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Abstract. The paper employs the frame of a 1-D inhomoge- magnetic sound (FMS). A generalization of the FMS disper-

neous model of space plasma,to examine the spatial structusgon equation for the case of finite-pressure plasma oscilla-
and growth rate of drift mirror modes, often suggested for in-tions, obtained by solving the Vlasov equation, has the form
terpreting some oscillation types in space plasma. Owing tqHasegawa, 1975)

its coupling with the Alfien mode, the drift mirror mode at-

i - ' 4 2 2 _y2
tains dispersion across magnetic shells (dependence of thfa) 2 kz) E. Vii=Vi
frequency on the wave-vector’s radial componép), The 02 =L 2v/2x
spatial structure of a mode confined across magnetic shells is

studied. The scale of spatial localization of the wave is shown B2 {1 - = [1+ (fw - )” —0 B
VI

to be determined by the plasma inhomogeneity scale and by I

the azimuthal component of the wave vector. The wave prop-

agates across magnetic shells, its amplitude modulated alongerew is the wave frequencyy is the Alfvén velocity k| |

the radial coordinate by the Gauss function. Coupling withare the wave vector components along and across the equi-
the Alfvén mode strongly influences the growth rate of the librium magnetic field V), . and7j,  are the thermal veloc-
drift mirror instability. The mirror mode can only exist in a ities of particles and temperatures along and across the field,
narrow range of parameters. In the general case, the modgy, 1 is the ratio between the longitudinal or transverse pres-
represents an Alen wave modified by plasma inhomogene- sure of the plasma and magnetic pressutds the Fried-

ity. Conte plasma dispersion function. Under vanishingly small
p Pressure, the usual FMS dispersion equation follows from
Fa- @ o 2=(kf+k7)v4. The mirror mode represents an-
other limit, when the plasma and magnetic pressure are of

Keywords. Magnetospheric physics (Magnetosheath; MH
waves and instabilities) — Space plasma physics (Kinetic an

MHD theory) the same order of magnitude;-1, with the transverse wave
vector being largek >k, w/va, and the frequency very
low, <k Vj. In this case, as implied by EqL)( the fre-

1 Introduction quency is purely imaginaryo=iyy, where

Compressional storm-time Pc5 pulsation within the magne- 2k Vy T

tosphere (Takahashi, 1996; Woch et al., 1990) and somé&wm = _T\/;,B_J_T_J_ 2

typs of waves observed in the magnetosheath (Denton, 2000;
Lucek et al., 2005; Narita and Glassmeier, 2005) have in theand
past been identified with the drift-mirror mode. This mode,
being compressional (i.e. exhibiting a significant variation . — 1 | BL (1 _ ﬂ) (3)
of the absolute value of the magnetic field which, in the Ty

linear approximation, means the presence of a longitudina

component in the wave magnetic field), is akin to the fastl/Vhen 7<0, the disturbance increases (mirror instability).

For a more detailed discussion of the physical nature of
Correspondence tdD. Klimushkin this mode see Hasegawa (1969); Southwood and Kivelson
(Klimush@iszf.irk.ru) (1993); Treumann (2001); Treumann et al. (2004). In an in-
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homogeneous plasma, the mirror mode frequency acquires a The next question relates to the ratieck V; (the “mirror
real part limit”). As follows from Eq. (2), this inequality can only be
satisfied forr<«1. But the quantityr is a combination of
ky VHZ , , order-unity terms, and there are no specific reasons for its
Wx = w0 [(Iogn) + 3a(log Bo) ] 4) absolute value to be much smaller than unity, including under
strong plasma anisotropy. Which modes witkk V exist
(w. is a gyrofrequency, n is a concentration, ininhomogeneous plasma with-1?

a=(Ty—T1)/T1), whose order of magnitude coincides  Finding answers to these questions is the aim of this paper.
with the drift frequency (Hasegawa, 1969; Pokhotelov et al.,

2001). The parameter characterizes the plasma anisotropy.

