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Abstract. Another approach (Multiple Triangulation Analy-
sis, MTA) is presented to determine the orientation of mag-
netic flux rope, based on 4-point measurements. A 2-D flux
rope model is used to examine the accuracy of the MTA tech-
nique in a theoretical way. It is found that the precision of
the estimated orientation is dependent on both the spacecraft
separation and the constellation path relative to the flux rope
structure. However, the MTA error range can be shown to
be smaller than that of the traditional MVA technique. As an
application to real Cluster data, several flux rope events on
26 January 2001 are analyzed using MTA, to obtain their ori-
entations. The results are compared with the ones obtained
by several other methods which also yield flux rope orienta-
tion. The estimated axis orientations are shown to be fairly
close, suggesting the reliability of the MTA method.

Keywords. Magnetospheric physics (Magnetopause, cusp
and boundary layers; Solar wind-magnetosphere interac-
tions; Instruments and techniques)

1 Introduction

Many techniques have been developed to study the shape
and motion of a certain structure, by analyzing in situ data
from single or multiple spacecraft.Siscoe et al.(1968) made
use of the magnetic field measurements to obtain the normal
direction of a tangential discontinuity. A more generalized
approach was employed bySonnerup and Cahill Jr.(1968)
to fit the cases of both rotational and tangential disconti-
nuities, as the very well-known method of Minimum Vari-
ance Analysis (MVA). Recently, some other methods, such
as Minimum Faraday Residue (MFR) and Minimum Mass-
flux Residue (MMR) were established, based on the conser-
vation of tangential electric field and the mass flux through-
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out the current layer, respectively (Khrabrov and Sonnerup,
1998b; Sonnerup et al., 2004).

An example of multi-spacecraft methods is the triangu-
lation method, also frequently referred to as the “timing
method”, based on the time differences between four space-
craft encountering the same structure (Russell et al., 1983).
All of these techniques can be either used alone, or com-
bined with other methods, to accurately determine the de-
tailed properties of a certain 1-D structure (e.g.Haaland
et al., 2004a).

However, these methods cannot be automatically applied
to more complicated structures, e.g. flux ropes. It is widely
accepted that the flux ropes can be treated as cylindrical 2-D
structures with twisted magnetic field lines. Many flux rope
events at the high-latitude magnetopause region have been
observed by Cluster satellites (e.g.Zong et al., 2003; Pu et al.,
2005). However, there remains a problem on how to deter-
mine their axial orientation via satellite data.

Elphic and Russell(1983) suggested a method called Prin-
cipal Axis Analysis (PAA), to judge the axial orientation of
flux ropes when they tried to explore the Venus ionosphere.
The idea was based on the MVA technique (Sonnerup and
Cahill Jr., 1968), to seek the three directions of maximum,
intermediate and minimum magnetic field variances (marked
as L, M and N directions). However, in many cases the
three directions cannot be distinguished clearly because of
the similarity of the corresponding three magnetic field vari-
ances. Furthermore, it was concluded byXiao et al.(2004)
that the axial orientation could be in the L, M and even N
directions of the PAA technique, depending on different flux
rope models: (1) M direction in force-free model (Lepping
et al., 1990); (2) M or L directions in non-force-free mod-
els, with an intense core field suggested byElphic and Rus-
sell (1983); (3) N direction in the “Grazing” FTE model
by Farrugia-Elphic-Southwood (Farrugia et al., 1987; Elphic
and Southwood, 1987). In order to avoid the uncertainties
of the PAA technique,Xiao et al.(2004) suggested another
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Fig. 1. Sketch of the Cluster constellation passing through a flux
rope, which meets with the certain magnetic contour plane twice,
at the positions ofP1 andP2. Using the Triangulation Method, the
normal directions of them can be obtained, marked asN1 andN2,
both of which have noz components. Thus, the cross product of
them should point to the flux rope axis.

method (CMVA, or MVAJ) using the current instead of the
magnetic field to perform MVA analysis, which was proven
to highly enhance the accuracy of the axial orientation if re-
liable current data were available. The four Cluster magnetic
field data sets allow for a calculation of curlB (Dunlop et al.,
1988) which provides an estimate of the current density. The
current-based MVA technique (also developed byHaaland
et al., 2004b), however, sometimes gives large errors when
the calculation of the current is not reliable.

