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Abstract. The impact of the main ionospheric trough, spo-
radic structures, gradients and inhomogeneities of the sub-
polar ionosphere during substorms on the signal amplitude,
azimuthal angles of arrival, and propagation modes for the
radio path Ottawa (Canada)–St. Petersburg (Russia) was con-
sidered. This subauroral path with the length of about
6600 km has approximately an east-west orientation. The
main goals are to carry out numerical modeling of radio prop-
agation for the path and to compare the model calculations
with experimental results. Wave absorption and effects of
focusing and divergence of rays were taken into considera-
tion in the radio wave modeling process. The following ba-
sic results were obtained: The signal amplitude increases by
20–30 dB 1–1.5 h before the substorm expansion phase on-
set. At the same time the signal azimuth deviates towards
north of the great circle arc for the propagation path. Com-
pared with quiet periods there are effects due to irregularities
and gradients in the area of the polar edge of the main iono-
spheric trough on the passing signals. Propagation mecha-
nisms also change during substorms. The growth of signal
amplitude before the substorm can be physically explained
by both a decrease of the F2-layer ionization and a growth of
the F2-layer height that leads to a decrease of the signal field
divergence and to a drop of the collision frequency. Iono-
spheric gradients are also important. This increase of sig-
nal level prior to a substorm could be used for forecasting of
space weather disturbed conditions.
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1 Introduction

It is well known that the main ionospheric trough (MIT),
and the auroral oval, sporadic structures, and belt of iono-
spheric inhomogeneities concentrated southward the oval
impact on HF radio propagation on the paths located in the
area of invariant latitudes 50–75◦ (Blagoveshchensky, 1981;
Blagoveshchensky et al., 1982; Hunsucker and Hargreaves,
2003; Milan et al., 1997; Siddle et al., 2004a; Siddle et al.,
2004b). Lateral signal reflections, backscatter, quick fading
of signals at a receiving point, and unusual modes of propa-
gation are observed. However, geomagnetic disturbances oc-
curring in the auroral and subauroral ionosphere of the Earth,
lead to even more complicated (anomalous) conditions of HF
radio propagation in the subpolar regions (Blagoveshchen-
sky and Zherebtsov, 1987; Blagoveshchensky and Borisova,
2000; Blagoveshchensky et al., 1996, 2005b; Milan et al.,
1998, 1996). This happened because there are additional
small- and large-scale irregularities of the ionosphere dur-
ing magnetospheric storms and substorms, (Blagoveshchen-
sky et al., 2003a, 2003b; Buonsanto, 1999; Gonzalez et al.,
1994; Lastovicka, 2002; Lyons, 1996). Also all parameters
of the ionosphere and the large-scale structures in the sub-
auroral region (MIT, gradients, sporadic ionization and so
on) show more change in their morphology when the sub-
storm/storm intensity is greater. Earlier, experimental inves-
tigations of the HF radio propagation on high-latitude paths
were carried out by many authors (Blagoveshchensky, 1981;
Hunsucker and Hargreaves, 2003; Angling et al., 1998; Mi-
lan et al., 1998, 1996; Warrington and Stocker, 2003). These
studies revealed the main peculiarities of HF radio propaga-
tion on the subauroral and auroral paths. However, special
measurements of signal amplitude and azimuths of arrival
angles at the receiving point of paths and information about
basic propagation modes during substorms are not enough
to understand how this region affects radio propagation. A
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Fig. 1. Great circle radio paths from Canada to St. Petersburg. Dashed parts of the radio paths show where ionospheric reflections would
occur. The locations of the main ionospheric trough from a model by Halcrow and Nisbet (1977) at 16:50 and 18:40 UT are shown for
6 January 1982 andKp=2. The trough contours show the outer boundaries and the inner boundaries of the trough walls.

more detailed analysis of the propagation is necessary. This
is important for questions of radio communication organiza-
tion, over horizon location, direction finding, navigation and
so on at high latitudes (Blagoveshchensky and Zherebtsov,
1987; Goodman, 1992).

In this paper, the impact of some geophysical phenom-
ena mentioned above during magnetospheric substorms on
the level of electromagnetic field and azimuthal deviation
of radio signal at the receiving point as well as mechanisms
(modes) of propagation for the subauroral radio path Ottawa–
St. Petersburg (D=6600 km) is analyzed. This transatlantic
path, Fig. 1, connecting Canada with Russia, was investi-
gated as part of an international collaboration.