In ordinary theory the parameterdetermines the nature of 2 The model and major equations

the instability: «>0 is required for the firehose instability

of Alfv én waves, whilex<0 holds for the mirror instability. ~ The paper considers a model magnetosphere with equilib-
Hence, in ordinary theory both instabilities behave Com-rium magnetic f|6|dBo lines with constant curvature. All
plimentary. But the drift mirror modes are coupled with the plasma parameters vary across magnetic shells only. The
transverse Alfén waves in an inhomogeneous plasma (Lin Plasma to magnetic pressure ratigis1, but the plasma has
and Parks, 1978; Chen and Hasegawa, 1991; &terand & population of cold electrons, providing a shorted-out lon-
Andre, 2003, 2005). gitudinal electric field £;=0). The same-sign particle con-

A number of further questions arise when studying drift centration isn. The equilibrium distribution functiorF is
mirror waves in inhomogeneous plasma. First of all, theassumed to be bi-Maxwellian, the mean motion velocities
dispersion relation2) does not contain the transverse com- @long and across the field avg and V.. The longitudinal
ponentk, of the wave vector, i.e. these waves lack trans-and transverse components of the equilibrium pressure are
verse dispersion. Transverse dispersion does appear wheffi @nd P.. Plasma temperature is assumed to be unchang-
the finite ion Larmor radius effects are taken into accountind in the entire volume. Plasma anisotropy is characterized
(Pokhotelov et al., 2004), but we are dealing with much Py the parameter=(7)—7.)/T..
longer waves, in which these effects are weak. The same For E;=0 the wave can be described by two vari-
is true for Alfven waves, but they see transverse dispersiorbles: W, related to the longitudinal vector potentia) by
when curved field lines and finite plasma pressure are acA|= —(ic/®)dV¥/dl|, wherew is the wave frequency; and
counted for (Leonovich and Mazur, 1993; Klimushkin, 1997; b= By /c, whereB; is the longitudinal magnetic field (Chen

Mager and Klimushkin, 2002). Is it not the case for the drift and Hasegawa, 1991). The dependence of the wave variables
mirror mode as well? on the spatio-temporal coordinates has the form

This question is closely related to what spatial struc-

ture these waves may have in inhomogeneous plasma. Th¥, b x expl—iwt + ikyy +i / ky(r)dr +ikyly ],

Alfv én mode with a givem andk is known to be narrowly

localized close to a magnetic shell near where the relationwherer is the radial coordinate (field-line curvature radius),
ship w=kjva(r) (herer is the coordinate across magnetic y is the azimuthal coordinaté, is the longitudinal coordi-
shells) holds. An analogous expression for the drift mirror nate (along the two latter, the equilibrium parameters are as-
waves is Ra=w, (r). Does it not imply that the drift mirror ~ sumed unchanged, is the wave-vector's radial component
mode is also narrowly localized close to a certain magneticdetermined from the leading order of the WKB approxima-
surface? Further, some papers (e.g. Hasegawa, 1969; Lin aribn.

Parks, 1978 and others) examined drift mirror modes with The field variables are related by the gyrokinetic equations
k,<k,, wherek, andk, are the wave vector components (Catto etal., 1981; Antonsen and Lane, 1980) which are con-
across magnetic shells and along the binormal to field linesyeniently re-written as (Chen and Hasegawa, 1991)
respectively. Under what conditions is this possible? In par-

ticular, the inequalityk, <k, naturally holds for modes con- Lmb —kyLc¥ =0, ®)
fined across magnetic shells between two reflection points on

the radial coordinate. Can such modes exist? LoV —kyLcb =0. (6)

The studies of mode stability and spatial structure are. . L
closely interrelated. Thus, in t%/e casepof a mode trappecirhe following notation is introduced here:
across magnetic shells, its structure is determined by soIvLM
ing a certain differential equation whose eigen value is fre-
guency, including its imaginary part, the instability growth where
rate. For the Alfén waves, this procedure was done in Ve- g2 ) . e
toulis and Chen (1_996)_. It would be interesting to perform . _ 1 | Lz Z q—/dv”dvlvillz(é) (_2 _ _2> ’
the same for the drift mirror mode. e T m Vi

