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Abstract. A complex autoregressive model was established
based on the mathematic derivation of the least squares for
the complex number domain which is referred to as the com-
plex least squares. The model is different from the conven-
tional way that the real number and the imaginary number
are separately calculated. An application of this new model
shows a better forecast than forecasts from other conven-
tional statistical models, in predicting monthly temperature
anomalies in July at 160 meteorological stations in mainland
China. The conventional statistical models include an au-
toregressive model, where the real number and the imaginary
number are separately disposed, an autoregressive model in
the real number domain, and a persistence-forecast model.

Keywords. Ionosphere (Modeling and forecasting) – Gen-
eral (Instruments useful in three or more fields)

1 Introduction

The classical least-squares method in the real number do-
main is widely employed in statistics for establishing regres-
sion models (e.g. Kendall and Stuart, 1976; Montgomery and
Peck, 1982; Kern et al., 1987; Kleinbaum et al., 1988), even
in the mathematics-physical method for calculating spherical
harmonic coefficients (e.g. Ge et al., 1980). However, few
reports of the complex least-squares method and the com-
plex autoregressive model were found in the atmospheric or
geophysical sciences before. As is well-known, once a sta-
tistical method has been extended to the complex number
domain, it has gotten some new functions and gives more
information. For example, the CEOF (Complex Empirical
Orthogonal Function), which is an extension from the EOF
(Empirical Orthogonal Function) in the real number domain
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to the complex number domain, acquires a new function of
decomposing variations of patterns and phase of the travel-
ing waves on various space scales (e.g. Rasmusson et al.,
1981; Barnett, 1983), while the EOF decomposes only the
stationary waves in an element field in meteorology or geo-
physics. It should obtain an improvement when the classical
least-squares method and the autoregressive model were ex-
tended to the complex number domain.

The spherical harmonic coefficient in the global spectrum
model in meteorology is in the complex number. Gu (1998)
derived the complex least-squares method to have resolved
complex auto-memory coefficients, then established a global
auto-memory spectrum model, and obtained a good forecast-
ing effect for a 500-mb height field (Cao and Gu, 2001).

In this article, we derive the complex least-squares method
in more detail in Sect. 2. Then we develop a complex autore-
gressive model of predicting monthly temperature anomalies
in Sect. 3. Section 4 applies the complex regressive model
to temperature anomalies for July at 160 meteorological sta-
tions in mainland China, and compares it to three other con-
ventional statistical forecast models, to show a practicable
improvement. Concluding remarks are presented in Sect. 5.

2 The complex least squares: mathematical derivation

In general, lety be a complex predict- and,x1, x2, . . . , xp be
complex predictors numberedp in all. They are all in the
complex anomalies. A complex multiple regression equation
for the complex anomalies is written as

y = β1x1 + β2x2 + · · · + βpxp + e , (1)

whereβ1, β2, . . . βp are complex coefficients,e is a complex
error term. The question to be solved is how to determine the
estimates ofb1, b2, . . .bp of the complex coefficientsβ1, β2,
. . .βp.
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In order to describe the relationship betweeny and
x1, x2, . . . , xp, i.e. to solve the complex coefficientsβ1, β2,
. . .βp, we suppose thatn is the sampling number, that

y1, y2, . . .yn

are the elements of the sample of predictandy, and that

xi1, xi2, . . .xip, (i = 1, 2, . . .n)

are the sample elements of the predictors corresponding to
the predictandyi at the i-th sampling sequence. Under the as-
sumption of linear regression Eq. (1), we have a set of equa-
tions:

y1 = β1x11 + β2x12 + · · · + βpx1p + e1
y2 = β2x21 + β2x22 + · · · + βpx2p + e2

...

yn = β1xn1 + β2xn2 + · · · + βpxnp + en

(2)

and in matrix form:

Y = Xβ + e, (3)

whereY , β, e are vectors of complex variables:

Y =


y1
y2
...

yn

 , β =


β1
β2
...

