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Abstract. The paper employs the frame of a 1-D inhomoge-
neous model of space plasma,to examine the spatial structure
and growth rate of drift mirror modes, often suggested for in-
terpreting some oscillation types in space plasma. Owing to
its coupling with the Alfv́en mode, the drift mirror mode at-
tains dispersion across magnetic shells (dependence of the
frequency on the wave-vector’s radial component,kr ). The
spatial structure of a mode confined across magnetic shells is
studied. The scale of spatial localization of the wave is shown
to be determined by the plasma inhomogeneity scale and by
the azimuthal component of the wave vector. The wave prop-
agates across magnetic shells, its amplitude modulated along
the radial coordinate by the Gauss function. Coupling with
the Alfvén mode strongly influences the growth rate of the
drift mirror instability. The mirror mode can only exist in a
narrow range of parameters. In the general case, the mode
represents an Alfv́en wave modified by plasma inhomogene-
ity.

Keywords. Magnetospheric physics (Magnetosheath; MHD
waves and instabilities) – Space plasma physics (Kinetic and
MHD theory)

1 Introduction

Compressional storm-time Pc5 pulsation within the magne-
tosphere (Takahashi, 1996; Woch et al., 1990) and some
typs of waves observed in the magnetosheath (Denton, 2000;
Lucek et al., 2005; Narita and Glassmeier, 2005) have in the
past been identified with the drift-mirror mode. This mode,
being compressional (i.e. exhibiting a significant variation
of the absolute value of the magnetic field which, in the
linear approximation, means the presence of a longitudinal
component in the wave magnetic field), is akin to the fast
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magnetic sound (FMS). A generalization of the FMS disper-
sion equation for the case of finite-pressure plasma oscilla-
tions, obtained by solving the Vlasov equation, has the form
(Hasegawa, 1975)(
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Hereω is the wave frequency,vA is the Alfvén velocity,k||,⊥

are the wave vector components along and across the equi-
librium magnetic field,V‖,⊥ andT‖,⊥ are the thermal veloc-
ities of particles and temperatures along and across the field,
β‖,⊥ is the ratio between the longitudinal or transverse pres-
sure of the plasma and magnetic pressure,Z is the Fried-
Conte plasma dispersion function. Under vanishingly small
pressure, the usual FMS dispersion equation follows from
Eq. (1): ω2

=(k2
||
+k2

⊥
)v2

A. The mirror mode represents an-
other limit, when the plasma and magnetic pressure are of
the same order of magnitude,β∼1, with the transverse wave
vector being large,k⊥�k||, ω/vA, and the frequency very
low, ω�k||V‖. In this case, as implied by Eq. (1), the fre-
quency is purely imaginary:ω=iγM , where

γM = −τ

√
2

π
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and

τ = 1 + β⊥

(
1 −

T⊥

T‖

)
. (3)

When τ<0, the disturbance increases (mirror instability).
For a more detailed discussion of the physical nature of
this mode see Hasegawa (1969); Southwood and Kivelson
(1993); Treumann (2001); Treumann et al. (2004). In an in-
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homogeneous plasma, the mirror mode frequency acquires a
real part

ω∗ =
kyV

2
‖

ωc

[
(logn)′ + 3α(logB0)

′
]

(4)

(ωc is a gyrofrequency, n is a concentration,
α≡(T‖−T⊥)/T⊥), whose order of magnitude coincides
with the drift frequency (Hasegawa, 1969; Pokhotelov et al.,
2001). The parameterα characterizes the plasma anisotropy.
In ordinary theory the parameterα determines the nature of
the instability: α>0 is required for the firehose instability
of Alfv én waves, whileα<0 holds for the mirror instability.
Hence, in ordinary theory both instabilities behave com-
plimentary. But the drift mirror modes are coupled with
transverse Alfv́en waves in an inhomogeneous plasma (Lin
and Parks, 1978; Chen and Hasegawa, 1991; Ferrière and
Andre, 2003, 2005).

A number of further questions arise when studying drift
mirror waves in inhomogeneous plasma. First of all, the
dispersion relation (2) does not contain the transverse com-
ponentk⊥ of the wave vector, i.e. these waves lack trans-
verse dispersion. Transverse dispersion does appear when
the finite ion Larmor radius effects are taken into account
(Pokhotelov et al., 2004), but we are dealing with much
longer waves, in which these effects are weak. The same
is true for Alfvén waves, but they see transverse dispersion
when curved field lines and finite plasma pressure are ac-
counted for (Leonovich and Mazur, 1993; Klimushkin, 1997;
Mager and Klimushkin, 2002). Is it not the case for the drift
mirror mode as well?