=T +ay,
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2 2 . e
ay = 471;0 12 o Z q- / dvudeiJf(s) OF, Expre.ssmga from Eq. 6) and substituting it into Eq 6],
¢t kjky 7 m we obtain
2 L2
C
e=v2/2is the particle energg=k, v, /w. is an argumentof L4 — k3 Ly =0. )
the Bessel function, ] ) . ] )
This expression should be considered as an equation relating
N w— wy “1/aF kyF' the radial componerit, (r) of the wave vector to frequency
OF = <UII - ki ) <3_8 + wwc> ’ w, c_orresponding to the leading order of the WKB approxi-
mation.
and In this paper we will neglect the particle Larmor radius
, 2 (£«1) and the pressure of the plasma electron component.
wg = k_y ﬁvz U Then, in the mirror limitw, wz <k V), the operators are re-
we \2Bg * 1 cast as
. Wy
is the drift frequency in inhomogeneous magnetic field Ly =7 — i (1— E> (8)
(prime means differentiated over radit)s Further,
2 w? 45 B, P
_ 2.2 2 @ La=k2 (o2 -2 )22 (pr 20 _ 1
La = (ki +k3) (ak” — g> A L (0 [ vf\ y Bg LBy F
2
Ax B, P L2, @ =y (B
k2 pr 2o ) g, + ik -1, (9)
y Bg ( LBO . aa y w B
/ _ l
whereo=1—-(1/2)(8,—p.) and c = Ar Py 5 L E. (10)
B? v B
4o’ o a* @a\2 1200 5 Here is designated
ar= " k_HZNZZ dvydvy v, <E> J2E) OF. ere is designate
o a\12T, w 87rnhmin
| _(ZyR I o SV a1
Finally, 2 Ty kyVy  B§
o 4m P —a the quantities andw, are determined by the expressios (
Bg and @).
dnw® 21— ¢° 2 2 3 Combined study of the spatial struct d growth
_ | goud JoEVIE L OF. y patial structure and gro
c? kyjky ; m / MidvLvy Jo(5) 1(E) ® ¢ rate of the drift mirror mode

Note that the termsyy, a, a. are responsible for the wave- |f we setL.=0, itfollows from Eq. {) thatL =0, whence we
particle interaction. obtain a “classical” dispersion equation for the drift mirror

modew=w,+iyy, Whereyy, is determined by the expres-
&Sion @) in the Introduction. In the general case, however, the
coupling operator must not be neglected. Equatidis(then
recast as

Note that the operatord.,; and L4 are often called,
respectively, the compressional (mirror) and transvers
(Alfv én) mode operators. The operatfor is then respon-
sible for coupling of these modes. Such terminology origi-

nates from the theory of weakly coupled oscillation modes  , 2@ — wi(r) —iym(r) —iQ(r)
. . ki(w,r) =—K - . (12)
in homogeneous plasma. In the inhomogeneous plasma casé w — e (r) — iypm(r)
the system§, 6) should be understood somewhat differently: The followina notations are introduced here:
as the leading order of the WKB approximation of a differ- 9 '
ential equation system describing the wave’s transvebde ( ki To 1 {4n P 2
I . - - R et
and longitudinal §) magnetic field. Solving this problem Q. = BT 7 3 , (13)
we find the functionsV (r) andb(r) containing information m BL TiLp \ Bj
on the mode localization areas. Thus, from the systgm ( 2
6) we eventually determine where in the plasma the wave is ;. (o, r) = akﬁ — “)_2 (14)
localized and what polarization it has in these regions. In in- vy
homogeneous plasma, there is no need whatsoever to single ) ,
out the Alfven and compressional components from the totaIiP =Ly — 4_” P ﬁ _ ﬂ (15)
wave field as being somewhat different from each other. Bg 1By )
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K2 — kzl:_P_ region. If the approximate Eql6) hold, the expressiori@)
YLt reduces to
Note thatk ~ k,. We will consider waves with Re~w;.. , K2

K
. . ~ . k= — Q i (w —
Let us introduce the quantiti€®; and2p determined from " Qo [(rmo +$20) + i@ = @10)

equationsL7(Q27) = 0 andL p(Q2p)=0. These are certain 2
characteristic frequencies of the Atfm wave. Let the wave — (o — iw*o)—z} . a7)
frequencyw be much less than any of them. The Adfvop- !

erator then differs significantly from zero in the mode local- The transverse small-scale condition for the madesk,
ization region. In this case expressidi2(can be interpreted oy ces ultimately t& 7>>1.

as a dispersion expression for the drift mirror mode modified | ot us consider a differential equation, which in the lead-
by its coupling to the Alfén mode. We can see that this mod- j4 order of the WKB approximation reduces to the form of

ification reduces to the emergence of transverse dispersion iBq. (L7). The simplest equation of this kind has the form
the drift mirror mode.

