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Abstract. During the two geomagnetic storms which oc-
curred on 1 October 2002 and 22 January 2004, the strong
ionospheric scintillations of the GPS L1 band were observed
at Wuhan station (30.6◦ N, 114.4◦ E, 45.8◦ Dip), which is sit-
uated near the northern crest of the equatorial ionosphere
anomaly. We found that the intense scintillations were as-
sociated with the main phases of the storms and were co-
located with the enhancement of the equatorial ionization
anomaly (EIA); the co-existence of large- and small-scale ir-
regularities at post-midnight was also found. The results may
be relevant regarding the influence of the equatorial iono-
spheric eastward electric field during geomagnetic storms.
On the other hand, GPS L1 band scintillations were not ob-
served during the other two similar storms on 16 July 2003
and 20 November 2003. One of the reasons is probably that
the sporadic E layer observed at the storms inhibited the gen-
eration of spread F by changing the Pedersen conductivity
and suppressing the upward plasma drift.

Keywords. Ionosphere (Ionospheric irregularities; Mid-
latitude ionosphere) – Magnetospheric physics (Storms and
substorms)

1 Introduction

Sometimes when a radio signal acts on the disturbed iono-
sphere, the received signal will show rapid fluctuations in
amplitude and phase which are not consistent with the source
strength or modulation. This so-called scintillation is at-
tributable to electron density irregularities primarily in the
ionospheric E and F regions (Yeh and Liu, 1982). Scin-
tillations observed at low latitudes are primarily controlled
by the generation and growth of irregularities over the mag-
netic equator, where the effects of upward plasmaE×B drift
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and more effective ion recombination at lower altitudes re-
sult in a steep gradient of electron density on the bottom-
side F region. When the altitude of the F region is high
enough or the bottom-side background electron density gra-
dients are large enough to overcome recombination effects,
the Rayleigh-Taylor instability mechanism initiates a growth
in plasma fluctuations. An upward moving bubble of de-
pleted plasma is produced, which rises and eventually trans-
forms itself into a plethora of smaller irregularities. By ex-
amining quantitatively the influence of the pre-midnight spo-
radic E (Es) layer on the daily and hourly development of
equatorial spread F (ESF), and calculating changes in the flux
tube-integrated Pedersen conductivity as it affects the growth
rate of the Rayleigh-Taylor instability, Andrew et al. (2002)
concluded that Es layers might change the Pedersen conduc-
tivity ratio and the growth rate of ESF. At auroral area, struc-
tured F-region density gradients are the primary instability
source (Basu et al., 1993). Contrary to the high and low lat-
itudes, the mid-latitude ionosphere is generally regarded as
a less active scintillation environment, especially at L-band
frequencies, and is considered to be absent of scintillations.

Recent studies indicate that the mid-latitude region is more
complicated than previously thought. Foster et al. (2002,
2005) observed plumes of greatly enhanced total electron
content (TEC) during the intense geomagnetic storms of
31 March 2001 and 30–31 October 2003. By observing
GPS L1 amplitude scintillations in the mid-latitude region,
Ledvina et al. (2002) concluded that this storm-enhanced
density (SED) structure plays a major role in the formation
of irregularities. Moreover, Basu et al. (2005) found two dis-
tinct classes of plasma processes that produce mid-latitude
ionospheric irregularities associated with auroral plasma pro-
cess and SED gradients during the geomagnetic storm of
30 October 2003.

Some mechanisms for mid-latitude irregularities were also
investigated. Perkins (1973) presented a model that was used
to explain the mid-latitude structures. Later, Hamza (1999)
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Figure. 1. The dots show the geographic distribution of GPS receivers that were used in our TEC 
calculation. The “*” marks the location of Wuhan station. 
 
 
 
 
 

Fig. 1. The dots show the geographic distribution of the GPS re-
ceivers that were used in our TEC calculation. The “*” marks the
location of Wuhan station.

revisited the Perkins instability and introduced two new ele-
ments. Recently, Tsunoda and Cosgrove (2001) pointed out
that the F layer and the sporadic E layer in the nighttime mid-
latitude ionosphere must be considered electro-dynamically
as a coupled system (Haldoupis et al., 1996; Tsunoda, 1998;
Cosgrove and Tsunoda, 2001, 2002a, 2002b, 2003, 2004;
Cosgrove et al., 2004).