This question is closely related to what spatial struc-
ture these waves may have in inhomogeneous plasma. The
Alfv én mode with a givenω andk‖ is known to be narrowly
localized close to a magnetic shell near where the relation-
ship ω=k‖vA(r) (herer is the coordinate across magnetic
shells) holds. An analogous expression for the drift mirror
waves is Reω=ω∗(r). Does it not imply that the drift mirror
mode is also narrowly localized close to a certain magnetic
surface? Further, some papers (e.g. Hasegawa, 1969; Lin and
Parks, 1978 and others) examined drift mirror modes with
kr�ky , wherekr and ky are the wave vector components
across magnetic shells and along the binormal to field lines,
respectively. Under what conditions is this possible? In par-
ticular, the inequalitykr�ky naturally holds for modes con-
fined across magnetic shells between two reflection points on
the radial coordinater. Can such modes exist?

The studies of mode stability and spatial structure are
closely interrelated. Thus, in the case of a mode trapped
across magnetic shells, its structure is determined by solv-
ing a certain differential equation whose eigen value is fre-
quency, including its imaginary part, the instability growth
rate. For the Alfv́en waves, this procedure was done in Ve-
toulis and Chen (1996). It would be interesting to perform
the same for the drift mirror mode.

The next question relates to the ratioω�k||V‖ (the “mirror
limit”). As follows from Eq. (2), this inequality can only be
satisfied forτ�1. But the quantityτ is a combination of
order-unity terms, and there are no specific reasons for its
absolute value to be much smaller than unity, including under
strong plasma anisotropy. Which modes withω�k||V‖ exist
in inhomogeneous plasma withτ∼1?

Finding answers to these questions is the aim of this paper.

2 The model and major equations

The paper considers a model magnetosphere with equilib-
rium magnetic fieldB0 lines with constant curvature. All
the plasma parameters vary across magnetic shells only. The
plasma to magnetic pressure ratio isβ∼1, but the plasma has
a population of cold electrons, providing a shorted-out lon-
gitudinal electric field (E‖=0). The same-sign particle con-
centration isn. The equilibrium distribution functionF is
assumed to be bi-Maxwellian, the mean motion velocities
along and across the field areV‖ andV⊥. The longitudinal
and transverse components of the equilibrium pressure are
P‖ andP⊥. Plasma temperature is assumed to be unchang-
ing in the entire volume. Plasma anisotropy is characterized
by the parameterα=(T‖−T⊥)/T⊥.

For E‖=0 the wave can be described by two vari-
ables:9, related to the longitudinal vector potentialA‖ by
A‖= −(ic/ω)∂9/∂l‖, whereω is the wave frequency; and
b=ωB‖/c, whereB‖ is the longitudinal magnetic field (Chen
and Hasegawa, 1991). The dependence of the wave variables
on the spatio-temporal coordinates has the form

9, b ∝ exp[−iωt + ikyy + i

∫
kr(r)dr + ik‖l‖ ],

wherer is the radial coordinate (field-line curvature radius),
y is the azimuthal coordinate,l‖ is the longitudinal coordi-
nate (along the two latter, the equilibrium parameters are as-
sumed unchanged),kr is the wave-vector’s radial component
determined from the leading order of the WKB approxima-
tion.

The field variables are related by the gyrokinetic equations
(Catto et al., 1981; Antonsen and Lane, 1980) which are con-
veniently re-written as (Chen and Hasegawa, 1991)

LMb − kyLc9 = 0, (5)

LA9 − kyLcb = 0. (6)

The following notation is introduced here:

LM = τ + aM ,

where
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ε=v2/2 is the particle energy,ξ=k⊥v⊥/ωc is an argument of
the Bessel function,
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is the drift frequency in inhomogeneous magnetic field
(prime means differentiated over radiusr). Further,
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whereσ=1−(1/2)(β‖−β⊥) and
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Finally,
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− ac,
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Note that the termsaM , aA, ac are responsible for the wave-
particle interaction.

