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Abstract. The relationship between the orientation of the
small-scale ionospheric irregularity anisotropy in a plane
perpendicular to the geomagnetic field and the direction of
plasma convection in the F region is investigated. The cross-
field anisotropy of irregularities is obtained by fitting theo-
retical expectations for the amplitude scintillations of satel-
lite radio signals to the actual measurements. Information
on plasma convection was provided by the SuperDARN HF
radars. Joint satellite/radar observations in both the auroral
zone and the polar cap are considered. It is shown that the
irregularity cross-field anisotropy agrees quite well with the
direction of plasma convection with the best agreement for
events with quasi-stationary convection patterns.

Keywords. Ionosphere (Auroral ionosphere; Ionospheric ir-
regularities)

1 Introduction

The high-latitude ionosphere is an inhomogeneous media in
which the quasi-layered distribution of electron density with
height also changes horizontally, with spatial scales from
hundreds to tens of kilometers. In addition to the large-
scale structuring, much finer irregularities of the electron
density are often observed, more frequently at the edges of
large-scale structures (Tsunoda, 1988). Such irregularities
can be of various scales, from kilometers to centimeters;
they are often referred to as the small-scale irregularities. It
is well established that small-scale irregularities are gener-
ated in the high-latitude ionosphere through various plasma
instabilities (e.g. Keskinen and Ossakow, 1983; Tsunoda,
1988; Gondarenko and Guzdar, 2004). Both theory and
observations indicate that the small-scale irregularities are
anisotropic; they are strongly stretched along the geomag-
netic field and often have a preferential direction in a plane
perpendicular to the geomagnetic field; in this paper, the di-
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rection of this elongation will be called the orientation of the
cross-field anisotropy.

Various parameters of small-scale ionospheric irregular-
ities can be measured by radio methods (e.g. Gusev and
Ovchinnikova, 1980; Ruohoniemi et al., 1987; Afraimovich
et al., 2001), and numerous results have been reported in the
past (e.g. Moorcroft and Arima, 1972; Martin and Aarons,
1977; Fremouw et al., 1977; Rino et al., 1978; Rino and
Livingston, 1982; Gailit et al., 1982; Eglitis et al., 1998).
Despite significant progress in this field, the relationship be-
tween the irregularity parameters and the conditions in the
background ionospheric plasma is not well established.

Recently, Tereshchenko et al. (1999) developed a new
method of satellite signals analysis that allows one to infer
such important characteristics of the ionospheric anisotropic
irregularities as the degree of their stretching along and
perpendicular to the geomagnetic field and the orienta-
tion of the cross-field anisotropy. Further expansions of
this method were recently presented in Tereshchenko et
al. (2004). Tereshchenko et al. (2000a) applied the original
method to the analysis of auroral zone irregularities and, by
comparing the inferred orientations of cross-field anisotropy
with the direction of plasma convection, as measured by
the EISCAT incoherent scatter radar, found their reasonable
agreement. Since the joint satellite-EISCAT data set was lim-
ited, Tereshchenko et al. (2002) expanded the investigation of
the orientation of the cross-field anisotropy by involving the
Heppner and Maynard’s plasma convection model (Rich and
Maynard, 1989). Again, reasonable agreement was found
between the orientation of the cross-field anisotropy and the
plasma convection direction given by the model for speci-
fied conditions. It was noted that occasionally the inferred
orientation of the cross-field anisotropy was quite different
at two closely spaced receiver sites (∼100 km). These in-
consistencies were attributed to strong spatial variations of
plasma flow, though no supporting data were provided.

This study continues the investigation of the relationship
between the orientation of the cross-field anisotropy of iono-
spheric irregularities and the direction of plasma convection.
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We compare Tereshchenko et al. (1999, 2004) method pre-
dictions with convection data provided by the Super Dual
Auroral Radar Network (SuperDARN) HF radars. The ad-
vantage of the SuperDARN radars for this kind of work is in
their capability to monitor the plasma convection in spatially
extensive areas of the high-latitude ionosphere with temporal
and spatial resolutions of 1–2 min and∼45 km, respectively.
We consider three different experiments. The first two were
carried out in the auroral zone, and these comparisons ex-
pand the previous analysis by Tereshchenko et al. (2000a;
2002). We then consider the third experiment with observa-
tions in the polar cap, where the geophysical conditions for
ionospheric irregularity formation can be different.

2 Determination of the irregularity parameters from
amplitude scintillations of satellite signals

Tereshchenko et al. (1999, 2000a,b, 2004) presented details
of their method that allows one to infer several characteris-
tics of the ionospheric irregularities from scintillations of the
satellite signal amplitudes measured on the ground. Here we
briefly give an overview of the method and demonstrate some
of its features. The method is based on the so-called Ry-
tov’s approach (Rytov et al., 1978). It is assumed that there
is an ionospheric layer homogeneously filled with three-
dimensional (anisotropic) irregularities of electron density.
The irregularity spectrum as a function of wave number is
described by the power law with an arbitrary index. For
satellite signals passing such a layer, the variance of the loga-
rithm of the signal amplitude relative to the signal amplitude
in the irregularity-free situationσ 2

χ is predicted theoretically
and compared with measurements. This parameter was se-
lected for the comparison because it is very sensitive to an
assumed shape of the irregularities, including the orientation
of the cross-field anisotropy.