It is interesting that we come across an analogous situad?f K2

+ — [(ymo + Qco) + i (0 — ws0)

tion when studying the slow magnetic sound (SMS) in the 4x2 " @,

MHD frame. In the limitk >k the SMS dispersion equa- 2

tion has the formw=vsk; [1-|—O(kf/ki)] (wherevs is the — (R0 — l_w*o)x_} f=0. (18)
. . . . 12

slow magnetic sound velocity), meaning that the SMS dis-

persion becomes negligibly small. But when field line curva-
ture is taken into account, the SMS mode becomes couple
to the Alfvéen mode (Klimushkin, 1997) (analogously to our
case of coupled mirror-Alfen modes). This results in recov-
ered transverse SMS dispersion.

Equation (2) is also the leading-order equation in the
WKB approximation for the drift mirror mode. This will al-
low us to obtain some information about the spatial structuref
of the drift mirror mode.

Let us consider modes with.~0 localized across mag- K2/~2x*(1 — iw,0Q2g) = 1.
netic shells. This is possible in the regions where the func-
tions Q. () and w,(r) reach their extremes, their locations Extracting the root from.* we should keep in mind the con-
practically exactly coinciding. Additionally, these extrema dition that the functionf decrease when— +oo. Hence,
should be in the region where|«1. Such coincidences are Rer=2>0, i.e.

f course, many such equations can be introduced, differing
om each other by the first derivative of the functigiax)
describing the wave amplitude. But the terms of dtfédx
type do not influence the eigen valuesso it is sufficient to
restrict ourselves to Eql8). The boundary condition to this
equation is the boundedness of the functjoat x — +-oco.
Let us introduce a new variable=x /A, wherea is found
rom the condition

rather unlikely, of course. Nevertheless, let us consider the 5\ —1/4

mode structure in such a resonator. 32 — L 14 @0 £19/2 (19)
It can be seen from Eqlp) that for k,~0 the real and |K| Qfo '

imaginary parts of the frequency are determined by the ex-

pressions where

Rew >~ w,0, IMw >~ Qo + yumo. (16)  cOSp = Qeo/+/ Q2% + w?,

The index “0” here denotes the extremes of corresponding sing = w,q/ Q?O + wfo- (20)

guantities. For definiteness, let us consider the pginthere
the quantitieX2 andw, are positive. If their variation scales On the order of magnitude,~./I/K. Let us introduce the
along the radial coordinate are approximately the same, weotation
may make use of the quadratic expansions

0= Qeo+ymo—vy

Q. =1 x2 V(Qco + ymo — ¥)2 + (0 — ws0)?

" — O —_—— ,

C a wherey is the imaginary part of the wave frequency.

2 Now Eg. (L8) reduces to
X

wr=wx|1——=]. d?

* ( ’2> —f+(9—§2)f=0.

d¢?

Herex=r—ro, and! is the typical scale of plasma inhomo- Thisis the problem on the eigen valuesiof
geneity. All the other quantities included in E4G2] may be

considered approximately constant in the mode localizatiorRed = 2n +1, Im6 =0,

Ann. Geophys., 24, 2292297, 2006 www.ann-geophys.net/24/2291/2006/
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wheren is an integer. From here we obtain the eigen values [~
for the instability growth rater and for the real part of the
wave frequency: —

Yn = (c0 + ¥m0) =

1/2 1/2 =
2n+185 2 2 =
S (L ¥ (21) i
1/2 1/2 | v /! \
2n+1Q 2 > ! !
Reéwn = 0+ V2 kLyl [V $250 + @io — S0 (22) kY im f(x)
| | | | | |
(note the correspondence of the obtained expressions to the [~ Radial coordinate, r-r,
formulas (6) that takes place foK/>>1). The solution of
Eq. (18) is written as | b
r—ro (r — rp)?
f(r)=H, )P Tz | (23) S

where H, is the Hermitian polynomial.