Note that the operatorsLM and LA are often called,
respectively, the compressional (mirror) and transverse
(Alfv én) mode operators. The operatorLc is then respon-
sible for coupling of these modes. Such terminology origi-
nates from the theory of weakly coupled oscillation modes
in homogeneous plasma. In the inhomogeneous plasma case
the system (5, 6) should be understood somewhat differently:
as the leading order of the WKB approximation of a differ-
ential equation system describing the wave’s transverse (9)
and longitudinal (b) magnetic field. Solving this problem
we find the functions9(r) andb(r) containing information
on the mode localization areas. Thus, from the system (5,
6) we eventually determine where in the plasma the wave is
localized and what polarization it has in these regions. In in-
homogeneous plasma, there is no need whatsoever to single
out the Alfvén and compressional components from the total
wave field as being somewhat different from each other.

Expressingb from Eq. (5) and substituting it into Eq. (6),
we obtain

LA − k2
y

L2
c

LM

= 0. (7)

This expression should be considered as an equation relating
the radial componentkr(r) of the wave vector to frequency
ω, corresponding to the leading order of the WKB approxi-
mation.

In this paper we will neglect the particle Larmor radius
(ξ�1) and the pressure of the plasma electron component.
Then, in the mirror limitω, ωd�k||V||, the operators are re-
cast as

LM = τ − iδ
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)
, (8)
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Here is designated

δ =

(π

2

)1/2 T⊥

T‖

ω

k‖V‖

8πnhmiV
2
⊥

B2
0

, (11)

the quantitiesτ andω∗ are determined by the expressions (3)
and (4).

3 Combined study of the spatial structure and growth
rate of the drift mirror mode

If we setLc=0, it follows from Eq. (7) thatLM=0, whence we
obtain a “classical” dispersion equation for the drift mirror
modeω=ω∗+iγM , whereγM is determined by the expres-
sion (2) in the Introduction. In the general case, however, the
coupling operator must not be neglected. Equation (7) is then
recast as

k2
r (ω, r) = −K2 ω − ω∗(r) − iγM(r) − i�c(r)

ω − ω∗(r) − iγM(r)
. (12)

The following notations are introduced here:

�c =

√
2

π

k‖V‖

β⊥

T‖

T⊥

1

L̃P

(
4πP ′

⊥

B2
0

)2

, (13)

LT (ω, r) = σk2
‖

−
ω2

v2
A

, (14)

L̃P = LT −
4π

B2
0

(
P ′

⊥

B ′

0

B0
−

P ′

‖

r

)
, (15)
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K2
= k2

y

L̃P

LT

.

Note thatK ∼ ky . We will consider waves with Reω∼ω∗.
Let us introduce the quantities�T and�̃P determined from
equationsLT (�T ) = 0 andL̃P (�̃P )=0. These are certain
characteristic frequencies of the Alfvén wave. Let the wave
frequencyω be much less than any of them. The Alfvén op-
erator then differs significantly from zero in the mode local-
ization region. In this case expression (12) can be interpreted
as a dispersion expression for the drift mirror mode modified
by its coupling to the Alfv́en mode. We can see that this mod-
ification reduces to the emergence of transverse dispersion in
the drift mirror mode.

It is interesting that we come across an analogous situa-
tion when studying the slow magnetic sound (SMS) in the
MHD frame. In the limitk⊥�k‖ the SMS dispersion equa-
tion has the formω=vSk‖ [1+O(k2

‖
/k2

⊥
)] (wherevS is the

slow magnetic sound velocity), meaning that the SMS dis-
persion becomes negligibly small. But when field line curva-
ture is taken into account, the SMS mode becomes coupled
to the Alfvén mode (Klimushkin, 1997) (analogously to our
case of coupled mirror-Alfv́en modes). This results in recov-
ered transverse SMS dispersion.

Equation (12) is also the leading-order equation in the
WKB approximation for the drift mirror mode. This will al-
low us to obtain some information about the spatial structure
of the drift mirror mode.

Let us consider modes withkr'0 localized across mag-
netic shells. This is possible in the regions where the func-
tions �c(r) andω∗(r) reach their extremes, their locations
practically exactly coinciding. Additionally, these extrema
should be in the region where|τ |�1. Such coincidences are
rather unlikely, of course. Nevertheless, let us consider the
mode structure in such a resonator.