There are three goals to this study: (i) to study in de-
tail the behavior of both the levels of signal amplitude and
the azimuthal angles of arrival from experimental measure-
ments, (ii) to carry out numerical modeling of radio prop-
agation and compare model calculations with experimental
results for better understanding of the physical mechanisms
involved when the signal passes through the HF radio chan-
nels, (iii) to make quantitative estimates of ionospheric pa-
rameters influences on the value of the electromagnetic field
of the HF radio signal.

Before solving these tasks, it must be emphasized that
some applicable results were obtained by the authors in ear-
lier studies. To begin with there are effects of signal am-
plitude growth and azimuth variations during substorms on
different radio paths. Relevant investigations were presented
in (Blagoveshchensky and Borisova, 2000; Blagoveshchen-
sky et al., 2005, 1996). It has been found experimentally that
the effect of amplitude growth and azimuth variations take
place on both short (one-hop) and long (multi-hop) high-
latitude paths. Figure 1 shows the Fort Collins–St. Peters-

burg, and Halifax–St. Petersburg paths in addition to the
Ottawa–St. Petersburg path. These two additional paths are
also subauroral and they are located along the main iono-
spheric trough (MIT) (see trough locations shown in Fig. 1).
Let us describe an example of signal amplitude variations
at the receiving point during a substorm on 28 December
1978 for the Fort Collins–St. Petersburg path (D=7200 km,
f=15 MHz). The moment of substorm expansion phase on-
set is designated by To. There is signal amplitude growth
within ∼1 h before To, further a drop of amplitude during
the substorm expansion phase, and then an amplitude growth
near the end of the substorm. Similar signal amplitude varia-
tions occur on the Halifax–St. Petersburg path (D=7200 km,
f=15 MHz) for a substorm on 6 January 1982.

At present, a full physical explanation of the signal am-
plitude growth does not exist, however, there is a good rea-
son to believe that this effect is associated with so called
“the main ionospheric effect during substorm”. In the paper
Blagoveshchensky et al., 2005a, the “main effect” was stud-
ied for an averaging of data from a group of subauroral and
midlatitude European ionospheric stations (Blagoveshchen-
sky et al., 1996, 2003a). There is a definite regular variation
of both the F2-layer’s critical frequency and height of ion-
ization maximum of F2 during substorms. The substorms
used had a sharp onset at time To (Blagoveshchensky et al.,
2003a). The study shows deviations in percent relatively to
the quiet level of ionospheric parameters for the growth (6 h
before To), expansion (To) to (To+3) and recovery (To+3)
to (To+6) phases of a substorm. 2–6 h before the substorm
expansion phase development there is a sharp growth of the
F2-layer ionization (1foF2=+ 25%). Then the ionization de-
creases smoothly up To (1foF2=–30%). After To, during
the expansion phase lasting about three hours, both slight
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growth and then decrease of ionization take place. During
the substorm recovery phase, (To+3) to (To+6), there is more
intensive growth (1foF2=+30%) and then decrease of ion-
ization. The height of the F2-layer maximum has a ten-
dency to increase smoothly 2 h before the To moment up to
1hmF2=+30%. After the expansion phase onset, during the
next three hours, there is a little decrease and then growth
of the F2-layer maximum height to the end of the expansion
phase and then a further smooth decrease to the quiet level.
Variations of the sporadic E layer critical frequency,1foEs ,
show some oscillations with a little growth (∼15%) starting
3 h before To and then with growth (+30%) within the expan-
sion phase. Note that these Es variations are from a subset of
the whole group of ionosonde measurements – the Es effects
are seen mainly on ionosondes located near the auroral oval.

Thus, in the previous papers the following was discovered:
There is an amplitude growth of propagating signals before
substorms on HF radio paths, and associated with the sub-
storms ionospheric changes called the “main ionospheric ef-
fect”. These effects were found experimentally by means
of oblique ionospheric sounding and vertical ionospheric
sounding using a network of stations (Blagoveshchensky et
al., 1996; Blagoveshchensky et al., 2005a). In this paper
we are trying to connect the ionospheric changes with the
changes in propagation signal strength for a better under-
standing of the physical phenomena that are involved.

2 Experiment on the Ottawa–St. Petersburg path

Empirical measurements of electromagnetic field level and
azimuthal angles of arrival of radio signal with a frequency
f=14 670 kHz from an Ottawa transmitter (44◦ N; 77◦ W)
were carried out in 1982 at a receiving point located nearly
St. Petersburg (59.5◦ N; 30◦ E).

