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Abstract. Drift-mirror modes in a one-dimensional inhomo-
geneous model of the magnetosphere are studied by employ-
ing gyrokinetics, taking into account finite Larmor radius ef-
fects. A wave equation is derived which describes both the
spatial structure of the modes, and its eigenvalue yields a
growth rate of the mode. The finite Larmor radius effects are
shown to raise the instability threshold especially for high-m

waves, and lead to wave propagation across field lines.

Keywords. Magnetospheric physics (Magnetosheath; MHD
waves and instabilities) – Space plasma physics (Kinetic and
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1 Introduction

Generic properties of the circumterrestrial plasma are its in-
homogeneity, high pressure (the plasma-to-magnetic pres-
sure ratioβ∼1), and anisotropy. Under these circumstances,
drift-mirror compressional waves can be collectively excited
in the plasma (Hasegawa, 1969), provided that the mirror in-
stability criterion is satisfied. From the observational point of
view, drift mirror modes are often identified with compres-
sional storm time Pc5 geomagnetic pulsations (Barfield and
McPherron, 1978) and some kinds of magnetosheath modes
(Narita and Glassmeier, 2005).

A realistic interpretation of drift-mirror modes must take
into account finite Larmor radius (FLR) effects because these
effects enter into wave equations through the combination
k⊥ρ (herek⊥ is a transverse to the magnetic field compo-
nent of the wave vector andρ is a particles’ Larmor ra-
dius), andk⊥ is proportional to the azimuthal wave number
m, which is considered to be large,m�1. The compres-
sional storm time Pc5 pulsations are characterized by high
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m values. Besides, these waves often have small parallel
wavelengths (Takahashi et al., 1987), which implies that fi-
nite corrections ofk‖/k⊥ should also be taken into account.
Due to FLR effects, the wave frequencyω turns out to de-
pend onk⊥ (Hasegawa, 1969; Pokhotelov et al., 2004). But
in inhomogeneous plasmak⊥ should, in principle, be con-
sidered as an operator, and in the WKB approximation, as a
function of coordinates. Thus, studies of instabilities of inho-
mogeneous plasma and mode spatial structure are intimately
linked with each other. These were conducted by Vetoulis
and Chen (1994, 1996) and Klimushkin (2000) for Alfvén
waves, and by Crabtree and Chen (2004) for compressional
waves due to trapped ions. For drift-mirror waves, such a
nonlocal eigenmode stability analysis has not been carried
out to our best knowledge. It is especially timely now, since
the CLUSTER mission makes it possibile to study the small-
scale structure of ULF waves. The study of this issue is the
prime objective of the present paper.

2 The model and the main equations

In the model under consideration, the field lines of the ambi-
ent magnetic fieldB are supposed to have constant curvature
(cylindrical model; e.g. Pokhotelov et al., 1986). All plasma
parameters vary only across magnetic surfaces. The plasma-
to-magnetic pressure ratio isβ∼1, but a cold electron pop-
ulation present in the plasma provides a shorting out of the
parallel electric field (E‖=0). The equilibrium distribution
functionF is assumed to be bi-Maxwellian, and the thermal
velocities along and transverse to the magnetic field areV‖

andV⊥, respectively. Longitudinal and transverse pressures
areP‖ andP⊥, and the particles concentration isn. Plasma
temperature is taken to be uniform.

The perturbed quantities depend on space and time as
exp[−iωt+ikyy+i

∫
kr(r)dr+ik‖l‖], where r is a radial

coordinate (field lines’ curvature radius),y and l‖ are,
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consequently, the azimuthal and longitudinal coordinates,kr

is a wave vector radial component determined from the WKB
ansatz.

We start from the perpendicular plasma force balance
equation (Pokhotelov et al., 2000)

δP⊥ +
BδB‖

4π
=

k2
‖

k2
⊥

[
ω2

k2
‖
v2
A

− 1 −
β⊥ − β‖

2

]
BδB‖

4π
,

wherek2
⊥
=k2

r (r)+k2
y . Later on, we will neglect the term

ω2/k2
‖
v2
A because we consider much lower frequencies. In

also neglecting the coupling between the compressional and
transverse Alfv́en mode, this equation becomes

LMb = 0. (1)

Here,b=ωδB‖/c. The operator

LM = k2
⊥
(τ + aM) + k2

‖

(
1 +

β⊥ − β‖

2

)
(2)

is a compressional (mirror) mode operator, where

τ = 1 +
4π

c2
2π
∑
e, i

q2

m

×

∫
dv‖dv⊥v3

⊥
J 2

1

(
k⊥v⊥

ωc

)(
1

V 2
⊥

−
1

V 2
‖

)
F, (3)

aM =
4πω2

c2

1

k‖k
2
⊥

2π
∑
e, i

q2

m

∫
dv‖dv⊥v3

⊥
J 2

1

(
k⊥v⊥

ωc

)

×

(
v‖ −

ω − ωd

k‖

)−1(
∂F

∂ε
+

kyF
′

ωωc

)
. (4)

The prime means a differentiating with respect to the radius,
r; ωc is the gyrofrequency, and

ωd =
ky

ωc

(
B ′

2B
v2
⊥

−
v2
‖

r

)
is the drift frequency in the inhomogeneous magnetic field.
The Eq. (1) could be readily derived using the linear gyroki-
netic equations (Antonsen and Lane, 1980; Catto et al., 1981;
Chen and Hasegawa, 1991).