It can be seen from Eq. (12) that for kr'0 the real and
imaginary parts of the frequency are determined by the ex-
pressions

Reω ' ω∗0, Im ω ' �c0 + γM0. (16)

The index “0” here denotes the extremes of corresponding
quantities. For definiteness, let us consider the pointr0 where
the quantities� andω∗ are positive. If their variation scales
along the radial coordinate are approximately the same, we
may make use of the quadratic expansions

�c = �0

(
1 −

x2

l2

)
,

ω∗ = ω∗0

(
1 −

x2

l2

)
.

Herex=r−r0, andl is the typical scale of plasma inhomo-
geneity. All the other quantities included in Eq. (12) may be
considered approximately constant in the mode localization

region. If the approximate Eq. (16) hold, the expression (12)
reduces to

k2
r =

K2

�0
[(γM0 + �0) + i(ω − ω∗0)

− (�0 − iω∗0)
x2

l2

]
. (17)

The transverse small-scale condition for the modek⊥�k‖

reduces ultimately toKl�1.
Let us consider a differential equation, which in the lead-

ing order of the WKB approximation reduces to the form of
Eq. (17). The simplest equation of this kind has the form

d2f

dx2
+

K2

�0
[(γM0 + �c0) + i(ω − ω∗0)

− (�c0 − iω∗0)
x2

l2

]
f = 0. (18)

Of course, many such equations can be introduced, differing
from each other by the first derivative of the functionf (x)

describing the wave amplitude. But the terms of thedf/dx

type do not influence the eigen valuesω, so it is sufficient to
restrict ourselves to Eq. (18). The boundary condition to this
equation is the boundedness of the functionf atx→±∞.

Let us introduce a new variableζ=x/λ, whereλ is found
from the condition

K2l−2λ4(1 − iω∗0�
−1
c0 ) = 1.

Extracting the root fromλ4 we should keep in mind the con-
dition that the functionf decrease whenx→±∞. Hence,
Reλ−2>0, i.e.

λ2
=

l

|K|

(
1 +

ω2
∗0

�2
c0

)−1/4

eiφ/2, (19)

where

cosφ = �c0/

√
�2

c0 + ω2
∗0,

sinφ = ω∗0/

√
�2

c0 + ω2
∗0. (20)

On the order of magnitude,λ∼
√

l/K. Let us introduce the
notation

θ =
�c0 + γM0 − γ√

(�c0 + γM0 − γ )2 + (ω − ω∗0)2
,

whereγ is the imaginary part of the wave frequency.
Now Eq. (18) reduces to

d2f

dζ 2
+ (θ − ζ 2)f = 0.

This is the problem on the eigen values ofθ ,

Reθ = 2n + 1, Im θ = 0,

Ann. Geophys., 24, 2291–2297, 2006 www.ann-geophys.net/24/2291/2006/



D. Yu. Klimushkin: Coupled mirror/Alfv́en modes 2295

wheren is an integer. From here we obtain the eigen values
for the instability growth rateγ and for the real part of the
wave frequency:

γn = (�c0 + γM0)

−
2n + 1

√
2

�
1/2
c0

ky l

[√
�2

c0 + ω2
∗0 + �c0

]1/2

, (21)

Reωn = ω∗0 +
2n + 1

√
2

�
1/2
c0

ky l

[√
�2

c0 + ω2
∗0 − �c0

]1/2

(22)

(note the correspondence of the obtained expressions to the
formulas (16) that takes place forKl�1). The solution of
Eq. (18) is written as

f (r) = Hn

(
r − r0

λ

)
exp

[
−

(r − r0)
2

2λ2

]
, (23)

where Hn is the Hermitian polynomial.
Let us discuss the solution obtained. An instability devel-

ops forγn>0. As can be seen from Eq. (21) coupling to the
Alfv én mode (depicted by�c) substantially affects the insta-
bility. With high harmonic numbersn�1 coupling favours
plasma stability. With low numbersn∼1 the second term
in Eq. (21) is considerably smaller than the first due to the
large value ofKl, i.e. coupling favours instability. A negative
value ofτ (included into the definition ofγM ) also encour-
ages instability, but even withτ>0 the instability is possible.

The real part of the eigenfrequency grows with increasing
harmonic number. This growth is, however, rather slow due
to the factor(Kl)−1 present in the second term of Eq. (22).
Therefore, the wave frequency almost coincides withω∗0.
This is close to the ULF wave frequencies observed in the
real magnetosphere (including the compressional storm-time
pulsations Pc5).

