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Abstract. By using the data of two spacecraft, TC-1 and
ACE (Advanced Composition Explorer), a statistical study
on the correlations between plasma sheet and solar wind has
been carried out. The results obtained show that the plasma
sheet at geocentric distances of about 9∼13.4 Re has an ap-
parent driving relationship with the solar wind. It is found
that (1) there is a positive correlation between the duskward
component of the interplanetary magnetic field (IMF) and the
duskward component of the geomagnetic field in the plasma
sheet, with a proportionality constant of about 1.09. It in-
dicates that the duskward component of the IMF can effec-
tively penetrate into the near-Earth plasma sheet, and can be
amplified by sunward convection in the corresponding region
at geocentric distances of about 9∼13.4 Re; (2) the increase
in the density or the dynamic pressure of the solar wind will
generally lead to the increase in the density of the plasma
sheet; (3) the ion thermal pressure in the near-Earth plasma
sheet is significantly controlled by the dynamic pressure of
solar wind; (4) under the northward IMF condition, the ion
temperature and ion thermal pressure in the plasma sheet de-
crease as the solar wind speed increases. This feature indi-
cates that plasmas in the near-Earth plasma sheet can come
from the magnetosheath through the LLBL. Northward IMF
is one important condition for the transport of the cold plas-
mas of the magnetosheath into the plasma sheet through the
LLBL, and fast solar wind will enhance such a transport pro-
cess.
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1 Introduction

The plasma sheet, where a lot of complicated processes oc-
cur, plays an important role in the energy and mass transport
from the solar wind into the magnetosphere (Borvosky et al.,
1998). The neutral sheet is originally defined as a region
where the tail’s magnetic field reverses its direction and has
a very weak magnitude (Ness, 1965); it has also been de-
fined by some researchers as the midsurface of the nightside
plasma sheet (Dandouras, 1988), or as a region within the
current sheet where the component in the Sun-Earth direction
of the magnetic field is less than the northward component
(Shen et al., 2003). Many researchers have simply defined
the neutral sheet as a curved surface where the X component
of the geomagnetic field changes its direction, which charac-
terizes the properties of the plasma sheet, from sunward to
antisunward and vice versa (Speiser and Ness, 1967; Dan-
douras, 1988; Xu et al., 1991). However, the neutral sheet
is not only a reference surface but also a structure directly
connected to the formation of the plasma sheet (Dandouras,
1988). The properties in the plasma sheet are very impor-
tant for revealing the mechanisms of the transporting of solar
wind into the magnetosphere. The purpose of choosing the
neutral sheet crossings as data points is to ensure that the
spacecraft is located within the plasma sheet and then mea-
sures the properties of the plasma sheet. Fairfield (1979), Lui
(1986), Tsurutani et al. (1984), Sergeev (1987) and Borovsky
et al. (1998) got a linear relationship between the duskward
component of the IMF and the duskward component of the
geomagnetic field, with proportionality constants of about
0.13, 0.13, 0.09∼0.21, 0.60 and 0.76, respectively. Cow-
ley (1981), Moses et al. (1985) and Kaymaz et al. (1994)
have discussed in more detail about the transferring of the
IMF Y component into the tail region of the magnetosphere.
By using a statistical method, Borvosky et al. (1998) have



2962 G. Q. Yan et al.: Correlations between plasma sheet and solar wind

Fig. 1. The relationship betweenBy in solar wind and that in plasma
sheet in GSM coordinates.

investigated the relationship between the plasmas in the tail
region plasma sheet with geocentric distances of about 20 Re
and that of the solar wind. Their results show the plasma
sheet density’s strong correlation with the density and dy-
namic pressure in solar wind, and that the plasma sheet ther-
mal pressure is strongly controlled by solar wind dynamic
pressure. However, the properties of the plasma sheet depend
on the geocentric distances (Slavin et al., 1985; Nishida,
2000).

In this work, we have investigated the correlations between
solar wind and near-Earth plasma sheet. In Sect. 2, the data
are described; Sect. 3 presents the results of the investiga-
tions; Sect. 4 gives the summary and conclusions.