Let us discuss the solution obtained. An instability devel-
ops fory,>0. As can be seen from EqRY) coupling to the
Alfv én mode (depicted b§2..) substantially affects the insta- | | | | | |
bility. With high harmonic humbers:>>1 coupling favours Radial coordinate, r-,
plasma stability. With low numbers~1 the second term

in Eq. 1) is CO"}Siderabb_’ smaller th.an th? .first due to the Fig. 1. Transverse structure of the mode) in the Qo~w,o case
large value o'/, i.e. coupling favours instability. A negative (values Ref (x), Im f(x) are shown)(b) in the Qg>>w,q case.
value ofr (included into the definition of,,) also encour-

ages instability, but even with>0 the instability is possible.
The real part of the eigenfrequency grows with increasing Let us consider the fulfiiment conditions for expressions
harmonic number. This growth is, however, rather slow dueobtained in this chapter. The conditiansk V) places re-
to the factor(K1)~! present in the second term of EQ2. strictions to the values of the real and imaginary parts of
Therefore, the wave frequency almost coincides witl. the wave frequency. The real wave frequency is close to the
This is close to the ULF wave frequencies observed in thedrift frequency, which on the order of magnitude is equal to
real magnetosphere (including the compressional storm-time»,.~k p; vy 1, wherep; is the ion Larmor radiusyr is the
pulsations Pc5). typical particle thermal velocity. The inequality, <k V)
Radial structure of the wave described by form28)( is satisfied if(kyp;)/(kjl)<1. Contribution to the imagi-
is shown schematically in Fig. 1. The mode is trappednary wave frequency is made by, andQ.. The condition
between two cutoff magnetic surfaces (see also Treumanm <k V) for 81 ~ 1 meangz|«1. Finally, Q. <k V) is
and Baumjohann, 2000). In the general c&&@~w.o, only possible if the condition(1k||l)2>>1 is met. The real and
and the structure has an oscillatory character evem#@r  the imaginary parts of the frequency, in the meantime, are of
(Fig. la), with the amplitude modulated by the Gaussthe same order of magnitude.
function. The presence of the imaginary part i Finally, let us consider mode polarization in the resonator.
results in the wave propagating across magnetic shellslt follows from the general gyrokinetic formulas (Antonsen
The real part of the wave vector's radial component isand Lane, 1980) that the vector potential’s longitudinal com-
Rek,=(r—ro)| K |I"1|» 72| sin(¢/2). Since by the definition ponentA, i.e. the variablel=(w/ckj) A is responsible for
of ¢ (20) the sign of sinp coincides with that ofv,o, and  the wave’s transverse magnetic field. Sikge&k, in the res-
the quantity is positive at the poimb, then sin(¢/2)>0. onator, we conclude that the wave'’s transverse magnetic field
Therefore, the wave phase velocity is directed away from thas dominated by the radial component (the wave has poloidal
surfacerg. As can be seen from Eql%), meanwhile,k, polarization). According to the systers, ), the transverse
does not depend am, i.e. there is no energy transfer across and longitudinal components of the magnetic field are related
magnetic shells (as is the case for the Alivwave in ho- by
mogeneous plasma). The wave is standing across field lines
(Fig. 1b) in the case sif®/2)=0 only. As can be seen from B. _ 4r P}
Eq. (0) it is possible ifw,0K Q0. B ngBg'

www.ann-geophys.net/24/2291/2006/ Ann. Geophys., 24, 22287-2006
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In view of the condition(k;/)%>1, it follows from here that
the longitudinal component of the magnetic field dominates
over its transverse component.