First, we consider the “classical” drift-mirror mode, that
is a mode in limitsk⊥ρ→0, k2

‖
/k2

⊥
→0, and|ω−ωd |�k‖V‖.

We obtain from Eq. (1):

τ0 −
8πn

B2

∑
e, i

mV 2
⊥

T⊥

T‖

i

√
π

2

ω − ω∗

k‖V‖

= 0. (5)

Here we have denoted

τ0 = 1 +
8πn

B2

∑
e, i

mV 2
⊥

(
1 −

T⊥

T‖

)
, (6)

ω∗ = kyV
2
‖

(logn)′ + 3α(logB)′

ωc

. (7)

Later on, we will neglect the pressure of the electron compo-
nent. We then readily cover the following well-known rela-
tions (Hasegawa, 1969):

Reω = ω∗, (8)

Im ω = γM ≡ −τ0

√
2

π

k‖V‖

β⊥

T‖

T⊥

, (9)

where β⊥=8πnmiV
2
⊥
/B2. These expressions describe a

wave with a drift frequencyω∗ which grows if the mirror
instability criterionτ0<0 is satisfied.

Now we consider small but finite values ofk⊥ρ, whereρ

is ion Larmor radius. Also, we are going to retain thek2
‖
/k2

⊥

corrections. Let us introduce the designations

α =
3

2
β⊥

(
T⊥

T‖

− 1

)
, δ =

k2
‖

k2
y

(
1 +

β⊥ − β‖

2

)
,

ωt =

√
2

π

k‖V‖

β⊥

T‖

T⊥

, τ̃ = τ0 + αk2
yρ

2, h = i
ω − ω∗(r)

ωt (r)
.

Then, instead of Eq. (5), we obtain the following drift-
mirror mode dispersion relation:

k2
⊥
[τ̃ (r) + αk2

r ρ
2
− h(ω, r)] + k2

yδ = 0. (10)

This expression can be obtained from Eq. (35) of Hasegawa
(1969), if we letk⊥ρ�1 there.

3 Drift-mirror eigenmode stability analysis

We are going to consider modes trapped across the magnetic
shells. This means that the radial mode width depends on the
macroscopic scale length and, thus|kr |�|ky |. Then Eq. (10)
further reduces to

k2
r αρ2

+ [τ̃ (r) − h(ω, r) + δ] = 0. (11)

This equation can be written in the form

α(r)k2
r ρ

2
− i

ω − ω0(r)

ωt (r)
= 0, (12)

whereω0 is the solution in thekrρ=0 case determined by the
equality

τ̃ (r) − h(ω0, r) + δ = 0.

The solution of this equation isω0=ω∗(r)+iγM(r), where

γM = −(τ̃ + δ)ωt .

Because all of the quantities in Eq. (12) are functions of
the radial coordinater, the radial wave vectorkr must also
depend onr. Hence, Eq. (12) should be considered as an
equation in the WKB approximation which determines the
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functionkr=kr(ω, r). Thus, the drift-mirror instability con-
stitutes an eigenmode stability analysis. To determine the
eigenvalueω, we need to derive the corresponding eigen-
mode equation and impose the appropriate boundary condi-
tions. The simplest approach is replacingkr by the differen-
tial operator−id/dr; and we obtain

ρ2α(r)
d2f

dr2
+ i

ω − ω0(r)

ωt

f (r) = 0. (13)

Here f (r) is the wave function. Certainly, any equation
which differs from this one with the term likedf/dr yields
the same leading order WKB approximation, Eq. (12), as
Eq. (13) does. But these terms do not affect the eigenvalues
ω in the largeky asymptotic limit, so it is sufficient to restrict
the consideration to Eq. (13). A natural boundary condition
to this equation in the coordinater is the condition that|f |

decays away from the localization region.
Then, we will consider the mode localized near the surface

rm, where the functionω0(r) takes its maximum value. Near
this point we can use an expansion

ω0(r) = ω0m + (1/2)ω′′

0x2,

wherex=r−rm, and them-index means a function value in
the pointrm. Besides, we will consider the case|γ |�|ω∗|.
Then,

ω′′

0 ' −
|ω∗m|

l2
,

wherel is a characteristic scale of the variation of the drift
frequency across magnetic shells. Denoting

E =
ω − ω0m

ωtmρ2
mαm

,

Equation (13) becomes

d2f

dx2
+

[
iE −

i

2

|ω∗|

ωtα(ρl)2
x2
]

f = 0. (14)

The boundary condition, meanwhile, is

|f (x → ±∞)| → 0, (15)

or |f | vanishes as|x|→∞. From Eq. (14) and below, the
subscript “m” is omitted, assuming all plasma equilibrium
parameters are evaluated at the pointrm.