βp

 , e =


e1
e2
...

en

 ,

andX is a complex matrix of the predictors:

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp

 ,

where every elementyi , βj , ei , xij , (i=1, . . . ,n, j=1,. . . ,p)

is a complex number.
In order to resolve the estimatesbj of βj , (j=1,. . . ,p), let

the square sum of all errors of the fitted valueŷi in the mode
from the actual valueyi , i.e.

Q =

n∑
i=1

∣∣yi − ŷi

∣∣2 (4)

be minimized.
TheQ is a non-negatively quadratic term of theb1, b2, . . . ,

bp. According to the extremum principle in the differential,
the minimum value exists. We may have

∂Q
∂b1

= 0
∂Q
∂b2

= 0
...

∂Q
∂bp

= 0

. (5)

Table 1. The average of the ACC and the RMSE.

M 1 M 2 M 3 M 4

ACC 0.185 0.089 0.061 0.064
RMSE(C) 1.079 1.113 1.147 1.449

In this way, the complex least-squares method determines
the estimatesb1, b2, . . . , bp of the complex coefficientsβ1,
β2, . . .βp. Theb1, b2, . . . ,bp are all in the complex number.
Equation (4) may be written in a matrix form:

Q = (Y − Ŷ)T(Y − Ŷ)

= (Y − XB)T(Y − XB)

= (YT
− XTBT)(Ȳ − XB) , (6)

where

Y =


y1
y2
...

yn

 , Ŷ =


ŷ1
ŷ2
...

ŷn

 , B =


b1
b2
...

bp

 ,

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp

 .

Here ( )T represents a transpose of matrix or vector,( )

denotes a conjugate of the complex number, then Eq. (5) may
be written as
∂Q
∂B

= 0 . (7)

Let

bk = bx
k + b

y
k I (k = 1, 2, · · · , p) ,

then b̄k=bx
k−b

y
k I , (8)

wherebx
k is the real part,by

k is the imaginary part, bothbx
k and

b
y
k themselves are real variables, I is the unit of imaginary

number andI×I=−1. Thus the partial derivative ofQ with
respect tob may be decomposed into that with respect to the
real partbx

k and to the imaginary partby
k , respectively, i.e. in

detail:

Q =

n∑
i=1

[(yi −

p∑
j=1

bjxij )(ȳi −

p∑
j=1

b̄j x̄ij )]

n∑
i=1

[
yi ȳi−yi

p∑
j=1

b̄j x̄ij−ȳi

p∑
j=1

bjxij+

p∑
j=1

bjxij

p∑
j=1

b̄j x̄ij

]

=

n∑
i=1

{
yi ȳi−yi

p∑
j=1

[(bx
j −b

y
j I )x̄ij ]−ȳi

p∑
j=1

[(bx
j +b

y
j I )xij ]

+

p∑
j=1

[(bx
j +b

y
j I )xij ]

p∑
j=1

[(bx
j −b

y
j I )x̄ij ]

}
. (9)
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The partial derivative ofQ with respect to the real partbx
k is as:

∂Q

∂bx
k

=

n∑
i=1

{
[−yi x̄ik−ȳixik]+xik

p∑
j=1

[(bx
j −b

y
j I t)x̄ij t]+x̄ik

p∑
j=1

[(bx
j +b

y
j I )xij t]

}
=

n∑
i=1

{
[−yi x̄ik−ȳixik]+

p∑
j=1

[bx
j (xik x̄ij+x̄ikxij )]+

p∑
j=1

[b
y
j (x̄ikxij−xik x̄ij )]I

}
= 0

(k = 1, 2, . . .p) . (10)

Then
p∑

j=1

{
bx
j

[ n∑
i=1

(xik x̄ij + x̄ikxij )
]}

+ I

p∑
j=1

{
b

y
j

[ n∑
i=1

(x̄ikxij − xik x̄ij )
]}

=

n∑
i=1

{
yi x̄ik + ȳixik]

(k = 1, 2, . . .p). (11)