The axial orientation of flux ropes can also be obtained
as a byproduct of a technique called Grad-Shafranov (GS)
Reconstruction (e.g.Hau and Sonnerup, 1999; Hu and Son-
nerup, 2002). The technique offers a substantial field of view
of the region around the trajectory of a certain spacecraft by
solving the Grad-Shafranov equation, which arises from the
stationary, 2-D form of Faraday’s law. The method can be
very accurate in determining the flux rope orientation. How-
ever, there is a strong limitation that the convective inertia
terms must be negligible in a proper frame, i.e. the transverse
component of the plasma flow velocity in the frame must be
much smaller than the Alfv́en velocity and the sound speed,
which does not happen in cases with notable reconnection
signatures.

A technique called Minimum Directional Derivative
(MDD) method, based on 4-spacecraft magnetic field ob-
servations and the associated magnetic spatial gradients, re-
cently suggested byShi et al.(2005), can provide another
choice to determine the flux rope orientation, through de-
termination of the invariant axis. The method estimates the
three principle directions for the directional derivatives point
by point in time. If the direction of minimum derivative (gra-

dient) is remarkably smaller than the other two directional
gradients, the magnetic structure is interpreted as a 2-D struc-
ture and the direction obtained should agree with the flux
rope orientation.

In this paper, another approach is established to judge the
axial orientation of flux ropes, namely, Multiple Triangula-
tion Analysis (MTA), which is developed from the Trian-
gulation Method (or Timing Method) (Russell et al., 1983).
We will theoretically examine the accuracy of the MTA ap-
proach within models, apply the technique to the real Cluster
data sets and then compare the results with those obtained by
other methods (MDD and CMVA), in order to confirm the
effectiveness of the MTA technique.

2 The MTA technique

The Triangulation Method was initially presented to mea-
sure the interplanetary shock normal direction (Russell et al.,
1983). The shock is assumed to be planar and the relative
motion to the constellation is assumed to be constant. Its
normal direction can be determined by solving the following
equations:(Pn−P1)·N=V (tn−t1), wherePn and tn repre-
sent the shock-arriving positions and times of then-th satel-
lites,N shows the direction of the shock normal andV is the
normal component of the moving velocity.

Choosing the magnetic field magnitude as the signal, we
may apply the above method to the flux rope cases to calcu-
late the normal directions of any magnetic contour planes in-
side the flux rope. A generalized flux rope model is adopted,
with the magnetic topology being expressed as|B|=f (ρ, φ)

in a cylindrical coordinate system, indicating the magnetic
strength independency onz values. Here theρ, φ andz axis
are corresponding to the radial, azimuthal and axial direc-
tions, respectively.

For such a 2-D model, the gradient of magnetic field
strength within the flux rope has onlyρ andφ components,
suggesting the normal directions of all the magnetic contour
planes to be perpendicular to thez direction, i.e. the axial ori-
entation of the flux rope. Because the Cluster constellation
would basically pass through a certain contour plane twice
(arriving and leaving), two normal directions can be mea-
sured. If they are not exactly in the same direction, the cross
product of them should be pointing to the axial direction of
the flux rope, as is shown in Fig.1.

Random errors may occur because of the measurement in-
accuracy and even the quantization effects in applying the
timing method. In order to get rid of the effect of these errors,
we may further select several contour planes with different
magnetic strength and then calculate their normal directions,
say,N (m) (m=1,M), respectively. Each pair will, in princi-
ple, give an estimate of the axial direction (although some-
what dependent on the actual magnetic structure in the flux
tube) and a mean value can be found. Theoretically, how-
ever, the flux rope axial directionN0 should be perpendicular
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to the normal vectors individually, so that in practice, theN0
can be determined by the minimization of

σ 2
=

1

M

M∑
m=1

|N (m)
· N0|

2 .

