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Abstract. This paper deals with the spatial structure of zero Glassmeier et al., 1999, 2004; Othmer et al., 1999). Treat-
azimuthal wave number ULF oscillations in a 1-D inhomo- ment of this phenomenon in a one-dimensional inhomoge-
geneous multi-component plasma when a finite ion gyrofre-neous model of the magnetosphere, using a one-fluid MHD
quency is taken into account. Such oscillations may occur inplasma model, is as follows. A fast magnetosonic (FMS)
the terrestrial magnetosphere as Pc1-3 waves or in the magvave propagates into the inhomogeneous magnetosphere and
netosphere of the planet Mercury. The wave field was foundreflects from a particular magnetic surface. The superposi-
to have a sharp peak on some magnetic surfaces, an analogign of ingoing and outgoing waves forms a standing wave
of the Alfvén (field line) resonance in one-fluid MHD theory. pattern in the FMS transparent region. However, part of
The resonance can only take place for waves with frequenthe FMS energy penetrates through this boundary (resem-
cies in the intervalso<w,), or Qo<w<w.,, Wherew,, and bling the tunneling effect in quantum mechanics) and ex-
wcp are heavy and light ions gyrofrequencies, dnglis a  cites the Alf\en wave close to a surface, where the wave fre-
kind of hybrid frequency. Contrary to ordinary Aim res-  quency equals the local Alén frequencyQ=vk;, where
onance, the wave resonance under consideration takes placg=B/+/4mp is the Alfvén velocity,B the equilibrium mag-
even at the zero azimuthal wave number. The radial comnetic field, andp the background plasma density. The az-
ponent of the wave electric field has a pole-type singularity,imuthal and radial components of the wave electric field ex-
while the azimuthal component is finite but has a branchinghibits a logarithmic or pole-type singularity at the resonance
point singularity on the resonance surface. The later singusurface, respectively. All of the FMS wave energy is ab-
larity can disappear at some frequencies. In the region adjasorbed near this Alfén resonance surface. A more detailed
cent to the resonant surface the mode is standing across thbeoretical analysis indicates that axisymmetric oscillations
magnetic shells. with azimuthal wave numbera=0 cannot experience this

Keywords. Magnetospheric physics (MHD waves and in- Alfven resonance.

stabilities; P|anetary magnetospheres) — Space p|asma However, this standard theoretical treatment of the étfv
physics (kinetic and MHD theory) resonance, based on a one-fluid MHD plasma model, as-
sumes the wave frequenayto be infinitely small compared

to the thermal ion gyrofrequenay,;. If the ratiow/w,; is
finite, the resonant excitation of Alén waves via coupling

to FMS waves is possible even for the special cas® (e.g.

This paper is devoted to the study of resonant excitation of ul_Leonowch et al., 1983, Timofeev, 1992; Glassmeier et al.,

tra low frequency (ULF) waves in an inhomogeneous multi- 2003). This is due to the fact that at finite gyrofrequencies

component plasma. Alfin resonances, also called field line and assuming a vanishing electric field along the background

: . agnetic field, the MHD wave dispersion relation becomes
resonances, are one of the key physical processes in the mag-
y physicaip g. Swanson, 1989, Eq. 2.16);

netosphere of the Earth (Tamao, 1965; Hasegawa and Chen;,
1974; Southwood, 1974) and other planets (Khurana, 1993;
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wherek), andk, are the wave vector components parallel in the ULF range ¢ <w..) become (e.g. Glassmeier et al.,
and transverse to the ambient magnetic fieldjs the diag-  2003):
onal element of the dielectric tensor, andts off-diagonal

element proportional to the ratio/w,;. The effect of heavy =T

ions on ULF waves has been recently studied by Kim and a)fn.
Lee (2004). L=
In the terrestrial magnetosphere, finigw,; effects can Loa
be important for Pc1-2 or Pil pulsations, especially if the wf,e Wei a)f,,»
magnetosphere is enriched with heavy (oxygen) ions, as may — e L jm
1

occur during substorm activity. These effects can also play
an essential role in ULF wave phenomena in other magneHerew, andw, are the plasma and cyclotron frequencies of
tospheres. Indeed, in Mariner 10 data, Russell (1989) foundtlectrons (index¢”) and ions (index {”), respectively. The
magnetic pulsations in the magnetosphere of the planet Mernfinite value of the dielectric tensor longitudinal elementim-
cury with a period of about 2 s. This period is only a bit larger plies a vanishingly small value for the longitudinal electric
than the cyclotron period of hydrogen ions and less than thdield component of the wave. Note that in cases where the
cyclotron period of sodium ions, which are abundant in thiswave frequency is much lower than the gyrofrequency of any
magnetosphere (Ip, 1986; Cheng et al., 1987; Killen and Ipjon fraction the dielectric tensor transverse elements take the