2 Data

The Double Star Programme (DSP) (Liu et al., 2005; Shen
and Liu, 2005, this issue) provides a precious opportunity
for investigating various regions of the near-Earth magne-
tosphere. From July through October of 2004, the equa-
torial spacecraft (TC-1) of DSP could cross the near-Earth
plasma sheet of the magnetotail. The observations of TC-1,
together with that of the ACE (Advanced Composition Ex-
plorer) spacecraft at L1 point, can be used to study the driv-
ing relationship between the solar wind and the Earth plasma
sheet. The apogee of TC-1 is 13.4 Re, and the ACE space-
craft is located at the L1 point, which is about 235 Re up-
stream of the Earth in the solar wind. During the four months
from July through October of 2004, the orbits of TC-1 have
swept the near-Earth magnetotail with geocentric distances
less than 13.4 Re. In addition, the spacecraft can cross the
neutral sheet during each orbit. The neutral sheet crossings
can be identified when the X component of geomagnetic field
in Geocentric Solar Magnetic coordinates (GSM) passes the
zero point, and by the data with a time resolution of 4 s,
measured by the DSP instrument Flux Gate Magnetometer
(FGM) (Carr et al., 2005). The Hot Ion Analyzer (HIA)
(Réme et al., 2005) measurements with a time resolution of

∼4 s provide some parameters of the plasma sheet, including
the density (n), velocity vector (V ), ion temperature (T ), and
so on (Ŕeme et al., 2001).

The time lag between the two measurements in the solar
wind and plasma sheet can be described as X/Vsw, where
X is the distance from the L1 point to the Earth’s orbit.
The speed of the solar wind is varying from about 300 to
1000 km/s. A large speed corresponds to a small lag and
vice versa. In this study, the simultaneous solar wind mea-
surements have been used to match the measurements in the
Earth’s neutral sheet, providing the properties of solar wind,
such as IMF and solar wind speed, density and temperature
and so on. Using the data available of TC-1 and data of
ACE, we obtain 139 data points in neutral sheet which are
corresponding to the ACE solar wind measurements simul-
taneously. In addition, all the vectors have been transformed
into those in the GSM coordinates. The geocentric distances
of the neutral sheet crossings range from 9 to 13.4 Re. A
Gaussian fitting has been applied in the analysis, because it
provides a line approaching the data points by minimizing
the errors (1x2

+ 1y2)1/2, which is better than a linear fit-
ting. According to the principle of Hypothesis Tests, there
exists a threshold for a correlation coefficient described as
Rrandom=2/N1/2, in which N is the sample size, the num-
ber of data points. If|R|>Rrandom, there is a correlation at
the confidence degree of 95%; otherwise, there is no cor-
relation (Beyer, 1966; Bendat and Piersol, 1971). In this
work, the number of data points isN=139, so the threshold
is Rrandom=0.17.

In Sect. 3, we will investigate (1) the correlation between
the Y component of IMF in GSM and the magnetic field in
the plasma sheet, (2) the density, temperature and ion’s ther-
mal pressure in the plasma sheet, influenced by solar wind
speed, density and pressure. In Sect. 4, the summary and
conclusions will be given.

3 Results of the correlations between solar wind and the
plasma sheet parameters

The transfer of the IMF Y component into the magneto-
tail has been talked about by different researchers (Cowley,
1981; Hammond et al., 1992; Fairfield, 1979; Lui 1986;
Sergeev, 1987; Tsurutani et al., 1984; Kaymaz et al., 1994).
Cowley (1981) interpreted it as the response of the magne-
tosphere to the torque imposed on the magnetotail by the
IMF, while Moses et al. (1985) interpreted it as the plasma
sheet field tilted due to convection with different directions
in the two hemispheres. As shown in Fig. 1, theBy in
the solar wind and that in the plasma sheet have a strong
positive correlation, with a coefficient of 0.50. The pro-
portionality constant here is 1.09, larger than unity. The
proportionality constant is also called the penetration fac-
tor by some researchers (Borvosky et al., 1998), which
means the ratio ofBy in the plasma sheet andBy in the
solar wind. As a comparison, Fairfield (1979), Lui (1986),
Tsurutani et al. (1984), Sergeev (1987) and Borovsky et
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Fig. 2. The relationship between the density of the solar wind and
that in the plasma sheet.