In this paper, we investigate both the amplitude and phase
scintillations of the GPS L1 band observed at the low-middle
latitude station Wuhan (30.6◦ N, 114.4◦ E, 45.8◦ Dip) during
a period of intense geomagnetic storms, together with GPS
TEC maps and Digisonde measurements. The observational
results show that intensified scintillations are seen associated
with the enhancement of the equatorial ionization anomaly
(EIA) during the main phase of the geomagnetic storm. In
addition, no scintillation is observed to be accompanied by
the appearance of an Es layer during whole process of a ge-
omagnetic storm. It seems that the existence of the Es layer
inhibits the generation of spread-F. Current theories are used
to interpret the observed results.

The paper is organized as follows. In Sect. 2, observa-
tional methods and data are described. In Sect. 3, analyzed
results are given. Discussion and conclusions are presented
in Sect. 4.

2 Data resources

In September 2002, a modified GPS receiver for record-
ing the amplitude and phase of the L1 signal was set up at
Wuhan. The receiver is a NovAtel Euro4 dual-frequency re-
ceiver version with OEM4 card and special firmware, which
also yields the value of ionospheric TEC. The amplitude
scintillation is monitored by computing the S4 index, which
is the standard deviation of the received power normalized by
its mean value. In our study, it is derived from the detrended
received signal intensity. A fixed choice of a 0.1 Hz, 3 dB-
cutoff frequency, for both phase and amplitude filtering, has
been used here. A low phase noise, oven-controlled crys-
tal oscillator performs the phase measurements by monitor-
ing the standard deviation of the detrended carrier phase.
Then phase scintillation (Phi-Sigma) is computed (Van et al.,
1993). In all the cases in this paper, only the signals com-
ing from satellites with an elevation angle greater than 30◦

and with a time of lock greater than 180 s were taken into ac-
count. The virtual height of the F layer, h′F, the peak height
of F layer,hmF2, the critical frequency of the F layer,foF2,
and virtual height of the sporadic E layer, h′Es, are measured
by Digisonde-256 at the Wuhan station.

GPS data for TEC maps are obtained from a GPS network
in the China, Southeast Asia and Australia regions. Due
to the fact that observations at lower elevation angles have
passed through a longer path through the ionosphere than
those at high elevation, the slant TEC values were approx-
imated into the equivalent vertical TEC values by assuming
a thin-shell ionosphere at 400 km. Then through the GPS
network, a nearest interpolation (by setting the value of an
interpolated point to the value of the nearest existing data
point) was employed to yield a TEC variation along geo-
graphical longitude 110◦ E (LT≈UT+8), with a spatial res-
olution of about 2.5◦. Thus, we obtained our TEC (Latitude
versus UT) map (Zhao et al., 2005). The sampling interval of
the TEC data for mapping is 30 min. The distribution of the
GPS receivers is given in Fig. 1. Since vertical electron den-
sity distribution is generally not constant along the ray path,
it should be pointed out that the calculation of TEC is per-
haps only a rough approximation. It has been estimated that
TEC can be in error by 10–20% when an elevation-dependent
scaling factor is used at low elevation angles (5–10◦), and in
regions of significant TEC gradients (Klobuchar et al., 1993).
But for studying large-scale TEC variation, especially under
conditions of intense geomagnetic disturbance, this approxi-
mation is enough for identifying common storm features (Ho
et al., 1998). To show more clearly the TEC variation, we
subtracted the 27-day smooth average value of TEC, and then
obtained its relative deviation (RTEC):

RT EC(UT ) =
T EC(UT ) − T EC(UT )

T EC(UT )
.