1999). Othmer et al. (1999) interpreted the micropulsationform

observed by Russell (1989) as the analog of a field line reso- 2 w 2

nance in the multi-component plasma of the Hermean magéL = —, 7= —
v2 — Wi v?

netosphere. A i iA

The aim of this paper is to study in detail the spatial struc-wherev; =B /+/4mp; is the Alfvén velocity determined by
ture of ULF waves with a zero azimuthal wave number in the;” jon component.
a one-dimensional inhomogeneous, multi-component space We assume that the tensor elementsand, depend only
plasma with a finite ratiaw/w.;. In Sect. 2 we derive the on the radial coordinate. The wave field is assumed to vary
governing wave equations while in Sect. 3 we suggest a posin the y andz directions ag’*»>tik:z, wherek, is the analog
sible solution in the WKB-approximation. Section 4 is de- of the azimuthal wave number for the box model.
voted to a more detailed study of resonance conditions in With these definitions we obtain from E@)(
multi-component plasmas. The main results of our study are

2
. c , . (dEy .
presented in Sect. 5. c?(glEx —inEy) = ik, (d_xy _ zkyEx> + kZZEx, (3)
2 d {. dE, 2
2 The wave equation E(H’]EX + EJ_Ey) = E lkyEx — _dx + kZ Ey. (4)

We investigate a box model of the magnetosphere where field L€t us designate

lines are straight and parallel. The model is one-dimensional w2

and inhomogeneous, all equilibrium parameters depend onlk = gél - kf-

on one coordinatey, imitating the radial coordinate in the i

magnetosphere. The coordinatis directed in the azimuthal In the ‘”2<<“)g range, this value' takes the form
direction, while thez coordinate is directed along the am- K=(@/va)*—kZ. Outside the Earth's plasmapaus,
bient magnetic field lines. A cold plasma is assumed, thatS increasing with distance from the Earth because the

is the plasma pressure is zero. The plasma is composed 4iifvén velocity is a monotonically decreasing function
electrons, light ions (protons), and heavy ions. of x. We will suppose the same behavior &f in our

. . . multi-component model, that iX’>0, where the prime
From Maxwell equations we obtain the equation for the . L ) .
o . ] denotes differentiation with respect.to Moreover, we will
electric fieldE of the wave with frequency:

assume that it becomes constantfes +-occ.
Expressingt, from Eq. @) and substituting it into Eq4j,

N

w_2 tE=V xVxE, ) we yi_eld_ the equation for the azimuthal component of the
c electric field:
where the dielectric tensor elements " 2602 SlE/y 2 o
El —k*—— 2 +|K—ki-———
) yczK(K—kg) Yoo 4K

e —in O 4 ’ 2 7
g=|in . O k,w_ns—l_kk @0 lE —o. 5

0 0 g YA KK—-k) T2k ®)
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been determined.

\ 4

Xo X2 X
kf>0. They are located between the poirtsandxg as well
as atx>xo.

We now introduce intersecting regions I-VIl with respect
to the radial coordinate (Fig. 2). Regions I, Ill, V, VII are
located far enough away from the turning points where the
WKB ansatz is applicable. In regions I, IV, VI it is possible

In a homogeneous plasma this equation reduces to the did? Us€ th'e linear expansion of the func'FiKr(x). .With thi?
persion relation ). For w<w.:, Eq. 6) reduces to Eq. (2) assumption Eq.6) reduces to an Airy differential equation
from Southwood (1974). in regions Il and VI. These regions intersect with regions I,

Il and V, VII, respectively. In region IV, left (right) from
the pointxg, Eq. 6) is reduced to a Bessel differential equa-
tion (modified Bessel equation) of the 1st order. This region
4 |:K _ w_477_2] E.—0 ©6) intersects with regions lll and V.