As we see, Eq. (14) has the same form as the Schrödinger
equation for the harmonic oscillator, and valueE plays the
role of energy. The solution of this equation is written as

f (x) = Hn

(x

λ

)
exp

(
−

x2

2λ2

)
, (16)

whereHn are Hermitian polynomials,n=0, 1, 2, ..., andλ is
a characteristic radial wavelength determined by the condi-
tion

i

2
λ4 |ω∗|

ωtα(ρl)2
= 1.

To determine the proper root ofλ4, we impose the boundary
condition (15). Hence, it follows that Reλ−2>0, that is

λ2
= e−iπ/4

∣∣∣∣2ωtα

ω∗

∣∣∣∣1/2

ρl. (17)

In terms of order of magnitude,λ∼O(
√

ρl).
The quantization condition on the eigenvalue is

iEλ2
=2n+1, hence

Reωn = ω∗ +

(
n +

1

2

)
ρ

l

√
α ωt |ω∗|, (18)

γn = Im ωn = γM −

(
n +

1

2

)
ρ

l

√
α ωt |ω∗|. (19)

Following Hasegawa (1969), let us introduce the parame-
ter

1 =
3

4

[
β⊥

(
T⊥

T‖

− 1

)
− 1

]
,

representing the measure of the overshooting of the instabil-
ity condition. The growth rate takes a maximum value when
∂γM/∂k‖=0, ∂γM/∂ky=0. Thus,γ peaks at

k∗
y =

1

ρ

√
2

3

(
1

41
3 + 1

)1/2

, δ∗
=

1

3
,

k∗

‖
=

√
2

27

1ϒ

ρ
, (20)

where

ϒ =

(
1 +

β⊥ − β‖

2

)−1/2(41

3
+ 1

)−1/2

.

Both k∗
y andk∗

‖
are real when1>0. Taking maximizing val-

ues ofky , δ, we find

γ ∗

M =
2

√
27π

V‖T‖

β⊥T⊥

2

3ρ
|1|1ϒ.

We see that the condition forγ to be positive is still1>0,
as in the case when FLR andk‖/ky terms are neglected. In
order of magnitude,

γ ∗

M ∼ 12V⊥

ρ
.

So, as the Larmor radius increases, the growth rate decreases,
but remains positive. However, according to Eq. (19), when
the radial mode numbern becomes large, the instability is
stabilized. The critical value is

nc ∼

(
L

ρ

)3/2

15/4,

i.e. FLR effects are favorable for lowering the stabilizingn

number.
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Fig. 1. The mode structure across magnetic shells:(a) when
|γ |�|ω∗|, (b) when|γ |�|ω∗|.

Considering the marginal instability case when 0<1�1
and k‖=k∗

‖
, ky=k∗

y , the characteristic radial wavelength
scales are

λ∗
∼ L

(ρ

L

)1/4
11/8,

whereL is the inhomogeneity scale. We see thatλ∗ only
weakly depends on bothρ/L and1.

4 Discussions

In this paper, we have analyzed the growth rate and the
spatial structure of the drift-mirror modes as a nonlocal
eigenmode problem. The following picture is beginning to
emerge. At the first sight the finite Larmor radius favors the
instability stabilization because the condition for the inequal-
ity becomes

τ0 + α(kyρ)2
+ (k‖/k⊥)2

[1 +
1

2
(β⊥ − β‖)] < 0.

However, at the maximizing values ofky andk‖, the insta-
bility criterion remains as in thekyρ=0 case:1>0. FLR
effects influence the instability in another way, via lowering

the threshold value of the radial harmonic numbern. This
value nc decreases rapidly with increasingρ, and the har-
monics withn>nc are stable.

The radial structure of the mode is described by Eq. (16).
The presence of the imaginary part leads to the propagation
of the wave across the magnetic shells. The real part of the
radial wave vector is Rekr=−x|λ−2

| sin(π/4), i.e. the phase
velocity is directed toward the left whenr>rm and toward the
right whenr<rm. As Eq. (17) indicates,kr does not depend
on ω, i.e. energy is not transmitted across magnetic shells
(like in an Alfvén wave in a homogeneous plasma). Notice
that the radial structure has the oscillatory character even at
n=0 (Fig. 1a). The wave is modulated by the Gaussian func-
tion. Surprisingly, the value of the characteristic radial wave-
length has a rather weak dependence on the ratioρ/L and on
the measure of the overshooting of the instability condition
1.

The situation is entirely analogous in the regions where
the functionω∗(r) reaches minima, except that the sign of
the radial phase velocity is opposite.

The conclusions about the instability remain valid when
|γ |�|ω∗|. But in this case Imλ2

=0, i.e. the mode is standing
across magnetic surfaces (Fig. 1b).

The spatial structures predicted in this paper could be com-
pared with the CLUSTER satellite observations in the mag-
netosphere and in the magnetosheath.
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