Geomagnetic storms are characterized by a prolonged de-
pression of the horizontal component (H) of the Earth’s
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Figure. 2a. Bz component of the interplanetary magnetic field in geocentric-solar-magnetospheric 
(GSM) coordinates provided by the Advanced Composition Explorer (ACE) spacecraft (top panel, 
left) and Dst index (middle panel, left) obtained from CDAWeb and SPIDR; Phase scintillation 
index (Phi-Sigma, middle panel, left) and Amplitude scintillation index (S4, bottom panel, left)  
measured from all GPS satellite signals observed at Wuhan; F layer peak height (hmF2, top panel, 
right), F layer virtual height (h ' F, middle panel, right), F layer critical frequency (foF2, middle 
panel, right) and sporadic E layer virtual height (h ' Es, bottom panel, right) obtained from 
Digisonde measurements at Wuhan for the period 30 September – 2 October, 2002. 
 
 
 
 
 
 
 
 

(a)
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Figure. 2b. Latitudinal variation of TEC along geographic longitude 110 ° E for 30 September (top 
panel, left), 1 October (middle pane, left), 2 October (bottom panel, left), 2002, and RTEC along 
geographic longitude 110 ° E for 30 September (top panel, right), 1 October (middle pane, right), 2 
October (bottom panel, right), 2002, show the equatorial ionization anomaly (EIA) 
development. 
 
 
 
 

(b)

Fig. 2. (a)Bz component of the interplanetary magnetic field in geocentric-solar-magnetospheric (GSM) coordinates provided by the Ad-
vanced Composition Explorer (ACE) spacecraft (top panel, left) andDst index (middle panel, left) obtained from CDAWeb and SPIDR;
Phase scintillation index (Phi-Sigma, middle panel, left) and Amplitude scintillation index (S4, bottom panel, left) measured from all GPS
satellite signals observed at Wuhan; F layer peak height (hmF2, top panel, right), F layer virtual height (h′F, middle panel, right), F layer
critical frequency (foF2, middle panel, right) and sporadic E layer virtual height (h′Es, bottom panel, right) obtained from Digisonde mea-
surements at Wuhan for the period 30 September–2 October 2002.(b) Latitudinal variation of TEC along geographic longitude 110◦ E
for 30 September (top panel, left), 1 October (middle pane, left), 2 October (bottom panel, left), 2002, and RTEC along geographic longi-
tude 110◦ E for 30 September (top panel, right), 1 October (middle pane, right), 2 October 2002 (bottom panel, right), show the equatorial
ionization anomaly (EIA) development.
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Figure. 3a. Bz component of IMF, Dst index, Phi-Sigma and S4 index; hmF2, h ' F, foF2 and h ' Es 
for the period 21 – 23 January, 2004. 
 
 
 
 
 
 
 
 
 

(a)
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Figure. 3b. Latitudinal variation of TEC (left) and RTEC (right) along geographic longitude 
110 ° E for 21 January (top panel), 22 January (middle panel) and 23 January (bottom panel), 2004, 
show the EIA development. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)

Fig. 3. (a)Bz component of IMF,Dst index, Phi-Sigma and S4 index;hmF2, h′F, foF2 and h′Es for the period 21–23 January 2004.(b)
Latitudinal variation of TEC (left) and RTEC (right) along geographic longitude 110◦ E for 21 January (top panel), 22 January (middle panel)
and 23 January 2004 (bottom panel), show the EIA development.

magnetic field. The depression in H is characterized by the
geomagnetic indexDst which lies between –100 to –200 nT
for intense storms and less (–200) for very intense storms.
The southward turning of the interplanetary magnetic field
(IMF) Bz ensures the transportation of solar wind energy
into the Earth’s magnetosphere, which is the primary cause

for the formation of geomagnetic storms (Allen et al., 1989;
Tsurutani et al., 1992; Gonzalez et al., 1999). TheDst in-
dex is obtained from the Space Physics Interactive Data Re-
source and IMFBz is obtained from Coordinated Data Anal-
ysis Web.
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Figure. 3c. Plots at every 1-minute interval of (1) S4 index (2) Phi-Sigma index (3) TEC (4) 
rate of TEC (ROT) for PRN 28 on 1 – 2 October, 2002 and PRN 21 on 22 – 23 January, 2004. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)
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Figure. 3d. Increases in hmF2 and h ' F observed at OSAN (37.1 ° N, 127.0 ° E) on 22 January, 
2004 provide an evidence of uplift of F layer (Data obtained from SAO database). 
 