Y A K| ’ Matching solutions in the intersecting regions, we find the

full solution of the original differential equation. The only

It is this equation that we would like to discuss here. It was ndetermined parameter is the constantepresenting the
already discussed in a more general way by Glassmeier ghave amplitude of thé, component. We shall present solu-

al. (2003). Note that for the special cageO it reduces 10 tions only in regions II-VI, omitting intermediate mathemat-
the box model analog of Dungey's (1954) decoupled toroidalica| details in the Appendix. For region Il we find:

electric field equation.
The electric field radial component is expressed throughg _  aj (Xl - x) . 9)
the azimuthal component as ? Al

I Fig. 2. The regions where the solutions of the wave equation have
[ ]
I
I

Fig. 1. The wave vector radial component squaﬂ@,

For axisymmetric oscillations with,=0 Eq. ©) reduces
to

w? inE, In region Il we have:
Ex= 2 ’ (7) /71/6
2 K E_a(Ul)/, xk Ny o T 10
As a boundary condition we use the boundedness of the”> — k= /7 sin Y x()dx + 4| (10)

function E, asx— =o0. oo , .
The solution in region IV for <xg yields

3 The structure of the wave field Ey = —aU)YSyxo—x [COS¢, . <2 xo}; x>
Equation 6) can be solved within the WKB approximation. _ X0 —x
Let us designate + sing - Y3 (2 o )] ; (11)
U=K() - o* n?(x) while in the same region, but far>xo we have:

A K(x)’

s X0 — X
Then the radial component of the wave vector is determinedEy = a(UDY°y/x = xo [e Yl (2 " )
by the equality

2 . X0 — X
ke =T, 8) + - sing - Kq <2 o )} . (12)
The variation ofkf with x is schematically displayed in The region V solution reads:
Fig. 1.

X
Near the pointsro, x1, and.xz the WKB approximation g, — LL(Ui)l/G [} exp(—i<p +/ |kx|dx/)
cannot be used as approaches infinity at the singular turn- VIke| VT 2 x0

ing pointxp and becomes zero at the regular turning points . . ,
x1,2. Transparent regions are determined by the condition + Sing exp{ — o Kldx | - (13)

www.ann-geophys.net/24/1077/2006/ Ann. Geophys., 24, 110¥34-2006



1080 D. Klimushkin et al.: Alfén resonance witlk=0 in a multi-component plasma at-w,

And finally for region VI we obtain: through the resonance surface (héres magnetic field of
,1/6 the oscillation, asterisk means the complex conjugate). As is
Ey=a <ﬂ> [2 singe™V Al (x2 - x) well known in the MHD case, the vectdS§) is directed to-
U, A2 ward the resonant surface atxg, and it is zero ak <xg,
Iivmi (X2 —X that is energy flows toward the resonance from the side
+ e Bi ( Ao )} : (14) of the FMS transparent region and is completely absorbed

) o o at this surface. In our case, taking thecomponent of
The following definitions and abbreviations have been useq;q' (18), expressing the magnetic field from the equation
in the above expressions: Ai and Bi are Airy func- (j,/c)b=VxE, and expressing the electric field near the
tions, 3 and Y; denote Bessel functions, whilg land resonance from Eqsl{, 12), we find that
K, are modified Bessel functionsl,/i’2 are the deriva-
tives dU/dx taken at the pointscy, xo (both are posi- (Sx) =0
tive), Kg=dU (x0)/dx, A12=(U1 ) "3 ro=c*Ko/w*n?, 4ty <xo, and

o= fxxlo k,dx, andl/fzf;gz |k |dx. o5
Let us discuss the principal conclusions following from (g ) = — ca (U1)1/3 sir ¢
this solution. First of all, is there an analogy to the Afv 82w

resonance of MHD theory in this solution, that is, does theatx>xo. It resembles the situation in the MHD case, with an
solution contain a singularity of the wave field? To answerimportant difference: when sin=0, that is condition17) is

this question, let us write the asymptotic of the expressionsatisfied, the Poynting flux througlg is zero, that is absorp-
(11) near the pointyg (in the regionx <xg), where the func-  tion of energy is absent. Of course, it is not unexpected, be-