Why was the Ottawa–St. Petersburg path chosen for this
studying? Firstly, our interest is with the northern sector of
the Atlantic from Russia to Canada because ionospheric pa-
rameters variations during substorms have been studied in
this sector (for example Blagoveshchensky et al., 2005a).
Secondly, the radio path Ottawa-St. Petersburg (D=6600 km)
is a subauroral one directed approximately east-west (see
Fig. 1). The MIT, and auroral and subauroral ionospheric
irregularities along with temporal and spatial variations of
ionospheric ionization and gradients impact on the character
of HF radio wave propagation on this path. In the present
paper, experimental data for the winter season of 1982 dur-
ing evening and premidnight hours from 18 to 23 MDT
(MDT=UT + 3) was considered.

Our radio direction finding system in St. Petersburg had
a revolving antenna. The choice of two directions was exe-
cuted by relevant program. The first one, (308±5)◦, is in-
tended to receive the CW signals passing along the great
circle arc from Ottawa to St. Petersburg. The second one,
(340±20◦), is intended to receive the same signals going
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Fig. 2. Probabilities P(%) of the azimuthal deviations12 for the
Ottawa-St. Petersburg path (f=14670 kHz) for two levels of mag-
netic activity6Kp<16 (solid line) and 16<6Kp<25 (dotter line)
for the measurements carried out during the winter season of 1982.

from the north directions due to scattering predominantly.
These channels were working independently. The scattered
signals have being received after the main signal with a delay
about one second. The accuracy of receiving is±2◦.

Azimuthal variations12 were determined as deviations
from the great circle path direction. Figure 2 shows an exam-
ple of the probabilities P of azimuthal deviations for the path
Ottawa–St. Petersburg (f=14 670 kHz) for two levels of mag-
netic activity6Kp<16 and 16<6Kp<25. The probability
P of the azimuthal deviations are a distribution of measure-
ments made by a receiver/antenna with directional capability.
Curves on figure were determined for all period of observa-
tions, about 2000 measurements. One can see from Fig. 2
that under weakly disturbed conditions (6Kp<16, solid line)
the lateral deviations on the path are nearly symmetrical rela-
tively zero, the great circle direction. However, under moder-
ate disturbed conditions (16<6Kp<25, dotted line) the lat-
eral deviations from the north, at +10 deg, are sharply in-
creased. Obviously, they are caused by the appearance of
gradients and intensive irregularities on the polar edge of the
MIT during disturbances.
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Figure 3 

 Fig. 3. Variations of the signal strength E and azimuthal deviations
of arrival angles12 at the receiving point of the Ottawa–St. Peters-
burg path during the quiet day of 14 January 1982(a) and(b), the
day of 6 January with a moderate substorm(c) and(d) and the day
of 8 January with an intense substorm(e)and(f). To is the substorm
expansion phase onset, the operational frequency is f=14 670 kHz,
squares are numerical modelled values.

Figure 3 demonstrates some results of measurements of
electromagnetic field strength (E, dB relatively 1 microV/m)
and angular deviations (12, degrees) on the Ottawa–St. Pe-
tersburg path. Three days were chosen for analysis. These
days selected are the most typical and representative and they
have substorms with sharp onsets (the To moment). Sub-

storms are characterized by different intensities and mean
values ofKp- indexes: 14 January 1982 is a quiet day,
Kp=1– (Figs. 3a and 3b); 6 January 1982 is a day with a
moderate substorm,Kp=2o (Figs. 3c and 3d); 8 January 1982
is a day with an intense substorm,Kp=3- (Figs. 3e and 3f).
The substorms starts, To moments, are identified from the
AE indexes for 6 January 1982 and 8 January 1982.

From Figs. 3a and 3b one can see that the time of a sharp
drop of the signal strength E on the radio path under quiet
conditions (18:40 UT) is associated with a transition from
reflection of radio waves to their scatter from ionospheric ir-
regularities located on the polar edge of the trough (PET).
The irregularity scattered signal is very small but measurable
even as the signal appears have hit a “zero” value. A great
increase of12 values takes place at the moments of a sharp
decrease of the signal strength and the12 values themselves
are mainly positive ones. Therefore, there the scattered sig-
nals come from the north directions. According to Fig. 3b,
12 deviations on the path have a clear tendency to decrease
with time. This smooth drop is explained by the PET moving
southward during premidnight hours.