The principle of the minimization method has been used in
Siscoe et al.(1968), and it is also very similar to the one used
in the well-known MVA technique (in detail, seeSonnerup
and Scheible, 1998): introducing a Lagrange multiplierλ
and then seeking the solution of a set of three homogeneous
linear equations in the normalization constraint ofN0

2
−1=0.

Thus, the minimization becomes a problem of calculating the
three eigenvalues (λ1, λ2, λ3, in order of decreasing magni-
tude) and corresponding eigenvectors (x1, x2, x3) of a sym-
metrical matrix

Lµν =
1

M

M∑
m=1

N (m)
µ N (m)

ν ,

where the subscriptsµ, ν=1, 2, 3 denote the Cartesian com-
ponents of the vectorN (m) along the X, Y, Z system, re-
spectively. Among the three eigenvectors,x3 along with the
smallest corresponding eigenvalueλ3 can be used as the es-
timator for the flux rope axial orientation andλ3 itself rep-
resents the estimating precision of the MTA technique. The
smaller theλ3 than the other two eigenvalues (λ1 andλ2), the
higher the reliability of the estimation.

Since the minimization methods used here and the one in
minimum variance analysis are very alike, with only a lit-
tle difference on the format of the symmetrical matrix, the
angular standard deviation of the resulting MTA flux rope
orientation can be obtained, following a procedure very sim-
ilar to the MVA error estimation process (Khrabrov and Son-
nerup, 1998a). The procedure (see Appendix in more detail)
shows that the deviation can be expressed as the function of
the three eigenvalues (λ1, λ2, λ3) and the number of normal
vectors obtained by the Triangulation method (M):

4φi =

√
λ3λi

M(λi − λ3)2
, i = 1, 2 ,

where4φi represents the standard deviation (in radians) of
the resultingx3 toward the other two eigenvectors. Besides
indicating the effect of eigenvalue separation on the MTA ac-
curacy, it can also be seen that a largeM value, i.e. more con-
tour planes selected for determining the normal directions,
would effectively reduce the statistical errors of MTA tech-
nique.

The estimation error may also come from the non-planar
properties of magnetic contour planes within the flux rope, as
a systematic error. Since the MTA technique is based on the
Triangulation method with an assumption that the plane is
planar, the validity of MTA thus requires the spacecraft sep-
arations to be much smaller than the spatial scale of the flux
rope, or the curvature radius of the magnetic contour plane

Fig. 2. The error range obtained by MTA tests, selecting only one
contour plane in the certain flux rope model. The error is defined
as the angle between the modelz axis and the MTA resulting axial
orientation. (a) The error as a function ofX (the constellation’s
closest distance to the axis, normalized to flux rope radiusR), when
R is 50 times greater than the satellites’ separationd. (b) The error
versus flux rope radiusR (normalized tod) in a certain type of
Cluster trajectory withX to be 0.707R.

where the constellation traverses the flux rope. As an error
estimation, a set of MTA tests are performed to calculate the
error range by calculating the angle between the modelz axis
and the MTA result. For simplicity, the cross section of the
flux rope is assumed to be circular with a radius ofR, the 4-
spacecraft Cluster formation to be a regular tetrahedron with
a distance ofd between each two satellites, and we select
only one contour plane in each of the tests to obtain the flux
rope orientation as the cross product of the two normals. It
is found that the error depends not only on the flux rope ra-
dius, but also on the path that the satellites pass through the
structure. The error dependencies on bothR and the Cluster
passing path (characterized by the closest distanceX from
the constellation to the axis) are clearly displayed in Fig.2.

Figure2a shows the resulting MTA error as a function of
X (normalized byR), in the typical case of the flux rope
radiusR being 50 times asd. It can be seen that the er-
ror angle is very small (less than 3 deg) in the region of
0.04R<X<0.98R. For thoseX>0.98R cases, the relatively
larger error can be naturally understood to be caused by the
constellation’s skimming motion over the flux rope, however,
the error for thoseX<0.04R cases is a bit more amazing.
Actually, in the cases when the satellites almost pass through
the axis of the flux rope, the two normal directions obtained
at the positions ofP1 andP2 are almost parallel, so that the
cross product process may become invalid, leading to unex-
pected errors. However, if we select more contour planes in
these cases, the resulting minimum eigenvalueλ3 should be
very close to the intermediate one,λ2, indicating the approxi-
mate parallelism of all these normal directions, and providing
a warning of the invalidation of the MTA technique in those
cases.