While the partial derivative ofQ with respect to the imaginary partb
y
k

∂Q

∂b
y
k

=

n∑
i=1

{
[yi x̄ik − ȳixik]I + xikI

p∑
j=1

[(bx
j − b

y
j I )x̄ij ] − x̄ikI

p∑
j=1

[(bx
j + b

y
j I )xij ]

}
=

n∑
i=1

{
[yi x̄ik − ȳixik]I + I

p∑
j=1

[bx
j (xik x̄ij − x̄ikxij )] − I

p∑
j=1

[b
y
j (x̄ikxij + xik x̄ij )]I

}
= 0

(k = 1, 2, . . .p) . (12)

Then
p∑

j=1

{
bx
j

[ n∑
i=1

(xik x̄ij − x̄ikxij )
]}

− I

p∑
j=1

{
b

y
j [

n∑
i=1

(x̄ikxij + xik x̄ij )]
}

=

n∑
i=1

{
[−yi x̄ik + ȳixik]

}
,

(k = 1, 2, . . .p) . (13)

Combining Eqs. (11) and (13), we obtain:

p∑
j=1

[(bx
j +b

y
j I )

n∑
i=1

(x̄ikxij )]=

n∑
i=1

(yi x̄ik) k = 1, 2, ..., p .(14)

Substituting Eq. (8) into Eq. (14), we obtain

p∑
j=1

[bj

n∑
i=1

(x̄ikxij )] =

n∑
i=1

(yi x̄ik) k = 1, 2, ..., p (15)

and may be written as the matrix form

X̄TXB = X̄TY (16)

or

B = (X̄TX)−1X̄TY , (17)

where ( )−1 indicates a matrix inversion,

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp

 , B =


b1
b2
...

bp

 , Y =


y1
y2
...

yn

 .

The elementsxij , bj , yi(i = 1, . . . , n, j = 1, . . . , p) are all
in the complex number.

Note that Eq. (17) has acquired a conjugated calculation,
which is the only difference from the classical least-squares
method in the real number domain, as in Morrison (1983):

B = (XTX)−1XTY . (18)

3 The complex autoregressive model

Some scientists were used to calculating the real and imag-
inary number parts separately in the complex statistics (e.g.
Hasselmann and Barnett, 1981; Jiang, 1983). However, we
found that this way is not perfect, not only in the mathe-
matical theory, but also in practice. In order to show the
difference between the above-derived complex least squares
and the method involving separate calculations, we apply
the complex autoregressive model to forecasts of monthly
temperature anomalies in July for 160 stations on mainland
China, and compare that to three other conventional statisti-
cal models based on the same observational data during the
period from 1951 to 2004.

For convenience of mathematical presentation in the com-
plex number, and considering that the weather processes
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Fig. 1. Comparison of yearly ACC forecasted by the 4 models (M1: thick solid, M2: thick dashes, M3: thin dashes, M4: thin dots).

move usually in the direction from the northwest to south-
east, or opposite as a typhoon in China, we put the 160 sta-
tions into one dimension sequence in order of latitude, then
transformed the monthly temperature anomalies at 160 sta-
tions into a Fourier series (e.g. Li et al., 1982; Passi and
Schumann, 1984; Xu, 1996) for each month to fit the spa-
tial pattern:

Tj,l =

N∑
k=1

[ck,l exp(I
2π

N
j)],. (19)

ck,l =

N∑
k=1

[Tj,l exp(−I
2π

N
j)] , (20)

where Tj,l indicates the monthly temperature anomaly
(◦C) at stationj and in yearl, j=1, 2, . . ., N=160 rep-
resents the station number in order of latitude, and
l=1, 2, . . ., L=54 is the time order of year. The
exp(I 2π

N
j)= cos(2π

N
j)+I sin(2π

N
j), and I=

√
−1 is the

imaginary unit,ck,l is the Fourier coefficient:

ck,l = ak,l + bk,lI, (k = 1, 2, . . ., N) . (21)