tion K (w, x) goes to zero: cause there is no resonance in this case, as we already know.
Then, it follows from Eg. {0) that the wave is standing
Ey~a /E(Ui)l/e [simp . <1+ X0 T X across magnetic shells in the transparent regipax <xo.
4 Ao This is a rather unexpected behavior because the transparent
X0 — X X0 — X region is bounded with regular and singular turning points. It
x In 2o 0 (15) is important to note that this standing wave pattern appears

at any wave frequency, and thus is it not associated with
We see that the wave amplitude is finite near this point, bUtany guantization condition of the frequeneyor any other
has a branching-point singularity. This behavior is strikingly yajue. In thew/w,;=0 case an oscillatory structure arises
different from the corresponding behavior for the ordinary hen the field line curvature (Leonovich and Mazur, 1993;
Alfvén resonance, where tig, component is infinite, ex-  Kjimushkin, 1998) or the magnetic field shear (Klimushkin
hibiting the quarithmic singularity on t_he resonance surface.and Mager, 2004) are taken into account, but in these cases
However, as is seen from Eq)(the radial componentofthe  the wave is travelling rather than standing across magnetic
electric field has a pole-type singularity shells.
E, o (xo—x) L (16) As can be seen _from qu‘_a}), the asymptotic be_ha_vior of
the E, component in the regiofx—x2)/A2>>1, that is in the
because the denominatokK can be expressed as transparent regiom>x, immediately adjacent to the point
K~Kq(x—x0). This resembles the ordinary ABwm  x;, is described by the expression
resonance case. _ - L 1/4
But there are further differences. Note the factorgsin Ey~ a (_1> ( A2 )

Eq. (15). It means that under the condition r ﬁ U, X —Xx2

VA : o i
/XO kydx = 7n, (17) X [Ze v Sing sin (/x kedx' + Z)
X

1 2

X

wheren is integer, this branching singularity disappears. Be-  + ;e‘/"i“’ cos(f kedx' + %)} . (19)
cause all the valuesy, xo, k, depend orw, Eq. (L7) repre- *2
sents a kind of a quantization condition for the frequesacy = This describes the superposition of two standing waves with
If this condition is satisfied, the leading term in expressionvery different ¢=2¥ times) amplitudes. It also can be rep-
(15) becomesyp—x; this terms cancels out in Eg7)( and  resented as a superposition of a wave traveling towards the
the pole-type singularityl) disappears, too. point x and a wave reflected there. The amplitude of the

Yet another interesting feature can be found when we conoutgoing wave is a bit smaller than that of the ingoing wave,
sider the time-averaged Poynting flux (e.g. Landau and Lif-due to absorption of part of the wave energy at the resonance

shitz, 1960) point. This is not an unusual behavior, and it also charac-
¢ i terizes the wave field structure in a one-fluid MHD approx-
(8) = gRe[E x b*] (18) imation. There is an essential difference, however: when
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sing=0, that is, at the very conditiod () leading to the dis- And let Q2 be a solution of this equation. The position of the
appearance of the singularitiesd] and (16), the first (small  resonance surface is determined as a solution of the equa-
amplitude) standing wave disappears, which means that intion «=% (x) with respect to the radial coordinate. The wave
going and outgoing waves have the same amplitudes. In thigector can be decomposed into a transverse and longitudinal
case, no absorption of energy into the resonance occurs. componentk,; andk, respectively Withk2=ki+kﬁ (here
From an observational point of view it is interesting to kigkg_i_kg, ky=k;). In addition to condition Z3), we re-

know the chan.g.e in the polanzayon of the wave field as aquire the longitudinal propagation conditidaﬁzo, as for
function of position. For the special casg=0 one can eas-