Radial structure of the wave described by formula (23)
is shown schematically in Fig. 1. The mode is trapped
between two cutoff magnetic surfaces (see also Treumann
and Baumjohann, 2000). In the general case�c0∼ω∗0,
and the structure has an oscillatory character even forn=0
(Fig. 1a), with the amplitude modulated by the Gauss
function. The presence of the imaginary part inλ2

results in the wave propagating across magnetic shells.
The real part of the wave vector’s radial component is
Rekr=(r−r0)|K|l−1

|λ−2
| sin(φ/2). Since by the definition

of φ (20) the sign of sinφ coincides with that ofω∗0, and
the quantity is positive at the pointr0, then sin(φ/2)>0.
Therefore, the wave phase velocity is directed away from the
surfacer0. As can be seen from Eq. (19), meanwhile,kr

does not depend onω, i.e. there is no energy transfer across
magnetic shells (as is the case for the Alfvén wave in ho-
mogeneous plasma). The wave is standing across field lines
(Fig. 1b) in the case sin(φ/2)=0 only. As can be seen from
Eq. (20) it is possible ifω∗0��c0.

Fig. 1. Transverse structure of the mode:(a) in the�0∼ω∗0 case
(values Ref (x), Imf (x) are shown);(b) in the�0�ω∗0 case.

Let us consider the fulfilment conditions for expressions
obtained in this chapter. The conditionω�k‖V‖ places re-
strictions to the values of the real and imaginary parts of
the wave frequency. The real wave frequency is close to the
drift frequency, which on the order of magnitude is equal to
ω∗∼kyρivT l−1, whereρi is the ion Larmor radius,vT is the
typical particle thermal velocity. The inequalityω∗�k‖V‖

is satisfied if(kyρi)/(k‖l)�1. Contribution to the imagi-
nary wave frequency is made byγM and�c. The condition
γM�k‖V‖ for β⊥ ∼ 1 means|τ |�1. Finally, �c�k‖V‖ is
only possible if the condition(k‖l)

2
�1 is met. The real and

the imaginary parts of the frequency, in the meantime, are of
the same order of magnitude.

Finally, let us consider mode polarization in the resonator.
It follows from the general gyrokinetic formulas (Antonsen
and Lane, 1980) that the vector potential’s longitudinal com-
ponentA‖, i.e. the variable9≡(ω/ck‖)A‖ is responsible for
the wave’s transverse magnetic field. Sincekr�ky in the res-
onator, we conclude that the wave’s transverse magnetic field
is dominated by the radial component (the wave has poloidal
polarization). According to the system (5, 6), the transverse
and longitudinal components of the magnetic field are related
by

B⊥

B‖

∼
4πP ′

⊥

σk‖B
2
0

.
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In view of the condition(k‖l)
2
�1, it follows from here that

the longitudinal component of the magnetic field dominates
over its transverse component.

4 Caseτ∼1: ballooning-compressional Alfv́en mode

As has already been noted, the quantityτ is a combination of
terms of order unity and there are no special reasons for its
absolute value to be much smaller than unity. The smallness
of δ is, meanwhile, provided by the inequalityω�k‖V‖ and
we can write in Eq. (7)

1

LM

=
1

τ
+ i

δ

τ2

(
1 −

ω∗

ω

)
. (24)

Then Eq. (7) reduces to

k2
r LT (ω, r) + k2

yLP (ω, r)

− ik2
yδ

ω − ω∗

ω

[
B ′

B
−

4πP ′

⊥

τ B2
0

]2

= 0. (25)

Here the toroidal operatorLT is determined by the expres-
sion (14), and we will call the operator

LP (ω, r) =

(
σk2

‖
−

ω2

v2
A

)
−

4π

B2
0

(
P ′

⊥

B ′

0

B0
−

P ′

‖

r

)

−
1

τ

(
4πP ′

⊥

B2
0

)2

(26)

poloidal. The additional terms in this expression, not con-
tained in the toroidal operator expression, are called the bal-
looning terms.

In the homogeneous plasma limit, Eq. (25) reduces to the
dispersion equation of the Alfvén modeω2

=σk2
‖
v2
A. Thus,

Eq. (25) is the dispersion equation of a very-low-frequency
(ω�k‖V‖) Alfv én wave in inhomogeneous finite-pressure
plasma. We may call this mode a ballooning-compressional
Alfv én mode.