4 Caser~1: ballooning-compressional Alf\en mode

As has already been noted, the quantitg a combination of
terms of order unity and there are no special reasons for it
absolute value to be much smaller than unity. The smallnes
of § is, meanwhile, provided by the inequalibk; v}, and

we can write in EQ.7)

1 1 8

. Wy
mZ;Jrzﬁ(l—g). (24)
Then Eg. {) reduces to
K2Lr(w.r) + k2Lp(w,r)
2
- B 4n P
—iZs 2| 2 L —o (25)
w B T Bj

Here the toroidal operataty is determined by the expres-
sion (14), and we will call the operator

Lp(w,r) ok? w? Ar P’ B6 Pﬁ
P 9 = - T - I —
I vf‘ Bg LBy r

1(4rnP|

(26)

(5)

poloidal. The additional terms in this expression, not con-
tained in the toroidal operator expression, are called the bal
looning terms.

In the homogeneous plasma limit, EQ5) reduces to the
dispersion equation of the Alen modew?=ckZv;. Thus,
Eq. (25) is the dispersion equation of a very-low-frequency
(w<ky V) Alfvén wave in inhomogeneous finite-pressure
plasma. We may call this mode a ballooning-compressional
Alfv én mode.

Let us introduce the toroid&; and the poloidaf2p fre-
quency determined from the conditions

T Bg

Lr(Q7)=0
and
Lp(Qp) =0.

In the casew ~ Qr, Eq. 25 implies thatk,>k,. In

D. Yu. Klimushkin: Coupled mirror/Alfen modes

i.e. the dependence of the frequency on the wave vector’s
transverse component, which is also explicit in E25)(
The consequence is the appearance of transverse components
vy 1 =0w/dk inthe group velocity.

Imaginary terms in Eq.25) are responsible for collision-
less damping or swinging of the Aln wave. Notice that the
inequality w<k V| determines the smallness of the imagi-

fary part in the frequency compared to its real part, in con-
g

ast to the drift mirror mode.

5 Conclusions

Here are the chief conclusions of the paper.

1. In the general case, when paraméter-1, even if it
is negative, waves witlv<k| V) are Alfvén waves modi-
fied by the plasma inhomogeneity and field-line curvature.
This modification consists of the appearance in the dispersion
equation of ballooning terms leading to differing frequencies
in poloidal and toroidal oscillations, the appearance of trans-
verse components in the group velocity of the &lfwwave,
as well as to the appearance of a longitudinal component in
the wave magnetic field.

2. For|t|«1 the existence of the drift mirror mode is pos-
sible, as a spatially isolated structure in plasma. However,
this quantity is a combination of the terms of order unity,
which makes the inequaliti |<1 appear to be rather artifi-
cial. On the other hand, the the magnetosheath plasma has
a high g value and low anisotropy (Narita and Glassmeier,
2005), so this condition is not so inconceivable.

3. The radial component of the wave vector is included
in the Alfvén mode operator. But the plasma inhomogene-
ity leads to a “coupling” of these two modes, and therefore
transverse dispersion of the drift mirror mode appears.

4. The Alfven wave coupling provides the opportunity for
inspecting the spatial structure of the drift mirror mode. In
Particular, plasma regions are considered in which the mode
Is trapped across magnetic shells, while being confined be-
tween two turning points. An equation is obtained describ-
ing the radial structure of the mode in such a resonator. The
eigen value of this boundary problem gives the wave fre-
guency value, including its imaginary part, the instability
growth rate. The radial wavelength in such a resonator is
determined by the plasma inhomogeneity sé¢alad the az-
imuthal component of the wave vectby, A~,/[/k,. In the
general case, has a real and an imaginary part. This means
that the wave propagates across magnetic shells (with no en-

this case the azimuthal component dominates in the wavergy transfer involved). The wave amplitude is modulated

magnetic field (oscillations are toroidal). Conversely, in the
casew>~Qp the inequalityk, <k, holds, i.e. the radial com-

ponent of magnetic field exceeds its azimuthal componen
and the oscillations are poloidal. Thus, the presence of bal
looning terms leads to the polarization splitting of the spec-

along the radial coordinate by the Gauss function.

5. The influence of the Alfén mode leads to modification
bf the mirror instability criterion. In the “classical” theory,
which does not include coupling, this instability develops if
the conditiont <0 is met. Coupling to the Alféen mode for

trum. Further, the presence of ballooning terms results inow harmonic numbers;~1, favours instability due to the

the emergence of transverse dispersion in the &lfwave,

Ann. Geophys., 24, 2292297, 2006
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