. 2 i ic fi
ily derive the following expression for the electric field po- k<0 the wave structure along the ambient magnetic field
larization from Eq. 7): would be evanescent. Note that, although near the resonance

pointk, >k, the value of the wave vector’s transverse com-
E. @%in ponentk; does not enter into the resonance conditkorO.
= (20) Furthermore, the valug the off-diagonal components of the
dielectric tensor, does not enter into the conditi2®)
A nonzero and finite value of this ratio implies an elliptic  pefining a longitudinal refraction ind@)ﬂ:kﬁcz/aﬂ we
polarization, while the casés,/E,=0 andE/E,—oco de-  can study the dependence of this refraction index on the wave
scribe linear polarization. Thus, at the resonance surfacgequency. For a plasma with two ion fractions, protons (in-

x=xo the wave exhibits a linear polarization, because at thisgex p) and heavy ions (indek), the expression for the lon-
position K=0. The sign of the polarization changes acrossgitudinal refraction index becomes

this surface, which corresponds to a change in the phase of 5
the wave by 180 Again, the same behavior is a property N2 — Dpp Dph
of the MHD Alfvén resonance (Hasegawa and Chen, 1974;" Il — w2, — Q2 w3 —Q?
Southwood, 1974). But there are some important differences.
In the present case the change in the sign of the FAtE, The dependencH”z(Q) is shown in Fig. 3 and indicates that
is not connected with the change in the sign of the deriva-N2— —oo, if Q—>w.,, and N|2—>+oo, if Q—>awcp. In the
tive dE,/dx, as inw/w.;=0 case. Another difference is the frequency interval between the light and heavy ion gyrofre-
dependence of, /E, on thek, value in the MHD case. quencies there is a frequengyy, which corresponds to the
value N?=0. It equals

E, 2K

2

(24)

Q%=
Othmer et al. (1999) have discussed in detail resonance prob-
lems in a multi-component plasma. They proposed that resowheren), , are concentrations of heavy and light ions, and
nant mode coupling should preferentially occur at the crossm,, , are their masses. As seen from Fig.]\q%>0 only if

. —

np my

4 Resonance frequencies in a multi-component plasma (1 n_h@>_l ( . npmp 2)
cp |

np mp

over frequency Q<wep OF Qo<Q<we,. Thus, resonance only occurs for
1 waves with frequencies lying in these two allowed intervals.
Q2. = <1_|_ ”_h> . (wfh + "_hw§p> i (21) Waves in the first interval are usu'al' ion-cyclotron waves,
np n which become Alfén waves in the limito/w.;,—0. As for

the waves in the second range, they do not have an analogy
in an electron-proton plasma. The smaller the fraction is of
n(w = Qcgr) =0. (22) heavy ions:;, /n,, the closer the parallel cutoff frequen2y
) o to the heavy ion gyrofrequency, and the narrower the forbid-
Heren denotes the number density and indipeendi stand ~ gep rangev.;, < <. In the limitn;,/n,— 0, both allowed
for light ions (protons) and heavy ions. intervals are merged.
For this special case the dielectric tensor is a purely diago- For the Hermean magnetosphere, according to estimates

nal tensor much as in th_e MHD case. Thus, at the Cross-ovely |p (1986) and Cheng et al. (1987), the sodium ions are
frequencyQc there exists a strictly guided mode similar apundant with (<nya/n,<1 andmy,/m=23; hence,

to the MHD Alfvén mode. Coupling into this mode should  the first term in this expression is only slightly different from

be very effective, as the energy coupled into this mode is nojnjty. Note that the frequency of the pulsation registered by
re-radiated away from the resonant magnetic shell due to offpariner 10 in the Hermean magnetosphere (Russell, 1989)
angle energy transport. falls into the second range. As Othmer et al. (1999) argued

Here, we can also discuss such resonant mode couplinght the cross-over frequency is a preferred frequency for res-
effects using the theoretical framework outlined above. Letghant mode coupling, we need to compare both, the cross-

determined by the condition

us consider the resonance condition over frequencyQck and the parallel cutoff frequencfo.
w2 ) For Hermean conditionsD<_nNa/n,,<1 andmy,/my=23
K(w,x) = C_ZEL(U% x) —k;=0. (23)  the cross-over frequency is always larger than the parallel

www.ann-geophys.net/24/1077/2006/ Ann. Geophys., 24, 110¥34-2006
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that is in the ordinary or classical Alén resonance, the az-
imuthal component of the electric field has a logarithmic sin-
gularity and infinite,E, o In (x —xo), while in the latter case
the azimuthal component is finite on the resonance surface,
but has a branching point singularity.
¢ Moreover, for certain frequencies defined by Edg) these
singularities inE, and E, can disappear. Then, the reso-
nance surface is immediately adjacent to the mode transpar-
ent region, where the wave vector radial component squared
is positive. The wave is standing across magnetic shells in
this region. There is no analogy of this transparent region
Fig. 3. The longitudinal refraction index as a function of wave fre- jn the model with straight parallel field lines in the case
guency. w/w.;=0, where the very notion of the wave vector radial
component is applicable only in the fast magnetosonic mode