The error dependency on flux rope radiusR (normalized
by d) is also shown in Fig.2b, with a certain constellation
trajectory, withX/R equal to 0.707. It is very clear that the
error strongly depends on the ratio of flux rope radiusR to
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Table 1. The results of the Triangulation method as the first step
of MTA: |B| or BN selected as the signals, timings input and the
normals obtained.

|B| Timings of the 4 spacecrafts(s) Normal Obtained

33 nT 34.28, 31.95, 31.16, 32.30 (–0.647,–0.162, 0.745)
34 nT 34.61, 32.43, 31.82, 32.66 (–0.600,–0.104, 0.793)
35 nT 35.02, 32.89, 32.34, 33.03 (–0.562,–0.073, 0.824)
36 nT 35.54, 33.33, 32.68, 33.42 (–0.552,–0.091, 0.829)
37 nT 35.99, 33.78, 33.01, 33.90 (–0.579,–0.136, 0.804)

33 nT 49.84, 47.99, 47.58, 47.90 (–0.450,–0.002, 0.893)
34 nT 48.74, 46.93, 46.35, 46.68 (–0.416,–0.048, 0.908)
35 nT 47.24, 45.41, 45.17, 45.99 (–0.729,–0.062, 0.682)
36 nT 46.05, 44.27, 44.07, 44.93 (–0.764,–0.066, 0.641)
37 nT 44.75, 43.05, 42.90, 44.02 (–0.877,–0.116, 0.465)

BN Timings of the 4 spacecrafts(s) Normal Obtained

2 nT 39.52, 37.33, 36.54, 36.68 (–0.307,–0.025, 0.951)
4 nT 38.82, 36.72, 36.12, 36.28 (–0.342, 0.001, 0.940)
6 nT 38.40, 36.25, 35.67, 35.86 (–0.358, 0.004, 0.934)
8 nT 38.03, 35.87, 35.27, 35.51 (–0.374,–0.007, 0.927)
10 nT 37.60, 35.41, 34.86, 35.15 (–0.403,–0.002, 0.915)
12 nT 36.91, 34.90, 34.47, 34.81 (–0.450, 0.003, 0.893)

satellites’ separation distanced as the prediction, with the
error angle less than 3 deg in the case ofR greater than 6.1d.

As a comparison with previous methods, we may have a
look at the error range produced by other techniques.Xiao
et al.(2004) concluded that the errors of PAA and CMVA are
strongly dependent on models and the satellite paths, with a
typical error of around 15−20 deg. The possible error range
of the MDD technique was also tested (Shi et al., 2005), us-
ing the flux rope model byElphic and Russell(1983). They
drew the conclusion that the angle between the calculated
axis and the real axis is mostly less than 5 deg, providing a
similar precision with the MTA technique. So, theoretical
speaking, the MTA method, along with the MDD technique,
may have the ability to measure the axial orientation of a
certain flux rope more accurately than the traditional MVA-
based methods. In order to estimate their precision beyond a
theoretical point of view, it is interesting to apply the method
to a real Cluster event, as will be done in the following sec-
tion.

3 Applications

On 26 January 2001, several flux rope events were ob-
served by Cluster satellites (e.g.Phan et al., 2004; Pu et al.,
2005) when they were traveling outbound in the northern
high-latitude regions from the magnetosphere to the magne-
tosheath, with the spacecraft separation of∼600 km. Three
of those flux rope orientations obtained by MDD analysis
were calculated and listed in Table 1 ofShi et al.(2005).
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Fig. 3. A flux rope structure observed by FGM/Cluster on 26 Jan-
uary 2001, 11:10:24 UT to 11:10:52 UT. (Left panel) Magnetic
strength, (right panel)BN components, as a function of time (both
4-s sliding averages at 0.2-s resolution).