Fig. 3. The relationship between the ion thermal pressure of the
solar wind and density in the plasma sheet.

al. (1998) obtained a different penetration factor of 0.13,
0.13, 0.09∼0.21, 0.60, and 0.76, respectively. Kaymaz et
al. (1994) compared the previous results on this problem and
it can be seen that the proportionality constant or penetration
factor increases with the decreasing distance. And our result
is consistent with such a trend. Voigt and Hilmer (1987) in-
terpreted theBy in magnetotail as a smaller penetration com-
ponent and a larger convection-induced component in plasma
sheet. Hau and Erickson (1995) also gave a theoretic analy-
sis of how the observedBy in plasma sheet can be amplified
when convecting inward on the closed flux tubes. The pro-
portionality constant of 1.09 in this work means that the ob-
servedBy in plasma sheet is due to not only the penetration
from IMF By , but also due to the amplification by the sun-
ward convection in this region. This may be why the propor-
tionality constant is larger than unity, and penetration result
is included in it.

Here we have investigated the relationship between the
density of the solar wind and the density in the near-Earth
plasma sheet, as demonstrated in Fig. 2. In the tail region

Fig. 4. The relationship between the dynamic pressure of the solar
wind and density in the plasma sheet.

Fig. 5. The relationship between the dynamic pressure of the solar
wind and the ion thermal pressure in the plasma sheet.

at about 9∼13.4 Re, there is a correlation coefficient of 0.31.
This statistical feature possibly reflects that the plasmas in
the plasma sheet may come from the solar wind. However,
in the magnetotail region with geocentric distance of about
17.5∼22.5 Re, the solar wind density has a rather strong con-
trol upon the density in the plasma sheet, with a correlation
coefficient of 0.74, as illustrated by Borovsky et al. (1998).

As Figs. 3 and 4 show, the thermal pressure of the solar
wind has a weak correlation with the density in the near-
Earth plasma sheet, while the correlation between the density
in the plasma sheet and the solar wind dynamic pressure is
larger, with a value of 0.41. So we can see that the density
in the plasma sheet is influenced by the solar wind dynamic
pressure rather than by the solar wind ion thermal pressure.
The dynamic pressure of the solar wind plays a more im-
portant role during the plasma transport of solar wind into
magnetosphere. In fact, the dynamic pressure is much larger
than the thermal pressure in the solar wind.

Figure 5 shows that there is a strong, positive correlation
between the thermal pressure of ions in the plasma sheet and
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Fig. 6. The relationship between the speed of the solar wind and the
ion temperature in the plasma sheet.

Fig. 7. The relationship between the speed of the solar wind and the
ion thermal pressure in the plasma sheet.

the dynamic pressure of the solar wind. Tsyganenko and
Mukai (2003) set up analytical models of the central plasma
sheet properties as functions of solar wind and IMF param-
eters. Their model of the plasma sheet thermal pressure in-
dicated that ion thermal pressure in the plasma sheet is con-
trolled by solar wind dynamic pressure. The correlation in
Fig. 5 means that in the tail region at 9∼13.4 Re, the ion
thermal pressure in the plasma sheet is strongly controlled
by solar wind dynamic pressure. The ion dynamic pressure
dominates in the solar wind, while the ion thermal pressure
dominates in the plasma sheet. The strong correlation re-
flects the pressure balance between the solar wind and the
magnetotail plasma sheet.

Figure 6 shows that there is a weak, negative correlation
between solar wind speed and ion temperature in the plasma
sheet. The correlation coefficient is−0.19, not very high.
On the other hand, there is no correlation between solar wind
speed and ion thermal pressure in plasma sheet, as illustrated
in Fig. 7.

Fig. 8. The relationship between the speed of the solar wind and the
ion thermal pressure in the plasma sheet while IMF Bz>−2.0nT.

Fig. 9. The relationship between the speed of the solar wind and the
ion thermal pressure in the plasma sheet while IMF Bz>−2.0nT.