. N localization region.
cutoff frequency. Thus, identification 6fcr as a preferred 9

frequency for resonant mode coupling is not contradicted byth Dtetalled consideration ?f the Iresonance.t(;]ofndmon S.hOVYS
our present results. at resonance can occur for only waves with frequencies in

The terrestrial magnetosphere is enriched with oxygenthe rangesn <we; OF Qo<w<wep, Whereag, andw, are

ions during substorms. According to Wedeken et al. (1984),gyrofrequen0|es of.heavy.and. light ions, afg is a hyb”d.
no/n, ~ 1/15, which implieso~0.1w,,. Near the geo- frequency. Waves in the first interval are an analogy of ion-
p , Awep. . . . .
magnetic equator, the proton gyrofrequency can be estimate‘flyCIOtron waves Wh'Ch convert mt_o Alen waves in the limit
asw.,~0.2 5L, that is, some Pc3 pulsations (periods from a)./a)cfl—>0. Waves in the second interval do not have anal_o—
10 top45 s) fall into the second intervaty<Q <wy, that is gies in the electron-proton plasma. The Hermean pulsation

the range where one accounts for the finite gyrofrequencfvent |dent|f|§d by Russell (1989) apd some Pc3 pulsations
effects. In the terrestrial magnetosphere fall into this range.

The box-model considered in the present paper is cer-

tainly oversimplified, as planetary magnetospheres are es-

) sentially inhomogeneous along magnetic field lines. As for

5 Conclusions the ordinary field-line resonance, the influence of the paral-
i i , , i lel inhomogeneity was studied by, for example, Southwood
T_h'S,Work, IS concerngd W't,h the _aX|symmetr|c ULF 0S- and Kivelson (1986), Chen and Cowley (1989), Leonovich
cillations in a one- (.j|men.5|'onal, .|nhomogene0us, multl—and Mazur (1989, 1993), and Fedorov et al. (1995). The
component plasma with a finite ratio of wave frequency andgenera) result is that the wave field global structure quali-

ion gyrofrequency. Such conditions will occur in the mag- tatively is the same as in the 1-D inhomogeneous case, at
netosphere of Mercury, and in the terrestrial magnetospherqeast for small azimuthal wave numbers (for higinumbers,

if it is enriched with oxygen ions due to substorm activity. see Leonovich and Mazur, 1993). As for multi-component
Even in the case df, =0, this finite ratio leads to a wave res- plasmas, essential differences can be expected due to gy-

onance that, to some extent, resembles the classmaémlfy rofrequency changes along the field line, so moving along a
resonance. The following picture emerges from our study: Field line we must intersect a point where=w., at least for

wave propagating across magnetic field lines in the inhom,(?'sodium ions. This can lead to changes in the parallel cutoff
geneous plasma reflepts atsome boundary. Th_e SUperpOS't'qnaquencyQo along the field line; in particular, points with
of ingoing and outgoing waves forms a standing wave, bthOZO andQo—> oo can appear. A more detailed discussion

part of the energy percolates deeper into the magnetosphe@ this effect is the subject of future work
and excites a mode sharply localized near the resonance sur-

face at the special positiory, determined by the relation

(a)z/cz)sL(xo)—kﬁzo. As in the case of the classical A _

resonance, the radial component of the wave electric field*PPendix A

exhibits a singularity®, oc«(x—xg) 1. The resonantly gener- ] )

ated wave acts back on the generating wave, resulting in &°™Me details of the WKB solution

small difference between the ingoing and outgoing waves’

amplitudes, that is part of the wave energy is absorbed in théiere we present some details of the solution of B). (

resonance surface. First, we consider the region Il, where this equation takes
However, there are many differences between the resothe form

nance in thek, #0, w/w.;=0 case, on the one hand, and the

ky=0, »/w.;#0 case, on the other hand. In the former case,E, + U; - (x — x1)E, = 0.