An analysis of data presented in Figs. 3c and 3e shows
that the signal strength level on the Ottawa–St. Petersburg
path before the moment To as compared with a quiet day
is increased by 15 dB. This can be seen on 6 January 1982
(Fig. 3c) where an increase of signal strength takes place
from 18:30 to 19:20 UT and the substorm expansion phase
onset is To=19:20 UT. For 8 January 1982 (Fig. 3e) a growth
of signal level (relative to the quiet day curve shown below
the shaded region on the figure) takes place from 16:00 to
17:15 UT and To=17:15 UT. Therefore before the To mo-
ment one can see the effect of signal level growth which
as a rule exists during about one hour (the shaded areas on
Figs. 3c and 3e). For more intensive substoms, as can be seen
from Figs. 3d and 3f, the moment of both the transition from
reflection to scatter and the increase of12 occurs during
earlier hours because the PET is additionally moved south-
ward during disturbances. For the Ottawa–St.Petersburg path
these moments are: 18:40 UT (Fig. 3b), 18:00 UT (Fig. 3d)
and 17:20 UT (Fig. 3f). Thus, the substorm effect in12 val-
ues at the beginning of substorm development is manifested
at earlier time as compared with the quiet period and this
effect is associated with the beginning of the impact of au-
roral ionosphere irregularities which are concentrated north-
ward of the great circle arc. For the Ottawa–St.Petrsburg path
those are the irregularities located on the PET.

3 Modeling the radio propagation

Ray tracing calculations of propagation parameters on the
Ottawa–St. Petersburg path for comparison with experi-
mental data were carried out. Model calculations using
the “model of HF radio channel” (Borisova et al., 1986)
were performed using the approximation of 2-D geometrical
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optics taking into consideration the smooth horizontal irreg-
ularities of the ionosphere.

3.1 Model approach for signal strength E calculation

For description of spatial and temporal variations of the
propagation medium the “global ionospheric model” (the
IZMIRAN ionospheric model which is similar to the inter-
national reference ionosphere model) is used in “the model
of HF radio channel”. The global model is constructed by
unification of known models of separate ionospheric E, F1,
and F2 layers and the interlayer valleys (Chernyshev and
Vasil’eva, 1975; Anufrieva and Shapiro, 1976; Rawer et al.,
1976). Ionospheric electron concentration variations due to
substorm impact were described by using a special program
block which allows for ionospheric correction. The regular-
ities of ionospheric behavior during a substorm, the “main
effect”, were used for this.

Input parameters for the model are: the geographical co-
ordinates of the transmitter and receiver, the radiation pat-
terns of receiving and transmitting antennas, the date and
time, the operational frequencyf of the radio signal, and a
measure of the prevailing geophysical conditions using Wolf
number and magnetic activity level with givenKp–index
(Blagoveshchensky and Borisova, 1989). The model of the
HF radio channel permits calculation of some characteristics
of radio propagation on a given path: the ray trajectories,
the group and phase paths, the mode types, the Doppler fre-
quency variations, arrival angles in the vertical and horizontal
planes, and the electromagnetic field strength E.

For calculation of the field strength E at a receiving point,
the following expression from (Ginzburg, 1967; Al’pert,
1972) was used

E =
173.2

√
P

RE sinD2

√√√√ sinαtr

RE cosαrec

∣∣∣ ∂D2

∂α

∣∣∣ ·exp(−0)·

N∏
i=1

ρi , (1)

whereP is a source power,RE is the Earth’s radius;D2 is
the angle length of the path along the Earth’s surface;αtr

andαrec are the elevation angles of transmitter and receiver;
∂D2/∂α is a coefficient of space divergence of rays;ρ is a
coefficient of losses due to reflection from the Earth’s surface
which depends on signal frequency and surface characteris-
tics; N is a reflections number;0 is a coefficient of losses
due to signal propagation in the ionosphere.

For the HF range, the expression for the loss coefficient0

can be presented using the group Lgr and phase Lph paths

0 = 1/(2c)ν(r)[1/n(r)−n(r)]dr = 6νi · (Lgr −Lph) , (2)

where r=h+RE , h is a height from the Earth’s surface and
RE is the Earth’s radius; n=ε1/2 is a refraction coefficient
under condition that an impact of collision on the dielectric
permeability is neglected; c is the speed of light;νi is the
effective collision frequency of electrons and a value ofνi is

 24

 
 

Figure 4 
 

Fig. 4. Relationships between the collision frequencyνei and the
critical frequency fo(a) and between the collision frequencyνen

and the concentration of neutrals(b) for two levels of electron tem-
perature Te=300 and 1000 K.

constant on the i-step of summarizing (after transition from
integration to summarizing).