Thus, the monthly temperature anomalyTj,l is fitted with the
wave numberk to correspond to the spatial scale, and thel

corresponds to the year in the time series. Using historic data,
we may obtainck,l(k=1, 2, . . ., N) for a given yearl firstly,
and construct a complex time seriesck,l in the time order
l=1, 2, . . ., L=54 for each wave numberk secondly. Then
we may set up a complex autoregressive forecast model for
the time seriesck,l(l=1, 2, . . ., L=54) at every wave number
k:

ck,l+1 = B0 +

p∑
j=1

Bj ck,l−j+1 . (22)

After determining the complex regressive coefficients
Bj (j=0, 1, . . .p) via Eq. (17), we may predict the Fourier

coefficients for the next year,ck,l+1=ak,l+1+bk,l+1I , via
Eq. (22), and reconstruct the monthly temperature anoma-
lies at 160 stations for the next yearTj,l+1 via Eq. (19). The
prediction experiments suggest the autoregressive-order cri-
terionp=3 (Akaike, 1969) in this work.

4 Applications and comparison

The historic monthly mean temperature anomalies in July
(Tj,l) were used to compute the Fourier coefficientsck,l ,
following Eq. (20). All ck,l in the years before the year
to be forecasted were taken as the training sample, to ob-
tain the complex regression coefficientsBj (j=0, 1, 2, 3) via
Eq. (17) for each wave numberk. Yearly forecasting exper-
iments were then carried out independently for 1980–2004
via Eq. (22), and the forecasted monthly mean temperature
anomalies (Fj,l) at 160 stations were finally reconstructed
via Eq. (19).

The forecasted results were inspected with the anomaly
correlation coefficient (ACC) between the predicted monthly
mean temperature anomalies and the corresponding observa-
tions, and tested with the root-mean-square error (RMSE),
too:

ACC =

N∑
j=1

[(Fj − Mf c)(Tj − Mtc)]√
N∑

j=1
(Fj − Mf c)2

N∑
i=1

(Tj − Mtc)2

, (23)

RMSE =

√√√√ 1

N

N∑
j=1

(Fj − Tj )2 , (24)
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Fig. 2. As same as in Fig. 1 but for RMSE.

whereMf c =
1
N

N∑
j=1

Fj , Mtc =
1
N

N∑
j=1

Tj , andFj denotes

the forecasted value for the stationj , Tj is the observation of
the monthly temperature.

Table 1 compares averages of the ACC and of the RMSE
over 1980–2004 among the 4 models, based on the same
training data. The M1 (model 1) indicates the complex au-
toregressive model via Eq. (17). The M2 (model 2) de-
notes an autoregressive model (alsop=3) where the real part
and the imaginary part in theck,l were computed separately
via Eq. (18). The M3 (model 3) is a simple autoregressive
model (p=3) in the real number part only at each station
via Eq. (18). The M4 (model 4) is a persistence forecast at
each station. It shows that the complex autoregressive model
(M1) produced ACC=0.185 and RMSE=1.079 mm on aver-
age, which is obviously better than the three other models.
The simple autoregressive model at each station (M3) is the
worst one among the 4 models, on average, for the ACC,
while the persistence forecast model (M4) is the worst one
among the 4 models, on average, for the RMSE. As men-
tioned in Sect. 2, the M2, separately calculating the real and
imaginary parts to obtain the regression coefficients is worse
than the complex autoregressive model (M1) based on the
complex least-square method Eq.(17) though it is somewhat
better than the 2 other models, on average, for the ACC and
RMSE. This suggests that separately calculating the real and
imaginary parts to obtain a complex least square and a com-
plex regression coefficient is not a perfect way.

Comparisons of the ACC for each year are plotted in
Fig. 1. It shows that the complex autoregressive model (M1)
given better predictions than the other models. The M1
gained the best forecast among the 4 models in 9 years, 1981,
1983, 1990, 1992–1994, 1997, 1998 and 2000, comparing to
the three other models obtained in 2, 4 and 7 years, respec-
tively. Also, the number of years with ACC>0.40 predicted
by the M1 were 5 in 1981, 1993, 1998, 2000 and 2002, com-
paring to that by the other models of 1, 2 and 4 years sepa-
rately. While M1 failed to acchieve ACC<0 in only 3 years,
1985, 1988 and 1989, comparing with the other models in

7 or 8 years. In addition, 2001 was predicted well by all
4 models with only a small difference.