As a comparison, the MTA technique is applied to ana-
lyze these flux ropes, using magnetic field data (FGM data)
(Balogh et al., 1997). One of the events, in the time inter-
val of 11:10:24 UT–11:10:52 UT, is shown in Fig.3: the left
panel represents the magnetic magnitude|B| and the right
panel is the N component of the magnetic fieldBN . The N
direction, being calculated as(0.63, 0.33, 0.70) by Pu et al.
(2005), using minimum variance analysis, can be considered
as the normal direction of the magnetopause during this time
period. The|B| enhancement, along with the bipolar signa-
ture of BN , clearly indicates a flux rope structure (Russell
and Elphic, 1978).

In order to eliminate the undesirable high-frequency fluc-
tuations in applying the Triangulation method (as the first
step of MTA), a procedure of a sliding average is required
(Haaland et al., 2004a). Here we use a sliding window of 4 s,
with a time resolution of 0.2 s, and a apply linear interpola-
tion between each two consecutive measurements.

Then we can select five magnetic field values (33 nT,
34 nT, 35 nT, 36 nT and 37 nT) as the signals, shown as ma-
genta dashed lines in the left panel of Fig.3, and correspond-
ingly obtain 10 normal directions (5 for arriving and 5 for
departure) using the timing method. The 10 directions, listed
in the upper panel of Table1, thus lead us to the calculation
of three eigenvalues and their corresponding three eigenvec-
tors. The eigenvector(−0.136, 0.991, 0.002) with the small-
est eigenvalue (λ2/λ3=21.7) should be, in principle, perpen-
dicular to all of the 10 normals, and could thus be treated as
the estimated flux rope orientation.

The set of normals and eigenvectors are also displayed
in the left GSE box of Fig.4, as 10 blue lines and
3 red lines, respectively. The green circle, defined by the
two eigenvectors with relatively larger eigenvalues, can be
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Fig. 4. The MTA analysis on the flux rope event during 11:10:24 UT
to 11:10:52 UT. In the left box, the magnetic strength is selected as
the signal, while in the right one, theBN component is selected.
In either of the boxes, the blue lines show the normal directions
obtained by the Triangulation method as the first step of MTA, and
the red lines are the three eigenvectors of the corresponding matrix.
The green circle represents the cross-section plane of the flux rope,
basically containing all of the blue lines, while the red line which is
perpendicular to the green circle suggests the flux rope orientation.

treated as the cross-section plane of the flux rope, and ba-
sically contain all of the 10 normals. The third red line,
(−0.136, 0.991, 0.002), being treated as the orientation of
the flux rope, can be clearly seen to be perpendicular to the
cross-section plane (and therefore to the 10 normals).

Based on the 2-D property of the flux rope model, the gra-
dient ofBN would also be within the cross-section plane. So
the normal directions of all theBN contour planes are also
perpendicular to the flux rope orientation. Therefore, we can
selectBN as the signal (instead of|B|) to perform the MTA
technique, as another test of MTA validity. SixBN are se-
lected (2 nT, 4 nT, 6 nT, 8 nT, 10 nT and 12 nT), also shown
as magenta dashed lines in the right panel of Fig.3, and the
resulting normals are listed in the bottom panel of Table1.

The six normals, along with the three corresponding eigen-
vectors, are shown in the right GSE box of Fig.4, with the
same format as the left one. Although they are shown to be
very close to each other, they are still well confined in a plane
with the normal to be(0.117, 0.992, 0.051). This direction,
also being treated as the flux rope orientation, is pretty sim-
ilar to the one calculated before, which in some sense con-
firms the reliability and consistency of the MTA technique.

The other two events listed inShi et al.(2005) are also re-
calculated using the MTA technique, shown in Table2, along
with the one we displayed before. Hereλ2 andλ3 denote the
intermediate and minimum eigenvalues of MTA, suggesting
the third rowλ2/λ3 to be an indicator of the MTA estimating
precision. As a comparison, the resulting orientations ob-
tained by some other methods, including MDD and CMVA,
are also listed.

It can be clearly seen that the directions calculated by
MTA technique are pretty close to those obtained by MDD,
with a deviation between them of around 10 deg. The sim-

Table 2. MTA results of three flux ropes observed on 26 January
2001, along with the comparison with other methods.