 
 
 
 
 
 
 

(d)

Fig. 3. Continued. (c) Plots at every 1-min interval of (1) S4 index (2) Phi-Sigma index (3) TEC (4) rate of TEC (ROT) for PRN 28 on
1–2 October, 2002 and PRN 21 on 22–23 January 2004.(d) Increases inhmF2 and h′F observed at OSAN (37.1◦ N, 127.0◦ E) on 22 January
2004 provide evidence of the rise in the F layer (Data obtained from SAO database).

3 Results

3.1 Storm 1 and 2: 1 October 2002 and 22 January 2004

Here we combine the scintillations of two similar events
in constructing a picture of the prompt effects associated
with magnetospheric disturbances on a low-middle latitude.
In Fig. 2a, the left four panels show theBz component of
IMF, Dst , phase and amplitude scintillation indices;hmF2,
h′F, foF2 and h′Es are presented in the right four panels for
30 September–2 October 2002. Figure 3a shows the same
parameters for 20–22 January 2004. Both events are marked
by major negative IMFBz and a post-sunset steep height

increase of h′F andhmF2. The uplifting of F layer results
in spread F and hence intense amplitude and phase scintilla-
tions.

The enhancement of EIA over the longitude 110◦ E is ob-
served during each event. As shown in Figs. 2b and 3b,
in comparing the 3 days, a clear EIA enhancement is seen
at about 10:00 UT during the two storms, and the EIA en-
hancement of storm 1 and 2 extending to about 22:00 and
18:30 UT respectively relative to the quiet day. This behav-
ior is likely associated with the intensification of the foun-
tain effect, due to the penetration of an eastward electric
field into the equatorial ionosphere, which forced a large
amount of plasma to be uplifted at the magnetic equator and
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subsequently diffused along the magnetic field line toward
higher latitudes. For both events, Digisonde station at Wuhan
registered a very significant increase ofhmF2 and h′F, fol-
lowed by the occurrence of strong spread F (seen as dif-
fuse F-region traces in ionograms). On 22 January 2004,
Digisonde station at OSAN (37.1◦ N, 127.0◦ E) simultane-
ously observed the same increase (Fig. 3d) inhmF2 and h′F.

Figure 3c presents the results for PRN 28 on 1 October
2002 and PRN 21 on 22 January 2004. A close comparison
of S4, TEC and ROT (rate of change of TEC per minute, Pi
et al., 1997; Basu et al., 1999) for single PRN indicates that
the enhanced scintillation structures correspond well with
fluctuations of ROT. From Fig. 3c we can find that at post-
midnight, moderate scintillations still exist with TEC fluctu-
ations.

3.2 Storm 3 and 4: 16 July and 20 November 2003

In comparison to intense scintillation activity during storms 1
and 2, no scintillation was observed during the storms oc-
curred on 16 July 2003 and 20 November 2003. Figures 4
and 5 show IMFBz, Dst , Phi-Sigma, S4,hmF2, h′F, foF2,
h′Es indices and TEC maps for the two events, respectively.

As shown in Fig. 4a, during storm 3, it is evident that as
time advances, IMFBz turned southward at around 02:00 UT
on 16 July 2003. Except for several northward excursions, it
remained negative for several hours.Dst reached its maxi-
mum –117 nT at 12:00 UT on 16 July. Comparing the 3 days,
Fig. 4b shows that the EIA began to intensify at 10:00 UT
and this lasted until 18:00 UT during the storm day, similar
to storms 1 and 2. But measurements ofhmF2 and h′F show
a weak increase which started at 10:20 UT and finished at
17:00 UT, and the sporadic E layer (h′Es) was present when
the F layer rose. The weak increase of the F layer was proba-
bly caused by a storm-induced enhancement of the eastward
electric field, but the increase was not apparent; this is pre-
sumably the reason why the concurrent existence of the Es
layer inhibited the upward plasma drift.

