditions.
Palmroth et al.(2006) and Pulkkinen et al.(2006) discuss
the energy input into the magnetosphere and conclude that
it depends not only on the IMF direction, but also on past
values of the IMF; energy input is stronger after southward
IMF than it was before southward IMF even if the current
driving conditions were identical. This implies that the mag-
netospheric state is a parameter controlling in part the cou-
pling (and reconnection) process; methods such as developed
here suit ideally for analyses of these processes. Analysis
of magnetopause reconnection and its dependence on solar
wind conditions in Gumics-4 will be the topic of a subse-
quent article employing methods developed here.
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