Time interval(UT) Methods Flux rope orientation λ2/λ3

10:54:12–10:54:32 MTA (–0.145 0.983 –0.112) 22.2
MDD (–0.216 0.942 –0.255)
CMVA (–0.276 0.821 –0.500)

11:10:24–11:10:52 MTA (–0.136 0.991 0.002) 21.7
MDD (–0.247 0.939 –0.239)
CMVA (–0.723 0.638 –0.267)

11:30:40–11:31:20 MTA (0.340 0.935 –0.099) 3.01
MDD (–0.295 0.920 –0.257)
CMVA (–0.683 0.731 –0.012)

ilarity between them thus suggests the validity of the MTA
method.

On the other hand, the CMVA results show relatively
larger deviations, especially in the second and third cases.
This is mainly caused by the error produced in the calcula-
tion of electric current. The typical| 5 ·B|/| 5×B| value
of ∼0.4, indicating the inaccuracy of the electric current ob-
tained, might strongly reduce the reliability of the CMVA
method in these cases.

It should also be pointed out that the value ofλ2/λ3 is
as small as 3.01 in the last case, implying an uncertainty in
determining the flux rope orientation. The uncertainty can
be probably explained by the traversing path of Cluster to be
too close to the flux rope center. Actually, in this case, the
resulting deviations between MTA and MDD are relatively
larger than the other two.

4 Conclusions

We have introduced another method called the MTA tech-
nique, to find out the axial orientation of a certain flux rope
by a 4-spacecraft constellation. Basically, the error range
of the MTA technique critically depends on both the satel-
lite separation distance and the constellation path via the flux
rope. In spite of these, the MTA has proved itself to be an ac-
curate method in a theoretical way. Also, the Cluster data has
been used as an application of the MTA technique. Selecting
both |B| andBN as the signal, similar resulting orientations
are obtained, suggesting the reliability of MTA. Comparisons
with other methods are also made to test the precision of the
technique. So, in principle, the MTA technique is providing
another way to explore the flux rope structures, especially
in those cases when other methods are invalid. In addition,
the method may become even more accurate in some future
missions with more than 4 satellites.
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Appendix A

Error estimation for random errors

The random errors ofN (m), either caused by the measure-
ment inaccuracy or by the quantization effects of the Trian-
gulation method, can be treated as a set of errors being in-
dependent from each other and having identical probability
distributions (independent, identical distributions, denoted as
iid), which satisfy the assumption inKhrabrov and Sonnerup
(1998a) (hereinafter as paper 1). Within this framework, the
data series appear as one of the possible fluctuating states of
the normal vector pattern.

So we can directly follow the procedure of paper 1, how-
ever, we do not mean to repeat the lengthy manipulations.
Instead, we will mainly emphasize the difference between
them, to obtain the final result of the MTA error range.

The minimization method applied in MTA would produce
a symmetric matrix

Lµν = 〈N (m)
µ N (m)

ν 〉

in comparison with the matrix in MVA

Mµν = 〈B(m)
µ B(m)

ν 〉 − 〈B(m)
µ 〉〈B(m)

ν 〉 ,

where the brackets〈 〉 represent the averaging process over
the measured data set.

Note that another averaging operation, denoted by double
brackets〈〈 〉〉, means the average over the ensemble of all
possible fluctuating states. And certainly the ensemble aver-
age,〈〈 〉〉, and the average over the data in a given state,〈 〉,
can be interchanged, i.e.〈[〈〈 〉〉]〉 = 〈〈[〈 〉]〉〉.

In order to depict a certain fluctuating state, the vector
N (m) can be expressed asN∗(m)

+n(m), where the asterisk
means the signal andn is the noise with an iid distribution.
Some properties of the iid distribution can be listed below:

〈〈n(m)
〉〉 = 0, m = 1, 2...M . (A1)

Equation (4) of paper 1 suggests that the mean value of
the errors is zero, if taken over all of the fluctuating states.
Another property is the one in Eq. (5) of paper 1:

〈〈n(m)
µ n(k)

ν 〉〉 ≡ Sµνδmk , (A2)

whereSµν is independent ofm and k, and stands for the
second-order terms of the noise.