For storm 4, Fig. 5a illustrates that IMFBz turned
southward at 02:20 UT on 20 November 2003, and then
turned northward at 10:00 UT on 20. After approximately
50 min, IMF Bz became further southward at 10:48 UT on
20 November, and remained negative until 00:10 UT on
21 November.Dst became much depressed and reached its
maximum at –472 nT at 19:00 UT on 20 November. The
EIA is also shownto be enhanced at around 11:00 UT
on 20 November and this ended at about 17:00 UT on
20 November (Fig. 5b).hmF2 and h′F show two large incre-
ments during 11:00–14:00 UT and 14:00–17:00 UT, respec-
tively. It is likely that an eastward penetration electric field to
the first elevation of the F layer when IMFBz turned south-
ward, and the second elevation which during the midnight
sector could be the result of a disturbance dynamo electric
field (Blanc and Richmond, 1980; Fejer and Emmert, 2003).

The sporadic E layer (h′Es) also exists when the F layer rose
during storm 4.

For these two events, the EIA intensification can be likely
seen during the storm day as storms 1 and 2. The height
variation of the F layer is not apparent relative to the adja-
cent 2 days for storm 3. For storm 4,hmF2 and h′F show
two increments. But the scintillation activity was essentially
dormant. The S4 index and phase scintillation index (Phi-
Sigma) rarely exceed 0.1. The reason is presumably that the
existence of the Es layer in the post-sunset inhibits the up-
ward plasma drift and leads to a significant suppression of
spread F.

4 Discussions and conclusions

Some excellent work on ionospheric scintillations during
storms has been published. Dabas et al. (1989), Aarons et
al. (1991, 1997) found thatDst variations are the best criteria
to determine the development of the equatorial irregularities.
Numerous works present the experimental and theoretical re-
lations between the solar wind parameters and the auroral
ionosphere. The studies of Zmuda and Armstrong (1974),
Iigima and Potemra (1978), Foster et al. (1989) and other
authors concluded that the field-aligned currents (FAC) con-
stitute a major interconnection between the magnetosphere
and the polar ionosphere. In theory, Zakharov et al. (1989),
Denisenko and Zamai (1992) had shown that the electric
fields from the FAC could penetrate to the equatorial iono-
sphere and explain the equatorial electric field variations,
as well as Kikuchi et al. (1996), Sizova (2002), using geo-
magnetic data, and Sizova and Pudovkin (2000), using iono-
spheric data had proved the penetration. According to the
model of Sizova and Pudovkin (2000), electric fields of the
field-aligned currents penetrate through the mid-latitude to
the low-latitude ionosphere and create the additional equa-
torial electric fields. Under the additional eastward electric
field, the height of the F region rises high enough where scin-
tillation irregularities can be generated.

Although the virtual height of the F layer h′F observa-
tions does not differentiate between the effects of an eastward
electric field or of an equatorward surge of the neutral wind,
Tanaka (1986) once analyzed the storm-time ionospheric re-
sponse and provided criteria for differentiating between the
effects of electric fields and winds. The equatorial anomalies
are created as an eastward electric field uplifts the equatorial
ionosphere, which subsequently diffuses down the magnetic
field to produce density enhancements at somewhat higher
latitudes. The response to winds propagating equatorward
from a high-latitude disturbance, however, is characterized
by increases in h′F which travel from north to south with
noticeable time dispersions and no change infoF2 or TEC.
From storms 1 to 4, significant changes in TEC, as well as
an enhancement of the EIA were observed. These provide
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Figure. 4a. Bz component of IMF, Dst index, Phi-Sigma and S4 index; hmF2, h ' F, foF2 and h ' Es 
for the period 15 – 17 July, 2003. 
 
 
 
 
 
 
 
 

(a)
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Figure. 4b. Latitudinal variation of TEC (left) and RTEC (right) along geographic longitude 
110 ° E for 15 July (top panel), 16 July (middle panel) and 17 July (bottom panel), 2003, show the 
EIA development. 
 