Now the separation according to the IMF Bz has been
made. Data points with IMF Bz≤−2. 0 nT are regarded as
the situation of southward IMF, while the other data points
are regarded as the situation of northward IMF. According to
such a regulation, the 139 data points are divided into the sit-
uation of southward IMF, including 41 (Rrandom=0.31) data
points and northward IMF, including 98 (Rrandom=0.20) data
points. Under the southward IMF, neither ion temperature
nor ion thermal pressure in the plasma sheet has a correla-
tion with the solar wind speed (not shown). However, under
northward IMF, both ion temperature and ion thermal pres-
sure have negative correlations with the solar wind speed,
with the correlation coefficients of−0.25 and−0.26, respec-
tively, as shown in Figs. 8 and 9.

The negative correlation in Fig. 8 means that ion temper-
ature in the plasma sheet decreases with the rising of so-
lar wind speed. This feature in the near-Earth plasma sheet
is opposite to the positive correlation at the geocentric dis-
tance of about 20 Re, which has been revealed by Borovsky
et al. (1998). Spence and Kivelson (1993) and Fujimoto
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et al. (1996) have pointed out that solar wind plasma en-
ters the magnetotail plasma sheet through the Low Latitude
Boundary Layer (LLBL). Terasawa et al. (1997) and Fuji-
moto et al. (1997) found that plasma sheet becomes colder
and denser under northward IMF, and that such things hap-
pen mostly near the tail’s flanks. From this negative corre-
lation in Fig. 8, it can be implied that in the plasma sheet
at geocentric distances of 9∼13.4 Re, under northward IMF,
ions can be transported to the near-Earth plasma sheet from
the LLBL, as well as from the distant tail. The northward
IMF is a condition for such transportation through the LLBL.
Ions from the LLBL are relatively cold, while ions from
the distant tail are relatively hot (Nishida, 2000; Hasegawa
et al., 2004a). When the solar wind speed is higher, more
ions with low temperature enter the near-Earth plasma sheet
through the LLBL, thus the temperature of the plasma sheet
becomes colder. That is to say, under northward IMF, be-
sides the distant tail sources, LLBL also plays an important
role in the plasma transport into the near-Earth plasma sheet
at the geocentric distances of 9∼13.4 Re. The ion thermal
pressure in the plasma sheet decreases with the increase in
the solar wind speed, shown in Fig. 9, further supporting
the viewpoint that, under northward IMF, faster solar wind
will enhance the transfer of the cold plasmas in the magne-
tosheath into the magnetosphere through the LLBL. Compar-
ing the results here with the results of Borovsky et al. (1998),
it could also be inferred that the LLBL transferring process
more likely occurs at the near-Earth LLBL with geocentric
distances less than 20 Re. This statistical result also supports
the point that, the faster the solar wind, the more effective the
transfer of the plasmas from the magnetosheath into magne-
tosphere through LLBL (Hasegawa et al., 2004b).

4 Summary and conclusions

In this study, the driving relationship of the near-Earth
plasma sheet by the solar wind has been investigated by using
a statistical method. The solar wind data were time shifted to
correct for solar wind propagation. The results and conclu-
sions obtained may be summarized as follows.

TheBy in the solar wind and theBy in the plasma sheet
have a strong, positive correlation, with a coefficient of 0.50.
The proportionality constant is as large as 1.09; it is possibly
due to both the penetration of the IMFBy and the amplifica-
tion by the sunward convection in the concerned region. This
result would support the model of Hau and Erickson (1995).

The density in the near-Earth plasma sheet can be influ-
enced by the solar wind density and the solar wind dynamic
pressure. The dynamic pressure of the solar wind plays an
important role during the plasma transport of the solar wind
into the magnetosphere, while the thermal pressure of the so-
lar wind has less influence on the density of the near-Earth
plasma sheet.

The analytical model of Tsyganenko and Mukai (2003) for
the plasma sheet thermal pressure indicated that ion thermal
pressure in the plasma sheet is controlled by solar wind dy-

namic pressure. There is a similar result in our work. The
strong, positive correlation between the thermal pressure of
ions in the plasma sheet and the solar wind dynamical pres-
sure reflects the requirement of a pressure balance in a statis-
tical sense.

Under northward IMF, the ion temperature and ion thermal
pressure decrease with the increase in the solar wind speed.
Such negative correlations (although weak) may imply that a
fast solar wind will enhance the transfer of the cold plasmas
in the magnetosheath through the LLBL, and northward IMF
is possibly one important condition for such transportation.
The result is consistent with the results of some previous re-
searchers (Tsyganenko and Mukai, 2003).
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