At first, the coefficient0 was determined by Eq. (2)
through integration along the radio path and then calculation
of the electromagnetic field strength E at the receiving point
by Eq. (1) was done.

3.2 Calculation of the electron collision frequency in the
ionosphere

The value of effective electron collision numberνeff is a sum
of collision frequencies

νeff = νei + νen + νe , (3)

whereνei is a frequency of collisions electrons with ions;
νen is the same but with neutrals;νe – with electrons. For
the ionospheric plasma,νe value can be neglected in Eq. (3)
because it is less thanνei andνen by two orders of magnitude.

There are two expression by (Ginzburg, 1967) and (Nico-
let, 1953) to determineνei andνen parameters

νen = (3.6 − 5.4) · 10−10NnT
1/2
e

νei = 12.65 · Ne · lg(220· Te/N
1/3
e )/T

3/2
e , (4)
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where Nn is the concentration of neutral particles
(particles.cm−3); Ne is the electron (ion) concentration
(electrons.cm−3); Te is the electron temperature (K); lg is
the decimal logarithm.

From Eqs. (4) one can see that collision frequenciesνei

andνen depend on both the concentrations and the electron
temperature. Variations of the regular electron temperature
for the ionospheric F-layer in middle latitudes are limited to
the range 300–1500◦ (Al’pert, 1972).

Figure 4 shows calculations of the collision frequenciesνei

andνen. Figure 4a showsνei versus the critical ionospheric
frequency fo=8.98·103

·Ne1/2, and Fig. 4b showsνen versus
the concentration of neutrals, Nn. One can see from Fig. 4a
that some decrease of electron concentration, which occurs
during the period before a substorm onset, leads to a drop of
the collision frequenciesνei .

An analysis of numerical calculations of the effective col-
lision frequenciesνeff using Eqs. (3) and (4) allows us to
estimate quantitatively the impact of parametersNe, Nn, and
Te on theνeff values for the ionospheric E- and F2-layers.
In later calculations ofνeff for determination of the signal
strength E, the influence onνen of the height of ionospheric
E-layer was important because for the F2 layerνei�νen. Our
calculations were carried out using the MSIS model (http:
//nssdc.gsfc.nasa.gov/space/model/models/msis.html) which
show that the concentration of neutrals is decreases sharply
with a height h. For the ionospheric E-layer Nn∼1·10+12,
and for the F2-layer Nn∼1·10+9, therefore theνen value is
decreased by three orders of magnitude, see Fig. 4b.

It is of interest to consider the effects ofνeff variations
during the substorm growth phase for which the ionospheric
parameters vary according to the “main effect” regularities
mentioned in the introduction. Namely, during the time pe-
riod 1–2 h before the substorm onset, when increases of the
signal strength E is observed by up to 20–30 dB, the criti-
cal frequenciesfoEs and foF2 drop by 20 and 30%, respec-
tively and the height of the F2-layer maximum increases by
30%. Due to ionospheric changes associated with a height
change, we can easily estimate the local changes inνeff. us-
ing Eqs. (3) and (4):

1. In the ionospheric F2-layer, if there is a temperature
growth by 200–400 K associated with the height change, and
a simultaneous decrease of critical frequencies by 30–40%
this leads to a drop ofνeff values by a factor of four.

2. The appearance of an Es sporadic layer on the path
causes some changes of the collision frequency value too. A
decrease of critical frequency at the heights of E-layer by 10–
20% leads to a drop ofνeff value in the E region of∼20%.

What are the possible causes and consequences of increas-
ing the F2-layer height 1–2 h before the substorm onset? It is
known (Buonsanto, 1999) that under magnetically disturbed
conditions within the middle latitude ionosphere a growth of
the F2-layer maximum height is observed. One of the causes
of this growth can be an electric field with west-to-east direc-
tion. The middle latitude ionosphere during substorms is per-

turbed by both electric fields and internal atmospheric gravity
waves (AGWs). The effect of AGW is similar to an elec-
tric field effect. According to (Rishbeth and Garriott, 1969;
Buonsanto, 1999) vertical height change of the F-layer due to
AGWs influence can be about 100 km which is more than an
electric field impact. As is well known, the magnetospheric
electric field, directed from dawn-to-dusk, is increased some
minutes after a turning of the vertical component of the IMF
Bz to southward. Almost simultaneously, the dawn-to-dusk
electric field in the polar region and corresponding fields in
the middle latitudes are increased. Electric currents and mag-
netic disturbances of the DP2 type also appear. There is also
the development of polar electrojets and other phenomena
corresponding to the substorm growth phase which will hap-
pened 0.5–1 h later. Therefore, an interval from theBz turn-
ing southward to the onset of electrojets development exists
when the existence of the AGW generated during substorms
is unlikely and a growth of the F2-layer maximum height can
be explained by just the influence of electric fields.