 
 
 
 
 

(b)

Fig. 4. (a) Bz component of IMF,Dst index, Phi-Sigma and S4 index;hmF2, h′F, foF2 and h′Es for the period 15–17 July, 2003.(b)
Latitudinal variation of TEC (left) and RTEC (right) along geographic longitude 110◦ E for 15 July (top panel), 16 July (middle panel) and
17 July (bottom panel), 2003, show the EIA development.

evidences of a concentration of a storm-enhanced eastward
electric field.

As we can see fromBz, Dst , Phi-Sigma, S4,hmF2, h′F
and h′Es dynamics presented in Figs. 2a–5a, the events of
16 July 2003 and 20 November 2003 did not exhibit any
strong spread F or scintillation activity, while the events of

1 October 2002 and 22 January 2004 demonstrated the in-
tense scintillation signatures associated with the presence of
the spread F; it appears that the existence of the sporadic E
layer has significant suppression effect on spread F and in-
hibits the process required for the growth of plasma irreg-
ularities. The modulation of the ESF occurrence by the Es
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Figure. 5a. Bz component of IMF, Dst index, Phi-Sigma and S4 index; hmF2, h ' F, foF2 and h ' Es 
for the period 19 – 21 November, 2003. 
 
 
 
 
 
 
 
 

(a)
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Figure. 5b. Latitudinal variation of TEC (left) and RTEC (right) along geographic longitude 
110 ° E for 19 November (top panel), 20 November (middle panel) and 21 November (bottom 
panel), 2003, show the EIA development. 

(b)

Fig. 5. (a)Bz component of IMF,Dst index, Phi-Sigma and S4 index;hmF2, h′F, foF2 and h′Es for the period 19–21 November 2003.(b)
Latitudinal variation of TEC (left) and RTEC (right) along geographic longitude 110◦ E for 19 November (top panel), 20 November (middle
panel) and 21 November (bottom panel), 2003, show the EIA development.

layer was first proposed by Tsunoda (see Sultan, 1996); when
a sporadic E layer develops, its contribution to the Peder-
sen conductivity may also become significant. Stephan et
al. (2002) showed that the Es layer can change the Pedersen
conductivity ratio and thus the growth rate of the gravita-
tional Rayleigh–Taylor instability (GRT); the magnitude of

the change is dependent on the plasma densities, as well as
the height and time of Es layer occurrence.

By using GPS ionospheric scintillations, TEC measure-
ments and Digisonde data to investigate the responses of the
ionosphere to the geomagnetic storms of 1 October 2002,
16 July 2003, 20 November 2003, and 22 January 2004, we
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observed a prompt uplifting of the ionospheric F layer at low-
middle latitude, related to the occurrence of the eastward
penetration electric field or the disturbance dynamo elec-
tric field during storms. Intense scintillation occurred and
even extended up to post-midnight with the co-existence of
large- and small-scale irregularities during 1 October 2002
and 22 January 2004. It is proposed that an enhancement of
the eastward electric field may intensify the upward drift of
plasma, followed by transport to higher latitude. Then the
irregularities associated with spread F can be generated, and
ionospheric scintillations can be observed there. But for the
storm on 16 July 2003 the uplifting of the ionospheric F layer
was not apparent relative to the adjacent 2 days; for the storm
on 20 November 2003,hmF2 and h′F show two increments.
Both of them did not generate spread F and to scintillations.
The reason is probably that the sporadic E layer played a role
in the generation of the ionospheric scintillation by changing
the Pederson conductivity ratio and suppressing the upward
plasma drift, thus reducing the growth rate of the irregulari-
ties associated with spread-F. Also, we should point out that
there may be other reasons for example, the eastward electric
field perturbation is not strong enough to elevate the F layer
enough. The relationship between the Es layer and spread F
is perhaps one of the keys to predicting ionospheric scintil-
lation during a period of intense geomagnetic activity. This
needs to be further studied and more detail investigations are
required.
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