Let us introduce the toroidal�T and the poloidal�P fre-
quency determined from the conditions

LT (�T ) = 0

and

LP (�P ) = 0.

In the caseω ' �T , Eq. (25) implies thatkr�ky . In
this case the azimuthal component dominates in the wave
magnetic field (oscillations are toroidal). Conversely, in the
caseω'�P the inequalitykr�ky holds, i.e. the radial com-
ponent of magnetic field exceeds its azimuthal component
and the oscillations are poloidal. Thus, the presence of bal-
looning terms leads to the polarization splitting of the spec-
trum. Further, the presence of ballooning terms results in
the emergence of transverse dispersion in the Alfvén wave,

i.e. the dependence of the frequency on the wave vector’s
transverse component, which is also explicit in Eq. (25).
The consequence is the appearance of transverse components
vg⊥=∂ω/∂k⊥ in the group velocity.

Imaginary terms in Eq. (25) are responsible for collision-
less damping or swinging of the Alfvén wave. Notice that the
inequalityω�k‖V‖ determines the smallness of the imagi-
nary part in the frequency compared to its real part, in con-
trast to the drift mirror mode.

5 Conclusions

Here are the chief conclusions of the paper.
1. In the general case, when parameter|τ |∼1, even if it

is negative, waves withω�k‖V‖ are Alfvén waves modi-
fied by the plasma inhomogeneity and field-line curvature.
This modification consists of the appearance in the dispersion
equation of ballooning terms leading to differing frequencies
in poloidal and toroidal oscillations, the appearance of trans-
verse components in the group velocity of the Alfvén wave,
as well as to the appearance of a longitudinal component in
the wave magnetic field.

2. For|τ |�1 the existence of the drift mirror mode is pos-
sible, as a spatially isolated structure in plasma. However,
this quantity is a combination of the terms of order unity,
which makes the inequality|τ |�1 appear to be rather artifi-
cial. On the other hand, the the magnetosheath plasma has
a highβ value and low anisotropy (Narita and Glassmeier,
2005), so this condition is not so inconceivable.

3. The radial component of the wave vector is included
in the Alfvén mode operator. But the plasma inhomogene-
ity leads to a “coupling” of these two modes, and therefore
transverse dispersion of the drift mirror mode appears.

4. The Alfvén wave coupling provides the opportunity for
inspecting the spatial structure of the drift mirror mode. In
particular, plasma regions are considered in which the mode
is trapped across magnetic shells, while being confined be-
tween two turning points. An equation is obtained describ-
ing the radial structure of the mode in such a resonator. The
eigen value of this boundary problem gives the wave fre-
quency value, including its imaginary part, the instability
growth rate. The radial wavelength in such a resonator is
determined by the plasma inhomogeneity scalel and the az-
imuthal component of the wave vectorky , λ∼

√
l/ky . In the

general case,λ has a real and an imaginary part. This means
that the wave propagates across magnetic shells (with no en-
ergy transfer involved). The wave amplitude is modulated
along the radial coordinate by the Gauss function.

5. The influence of the Alfv́en mode leads to modification
of the mirror instability criterion. In the “classical” theory,
which does not include coupling, this instability develops if
the conditionτ<0 is met. Coupling to the Alfv́en mode for
low harmonic numbers,n∼1, favours instability due to the
finite value of�c. Note that anisotropy is often small in the
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Earth’s magnetosphere and it is the�c value that should be
the major contributor to instability. The real part of the eigen-
frequency grows slowly with increasing harmonic number.
On the order of magnitude,ω coincides with the drift fre-
quencyω∗.

6. Drift mirror mode withkr'0 can only exist if the
functionsω∗(r) andγM(r)+�c(r) have extrema with practi-
cally exactly coinciding locations. These extrema must also
be in the region where|τ |�1. These coincidences are, of
course, extremely unlikely. Moreover, another restriction to
the plasma parameters arises from the inequalityγ�k‖V‖:
the value of�c should be small compared tok‖V‖. But this
is only possible if the rather rigid conditionk‖l�1 is satis-
fied. This increases the doubts about whether some waves in
space plasma are correctly interpreted as drift mirror modes.
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