O¢?

Ann. Geophys., 24, 10770684 2006 www.ann-geophys.net/24/1077/2006/
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Its general solution is and atz > 1 the asymptotic is
E, = a},Ai 2 Bi(&), 1 1 _
y = ajAl§) + ap;Bi(§) Ey= 5(5)1/4 [ﬁa};;ez‘/z + Jma%he Zﬁ} ) (A6)

whereé=—(x — x1)/A1 and a,l’lz are indefinite constants. ) ) )
The first term, Ai, is exponentially decaying to the left of the ~ The expressionsA@) and (AS5) must be analytical contin-
pointx1, while the second one grows. The region Il gradually uations of each other. The relation between the coefficients

transforms into the region | without any reflecting surfaces. With + and — upper indices can be established from the in-

So, the solution Bi does not satisfy the boundary conditionsd€nting thex=xo singularity. It should be bypassed in the up-
|E, (x— +00)<o0|, and, consequentlyﬁ,:O. So, we ob-  Per half-plane of the-variable, which corresponds to small

tain the solution9), wherea = a111=0. Its asymptotic in the absorption of the energy. It gives us relations

intersection with the region Il is 1 in 5 - 2 2 5
ary + 7‘11;5 = —ajy. apy = — v
_ a4 14 23, °
Ey="7% S'”(gf + z) (A1) Then, we compare EgA@) with Eq. (A2) and find
The general solution in the region Il is aty = —ay/ro(U;)Y® cosy,
1 . 2— 1/6
Ey=—= (a[lll expi/ kydx' +af,,C.C,) . apy, = —ay/ro(UpPsing,
Vky X1 . . .
. - and immediately yield Eqsl(, 12).
To match with Eq.§), we note that at~x; kT>U;-(x —x1). In region V the solution of the Eq6) takes the form
Correlating it with Eg. A1) we find 1 .
1 .. E :—[al exp/ ky|dx’
ab? = £ = /A )16 YT VRILY T T
T 2i , N
/
and finally yield Eq. 10). In the intersection with region 1V, + ay exp(= /XO Ikxldx )] :

wherek2=—[1o(x—x0)]~1, the asymptotic is
* ymp At x~xo (in the intersection with region 1V)

Ey = [Ao(x — x0)]/4 (a},,ei‘p_Zi*/j‘ ki [2=1/[ro(x —x0)]. Correlating with Eq. A6) after
o some algebra we obtain the expressions for the coefficients
+ a?,,e’“ﬁz’ﬁ) , (A2) 4% and finally the solution Eq.18). On the other hand,

near the poink,, where|k, |2~U)-(x—x») the asymptotic is
where¢=(x—xo)/Ao andp= [°k.dx. P ! 2 ymp

In region 1V, the equation takes the form Ey = [2K}(x2 — 04 . |:a‘1/ exp(gﬁ + 293/2>
[ B >

Y do(x — x0) + a? exp(—w — :—393/2” , (A7)
Its general solution at<xg is S
Ey= \/jg [a}; 'Ji(z\/jg) + “?; ~Y1(2Jj§)]. Whlzei::zél)ly,()\clvexéy:szi,(;gr rgjgiolnxl/l),c.where Ep)(takes the
The asymptotic at-¢ <1 is form

_ 1, E!4+ U, (x —x)E, =0.
Ey = —ajyt — —afy (1+20Iny/=0), (A3) v Y

and at—¢>>1 the asymptotic is

Its general solution is
Ey = a} ;Ai(=6) + a%Bi(—6).

1 _ 3
Ey = ﬁ(—f)l/4 [allv COS(Z\/ —¢ = 7) Its asymptotic in the intersection with region V has the same
form as Eqg. A7) with the coefficients

. 3
+ a?,;sin (2,/— - %)} . (Ad) U Y/
a‘l,l = 2a < 1) eV sing,

!/
The general solution in the region IV at-xg is Uz
1/6
Ey ==L lafy 11/ + a?y - Ka2/0)l. o _a (ﬂ) " i
vi — / .
2\u,

The asymptotic at <1 is

" 1, So, we have obtained the full solution in the WKB-
Ey =apy¢ + ajy(1+200n Vo). (A5)  approximation.
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