Now the symmetric matrixLµν can be turned to

Lµν = 〈(N∗(m)
µ +n(m)

µ )(N∗(m)
ν +n(m)

ν )〉

= L∗
µν+〈n(m)

µ n(m)
ν 〉+〈n(m)

µ N∗(m)
ν 〉+〈N∗(m)

µ n(m)
ν 〉 . (A3)

Then the ensemble average can be taken on both sides.
Based on the properties of Eqs. (A1) and (A2), the last two
terms in the right sides of Eq. (A3) can be neglected:

〈〈Lµν〉〉 = L∗
µν + 〈〈[〈n(m)

µ n(m)
ν 〉]〉〉 = L∗

µν + Sµν (A4)

which would replace Eq. (8) of paper 1 in our procedure, and
Eq. (11) of paper 1 would be correspondingly switch to

L∗

ij + Sij = δij 〈〈λi〉〉 (A5)

in the coordinate system of〈〈L 〉〉 eigenbasis, and the compo-
nents would be denoted by the subscriptsi andj .

The next step would be connecting the fluctuations of
eigenvectorsxi and eigenvaluesλi to the noise in a given
fluctuating state, by linearizing the eigenproblem. As is
shown in paper 1 (Eq. 12), the component of1xi along
〈〈xj 〉〉 can be expressed as:

1xij = −1xji =
1Lij

〈〈λi〉〉 − 〈〈λj 〉〉
i 6= j (A6)

which suggests the role of the certain fluctuating state, rotat-
ing xi at an angle of1xij towardxj , in radians.

So, in order to obtain the angular error of the MTA eigen-
vectors, the variance ofL should be first calculated as the
following:

〈〈(1Lij )
2
〉〉 ≡ 〈〈(Lij − 〈〈Lij 〉〉)

2
〉〉

= 〈〈{
1

M

M∑
m=1

(N
∗(m)
i + n

(m)
i )(N

∗(m)
j + n

(m)
j )

−
1

M

M∑
k=1

(N
∗(k)
i N

∗(k)
j + 〈〈ninj 〉〉)}

2
〉〉 . (A7)

Equation (A7) can be expressed as the sum of a set of terms,
each of which is proportional to the first, second, third and
fourth moment ofn. As we know from Eq. (A1), the first or-
der terms have the value of zero. Furthermore, if we assume
that the noise is smaller than the signal, the third and fourth
terms can be also neglected. Equations (A2) and (A4) can be
used in the next manipulation, and Eq. (A7) turns to:

〈〈(1Lij )
2
〉〉 =

1

M
(L∗

iiSjj + L∗

jjSii + 2L∗

ijSij ) . (A8)

The combination of Eq. (A6) and Eq. (A8) thus leads to the
angular error of the eigenvectors:

1φij ≡

√
〈〈(1xij )2〉〉 =

√
〈〈(1Lij )2〉〉

(〈〈λi〉〉 − 〈〈λj 〉〉)2

=

√
L∗

iiSjj + L∗

jjSii + 2L∗

ijSij

M(〈〈λi〉〉 − 〈〈λj 〉〉)2
. (A9)

Consider Eq. (A5) and neglect the higher order terms,
Eq. (A9) turns to:

1φij =

√
〈〈λi〉〉Sjj + 〈〈λj 〉〉Sii

M(〈〈λi〉〉 − 〈〈λj 〉〉)2
. (A10)

Specifyingi=3 with j=1 or 2, and based on the fact that
the eigenvalueλ3 is entirely due to the noise, Eq. (A10) then
becomes

1φ3j =

√
λ3λj

M(λ3 − λj )2
. (A11)
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In arriving at this result,S33 is replaced byλ3 and we fur-
ther assumeSjj to also be of order ofλ3, so thatλ3Sjj would
be of a higher order and could be thus neglected, (see paper
1 for more detail).

So the random angular errors of the MTA flux rope orien-
tation can be obtained, as the function of the three eigenval-
ues and also the number of normal vectors.
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