Thus, estimations show that the specific decreases of elec-
tron concentration in the E- and F-layers before a substorm
contribute to a drop of the effective collision frequencyνeff

and therefore to an increase of signal strength E. It is not im-
mediately obvious whether this would give a large or small
change in radio signal strength. Numerical modeling was
carried out to find how great is the growth of signal strength
E at the receiving point of the radio path before a substorm.

3.3 Calculations of the signal strength values

Some different calculations of electromagnetic field strength
E on the Ottawa–St. Petersburg path using different values of
the ionospheric E- and F2-layer parameters were carried out.
The critical frequencyfoF2, the height of F2-layer maximum
hmF2, and the critical frequencyfoEs were varied under the
assumption that the ionosphere is homogeneous along the ra-
dio path. Calculations were carried out for the radio signal
frequency f=14670 kHz.
• Model results #1: In Fig. 5 are shown the calculated re-
sults of the signal strength, E, received for the propagation
mode 2F2 (2 hop F2 mode) that is typical for the frequency
f=14670 kHz on the Ottawa–St. Petersburg path. Figure 5a
demonstrates the association of signal strength E with the
critical frequencyfoF2. A relationship between E andhmF2
is shown in Fig. 5b. Figure 5c illustrates the E variations as a
function of both thehmF2 increasing and thefoF2 decreasing
simultaneously. One can see from Figs. 5a, 5b, and 5c that
the signal strength E depends on the range of the ionospheric
parameters variations.

– It is seen from Fig. 5a that a decrease of thefoF2 value
by 30–50% leads to a growth of E value of only 1–2 dB
if the critical frequencyfoF2 is about 7 MHz.
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– Figure 5b shows that an increase of thehmF2 value
by 30% causes a growth of E value by∼3 dB when
hmF2<320 km.

– Calculations results presented in Fig. 5c show that both
a growth ofhmF2 from 290 to 315 km and a decrease
of foF2 from 9.0 to 6.5 MHz simultaneously will lead
to the growth of radio signal level by∼10 dB.

Further model calculations gave the following results:

– Increasing the temperature from 300 to 1000 K in the
F2-layer causes an increase of E value by 1–3 dB.

– A drop of the critical frequencyfoEs by 15% leads to a
growth of E value by 6–10 dB.

• Model results #2: The natural distribution of ionospheric
plasma along the radio path is characterized as a rule by an
existence of gradients of the critical frequencyfoF2 and the
F2-layer heighthmF2. Modeling the propagation parame-
ters, taking into consideration the ionospheric gradients of
the F2-layer∂foF2/∂D and∂hmF2/∂D, has showed that these
gradients can very significantly change the ray trajectory in
the ionospheric channel. As a consequence, the spatial diver-
gence of rays∂θ /∂α is being changed too. An increase of sig-
nal strength E can reach∼10 dB for both∂foF2/∂D=–(0.2–
0.5) MHz / 1000 km and∂hmF2/∂D=(2–5) km / 1000 km val-
ues that are typical for the evening hours on the Ottawa–
St. Petersburg path. Therefore due to the existence of sharper
ionospheric gradients,∂θ /∂α value can increase the signal
strength E by 10–15 dB. The calculations yield the results
that ionospheric parameter variations, similar to those that
really happen in the F2-layer, lead to significant propagation
trajectory variations. In the case of a drop of ionospheric ion-
ization maximum (the evening hours on the path), the oper-
ational frequency approaches to the maximum observed fre-
quency (MOF) and signal strength is increased due to a fo-
cusing effect (or a divergence decrease).

Therefore the main results of modeling are the following:
A growth of the signal strength E before the To moment of
a substorm can be explained by the joint impact of several
effects: a decrease of the F2-layer ionization along the radio
path (1–2) dB, a growth of the F2-layer height (∼3) dB, an
existence of regular ionospheric gradients (10–15) dB, and
a drop of the effective collision frequencyνeff –(1–3) dB.
Their joint action can lead to a rise of the signal strength
E before the substorm onset by 20–30 dB which is observed
experimentally.
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Figure 5 
 
 

Fig. 5. Calculation results of the signal strength E at the re-
ceiving point of the Ottawa–St. Petersburg path for the frequency
f=14 670 kHz versusfoF2 (a), hmF2 (b), andfoF2 andhmF2 simul-
taneously(c).