Figure 2 illustrates yearly RMSE forecasted by the 4 mod-
els. The complex autoregressive model (M1) granted the
smallest RMSE among the 4 models in 11 years, which is
more than the other models: the M2 in 8 years, the M3 in
5 years and the M4 in 1 year, respectively. While the M1
predicted the largest RMSE among the 25-year forecasts at
1.484 in 1999, comparing to the M2 forecasted that at 1.525
in 2000, the M3 at 1.610 in 1994, and the M4 did that at 2.498
in 1994, separately. This suggests that the complex autore-
gressive model (M1) gave better forecasts of the smaller and
more stable RMSE than the three other models, i.e. the M1
is the best one among the 4 models. On the other hand, the
persistence forecast (M4) is apparently the worst one among
the 4 models in the RMSE.

As an example, Fig. 3 illustrates maps of the monthly tem-
perature anomaly patterns in July 1998. The upper panel
presents the forecast from the complex autoregressive model
(M1), while the lower panel is the corresponding observa-
tions. It shows agreements between the forecast and ob-
servations: (i) positive anomalies in most areas in mainland
China with errors of intensities; (ii) higher positive anoma-
lies in the northern end of Northeastern China, in the area be-
tween 115–120◦ E and 32-37◦ N, around locations at (117◦ E,
26◦ N), (112◦ E, 27◦ N) and (107◦ E, 41◦ N); (iii) lower pos-
itive anomalies in the areas between 100–110◦ E and 23-
26◦ N, between 86–93◦ E and 28–32◦ N, between 80–97◦ E
and 40–49◦ N in China, around locations at (118◦ E, 29◦ N)
and (107◦ E, 31◦ N); (iv) negative anomalies in the area of
87–88◦ E and 42–45◦ N, though there are wrong forecasts in
smaller areas between 88–101◦ E and 35–42◦ N, around loca-
tions at (105◦ E, 38◦ N), (77◦ E, 39◦ N), (129◦ E, 42◦ N) and
(117◦ E, 44◦ N).

The above comparisons show that the complex least-
squares method and the complex autoregressive model (M1),
which is introduced in this paper, might be more reasonable
and effective than the three conventional statistical models.
This complex statistic model may be applied well to some
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Fig. 3. Monthly temperature anomalies in July 1998 forecasted by the M1 (upper) and observations (lower).
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complex series, such as the Fourier transform and the spher-
ical harmonic function.

In addition, there should be some improvements in the spa-
tial pattern presentation, such as using the cluster analysis or
the EOF/CEOF, instead of arranging the 160 stations in or-
der of latitudes, to obtain a better result. For instance, we did
forecast experiments with the M1 in a different spatial se-
quence order of stations, and yielded the average ACC=0.178
in order of the original sequence number of the 160 stations,
and the average ACC=0.174 in order of longitude separately.
This respect is an open question to be investigated in the fu-
ture.

5 Concluding remarks

In this article, the complex least-squares method was mathe-
matically derived and an autoregressive model of forecasting
monthly temperature anomalies was established. The appli-
cation in this work shows that using a complex number to fit
a meteorological element field and predicting with the com-
plex autoregressive model is effective in improving the fore-
cast results.

Theoretical and applied results in this study suggest that
separately calculating the real and the imaginary number
parts to obtain a complex least square and a complex regres-
sion coefficients is a defective method.

The complex least-squares method extends the classical
least-squares method from the real number domain into the
complex number domain. It plays a key role and is an effec-
tive method to establish complex statistic models for dealing
with complex series, such as the Fourier transform and the
spherical harmonic function. Other similar statistical models,
such as multiple regression and nonlinear regression, may be
extended from the real number domain, into complex number
domain, based on the complex least-squares method. This
technology perhaps may be employed to other similar ele-
ment fields in the geophysical sciences.
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