4 Comparison of modeling results with experimental
data

4.1 Variations of signal strength and propagation mecha-
nisms during the substorm period

Ray tracing calculations on the Ottawa–St. Petersburg path
have shown that the propagation modes 2F2 and 3F2 are pos-
sible under quiet geomagnetic conditions. Figure 6 shows
some modeled ray trajectories. The mode 4F2 is negligible
because of its small signal strength as compared with modes
2F2 and 3F2. In Fig. 6b the radio waves are skimming the
limb of the Earth (note that there are no ground reflections).
The signal receiving in St. Petersburg is possible due to scat-
ter by the field-aligned ionospheric inhomogeneities located
in the area of polar edge of trough at both the E- and F- lay-
ers levels. The second reflection of mode 3F2 happens in the
area of auroral oval.

Variations of parameters1foF2,1hmF2, and1foEs of the
subauroral and partly auroral ionosphere during three phases
of substorm, the “main effect”, were taken into considera-
tion for ray tracing calculations along the path. Shown in
Fig. 3c (square symbols) are the signal strength E values for
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Figure 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Ray tracing calculations for the Ottawa–St. Petersburg path: the multi-hop propagation mechanism at 17:00 UT(a), and the wave
capture into the ionosphere by the regular longitudinal gradients of the ionosphere at 19:00 UT(b). Values of the critical frequency fo on the
figure contours are in MHz.

6 January 1982. Here the substorm expansion phase onset is
To=19:20 UT. Modeling results yield that during the growth
phase from 18:20 to 19:20 UT the modes 2F2 and 3F2 are
possible whereas under the quiet conditions (without sub-
storms) and for the same time from 18:20 to 19:20 UT the
model calculations give the result that no propagation is pos-
sible for the path. Referring to Fig. 3c, we show good agree-
ment from our modeling for both the intense signal before
the substorm expansion phase and the overall pattern of sig-
nal variations during the entire substorm interval. During
the growth phase, 18:20–19:20, the E value is significantly
greater than under quiet conditions for this time interval (see
shaded region on Fig. 3c).

An analysis of ray tracing calculations showed that the
main mechanism of propagation for the path during day-time
is multi-hop by F2 reflections. For the evening hours, there
is a wave capture into the ionosphere by the regular longitu-
dinal gradients. In the case when the terminator crosses the
path, the signal receiving after 17:00 UT is possible only due
to wave removal from the ionosphere on the night side. The
removal mechanism itself is caused by inhomogeneities lo-
cated in the areas of the terminator, MIT, and auroral oval.
There is either refraction by the horizontal gradients of elec-
tron concentration near the polar edge of trough or field-
aligned scatter by auroral irregularities in the ionospheric E-
and F-layers. For modeling we assumed some F2-parameters
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in the area of assumed field-align scatter in order to model
the azimuthal deviations during the period from 16:00 to
20:00 UT. We usedhmF2=300–340 km,foF2 =4.0–3.5 MHz.
Figures 3b, 3d, 3f demonstrate some model calculations of
azimuthal deviations12 simultaneously with experimental
data on the Ottawa–St. Petersburg path for 14, 6, and 8 Jan-
uary 1982. The calculation values are shown by squares. One
can see acceptable agreement between the measured and the
calculated data.

4.2 Interpretation of experimental and modeling data

4.2.1 The quiet day of 14 January 1982

a) The signal strength E variations

An empirical pattern E(t) is presented in Fig. 3a. It is of
interest to consider the relevant modeling results. According
to the propagation model, the modes 2F2, 3F2, and 4F2 are
observed up to 17:00 UT on the path that is seen from Fig. 6a
for t=17:00 UT. After 17:00 UT the mode 2F2 is absent at
the receiving point because it is skimming the limb of the
Earth (see Fig. 6b). At this time the regular propagation 2F2
mechanism is no longer operational. The mode 3F2 is also
skimming and the signal amplitude must decrease according
to the model. However, one can see from Fig. 3a that the
signal strength from 17:30 to 19:00 UT is quite intensive.
This can be explained by the impact of the terminator or
the butt-end sunset wall of the MIT on the reflection point
nearest to the receiver of the path from 17:00 to 19:00 UT.
This leads, according to calculations, to an appearance of
the modes 2F2 and 3F2 as a result of their bending. After
19:00 UT the impact of the terminator is over according to
the model, the modes 2F2 disappear, and the signal strength
is sharply decreased. Namely, the regular propagation along
the great circle arc is finished and a scatter from the PET
arises, Fig. 3a.

b) The azimuthal variations12, Fig. 3b

According to model calculations, around 19:00 UT it is
possible to receive the signals scattered by the magnetic field-
align irregularities of the ionospheric F-layer located in the
PET area. Similar conclusion is confirmed by experimental
data in Fig. 3b where the sharp jump of12 value followed
by decreasing12 takes place.

4.2.2 The day of 6 January 1982 with a moderate sub-
storm.

a) The signal strength E variations is shown in Fig. 6c

According to model calculations, wave propagation on
the path up to 17:00 UT is realized by modes 2F2, 3F2, and
4F2. After 17:00 UT there is only mode 3F2. Calculations

results (square symbols) and experimental data in Fig. 3c
can be considered as comparable. According to experiment
from 18:30 to 19:20 UT, a significant increase of signal
strength takes place. This increase of signal strength, as was
mentioned above, is associated with the substorm expansion
phase onset at To=19:20 UT. Modeling results of the effect
of signal strength growth before the To moment is confirmed
by experimental data.

b) The azimuthal variations12o, Fig. 3d

According to calculations, the conditions of receiving the
signals, scattered from the PET, arise after 18:00 UT. At the
same time, a sharp jump of12o values takes place according
to the experimental data shown in Fig. 3d.

4.2.3 The day of 8 January 1982 with an intense substorm

1. The signal strength E variations, Fig. 3e

Here the model calculations show that the regular mecha-
nism of radio wave propagation is similar to the mechanism
of the quiet day, 14 January and the regular multi-hop wave
propagation is finished at 17:30 UT. The received signal
disappears after 17:30 UT as shown by experimental data in
Fig. 3e. Some growth of signal strength after 19:30 UT in
Fig. 3e is caused by rays propagating by unusual paths due
to refraction bending at the PET.

2. The azimuthal variations12o

One can see from Fig. 3f that at 17:20 UT there is a sharp
deviation of12o values. According to modeling data, after
this time radio signals scattered by field-aligned irregularities
at the PET can be received.

5 Conclusions

1. Some peculiarities of HF radio wave propagation on
the path Ottawa–St. Petersburg during magnetospheric sub-
storms were revealed using experimental data and numerical
modeling. Model calculations are in a good agreement with
the experimental results confirming that the model used suit-
able physical mechanisms of propagation and suitable choice
of parameters for the radio channels.

2. During substorms, growth of the signal amplitude is
observed 1–1.5 h before the substorm expansion phase on-
set. At the same time, there may be azimuthal deviations of
the received signal, compared to the great circle path, due to
the effects of ionospheric irregularities and gradients in the
area of the polar edge of the main ionospheric trough on the
passing signals. The mechanisms (modes) of propagation are
also changed during the substorm.
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3. Radio propagation modeling within the substorm period
was carried out using the assumption that there was a change
of ionospheric ionization in the E- and F2-layers in accord-
ing to so called “the main effect in the ionosphere during
substorm”. Calculations of the field-aligned HF scatter took
into consideration the F2 region parameters of the scatterers
using a modified model of the ionosphere. Results of these
calculations agreed with the experimental observations.

4. The effect of signal amplitude growth up to 20–30 dB
before the substorm expansion phase onset can be physically
explained by both (i) a decrease of the F2-layer ionization
that leads to an approach of signal frequency to the maximum
observed frequency value as well as to a decrease of the sig-
nal field divergence and (ii) a growth of the F2-layer height
that associated with decreasing the collision frequency. This
effect could be used as a predictor of substorms for further
forecasting of space weather disturbed conditions.

5. In the northern part of the Atlantic between Canada
and the European part of Russia, impact of the main iono-
spheric trough (MIT) on the parameters of signal in the long
HF radio channel under quiet conditions manifests itself in
different ways. The MIT and its polar edge influence ba-
sically the azimuthal angles of radio wave arrival. On the
other hand, the butt-end sunset wall of the MIT, caused by
the terminator, has significant influence on the amplitude of
received signals. During substorms, there are also significant
amounts of irregularities that modify the propagation by al-
tering both the polar edge and the butt-end sunset wall of the
MIT.
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