2.1 Basics of the theory

According to Tereshchenko et al. (2004), the variance of the
logarithm of the relative amplitudeσ 2

χ is
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In Eq. (2),A is the measured signal amplitude, andA0 is
the signal amplitude that would be measured in the absence
of ionospheric irregularities.
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λ is the wave length of the radio signal,re is the classical
electron radius,RF is the Fresnel radius,zl andzu are the
lower and upper boundaries of the irregularity layer, thez
axis is assumed to coincide with the look direction from the
receiver to the satellite,0 is the gamma-function,p is the
power index,L0 is the outer scale of irregularities,θ(z) is
the angle between the satellite-receiver direction and the vec-
tor of the local geomagnetic field,α andβ are field-aligned
and cross-field elongations of the irregularities, and9 is
the orientation angle of the cross-field anisotropy (the angle
is counted from geographic north, positive clockwise). We
should note that the Rytov’s approach is valid for weak scin-
tillations, i.e. for those withσ 2

χ<0.3. Numerous measure-
ments of the amplitude fluctuations in the subauroral and au-
roral ionospheres showed that this condition is met for most
of cases (Aarons, 1982).

Tereshchenko et al. (1999) proposed to plot the experi-
mentally determinedσ 2

χ in terms of satellite position along
the meridian and then to compare this curve with a set of
theoretically expected dependencies. One can then find the
best-fit theoretical curve to the measured profiles ofσ 2

χ and
thus infer the irregularity parametersα, β and9. The fitting
procedure is greatly simplified by the fact that the latitudi-
nal location of theσ 2

χ theoretical maximum depends solely

on the angle9 while the shape of theσ 2
χ theoretical pro-

file depends onα andβ. Note that the maximum amplitude
scintillations occur for satellite positions in the vicinity of
the magnetic zenith. The success of the fitting procedure
depends on whether the satellite pass is near the magnetic
zenith or away from it. To characterize how far the satellite
path was from the magnetic zenith, the minimum look angle
θmin (from a receiver to a satellite) and the local direction
of the geomagnetic field is considered. For the case of the
magnetic-zenith path (θmin<1◦), the maximum of scintilla-
tions occurs exactly at the magnetic zenith, and only param-
eterα can be determined since signal oscillations originate
from isotropic irregularities withβ=1. For a non-zenith path,
the shape of theσ 2

χ profile is also influenced by anisotropic
irregularities (β>1), so that bothα andβ can be determined.
Note that in this case, theσ 2

χ maximum does not exactly cor-
respond to the satellite position withθ=θmin.

2.2 Measurements of9: zenith and non-zenith satellite
passes

Figure 1 shows experimental (solid line) and theoretical
(crosses and dots) curves for the variance of the logarithm
of the relative amplitudeσ 2

χ versus geographic latitude. Both
cases of a) near zenith and b) non-zenith satellite passes are
considered, with anglesθmin of 0.5◦ and 7.3◦, respectively.
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The scintillation data were collected at a receiver site located
on the Kola Peninsula. For modeling, it was assumed that the
ionospheric irregularities filled a statistically homogeneous
layer with boundarieszl=250 km andzu=350 km and that the
variance of the electron density fluctuations was the same at
all heights. Theoretical predictions are shown for two val-
ues of9, in each case a) and b); one value corresponds to
the case of the best fit between the theory and measurements
(dots) and the other one (crosses) corresponds to the case of
a significantly different angle9; we selected this angle to
be 40◦ away (anticlockwise) from the direction of the best
fit. This second value of9 is considered to demonstrate
how sensitive the position of the theoretical maximum to the
choice of9 is, for both zenith and non-zenith satellite passes.

In case a), the best fit is achieved forα=55, β=1 and
9=106◦. In case b), the best fit is obtained forα=30, β=5
and9=79◦. The 40◦ offset in the angle9 changes signif-
icantly (not significantly) the position of theσ 2

χ theoretical
maximum for the non-zenith (zenith) pass. This implies that
the angle9 can be inferred quite accurately from the experi-
mental data for non-zenith satellite passes. We performed ex-
tensive analysis of the satellite data and found that, for non-
zenith passes, a 4◦

−6◦ variation in9 changes noticeably the
position of the theoretical maximum forσ 2

χ . We also found
that the horizontally anisotropic irregularities become de-
tectable starting fromθmin=1◦

−1.5◦. Luckily, for most satel-
lite trajectories the magnitude ofθmin exceeds these mini-
mum values. We estimated the uncertainty in the determina-
tion of9 by finding a set of9 values for which the difference
between the experimental and theoreticalσ 2

χ curves was not
significant. Forθmin>1.5◦, the uncertainty is of the order of
2◦

−6◦ and it increases forθmin<1.5◦. We should note that
the uncertainty in the determination ofα andβ is larger; it
ranges from several units of elongation (10%–20% effect) to
a difference (100%–300% effect) of two or more. What is
important though is the fact that the larger uncertainty in the
determination ofα andβ does not affect the uncertainty in
the determination of9.

The analysis performed allowed us to conclude that the
value of9 can be determined very reliably from the ampli-
tude scintillations of the satellite signals.

2.3 Determination of the parametersα andβ

Now we demonstrate how the magnetic field elongation
of ionospheric irregularities (parameterα) and cross-field
anisotropy (parameterβ) can be determined from satellite
scintillation data. Figure 2 shows the theoretical profiles for
σ 2
χ versus geographical latitude for two values ofβ, dots for

the optimal value ofβ>1 and crosses for the case of isotropic
irregularities (β=1). The experimental data were obtained
on 16 November 1997, 21:34 UT at three receiver sites in
Norway: Kårvika (69.87◦ N, 18.93◦ E), Tromsø (69.59◦ N,
19.22◦ E) and Nordkjosbotn (69.22◦ N, 19.54◦ E). The satel-
lite trajectories in all three cases were of non-zenith type; the
minimum angles between the line of sight to the satellite and
the geomagnetic field wereθmin=7.2◦ in Kårvika,θmin=7.2◦

Fig. 1. Experimental (solid line) and theoretical (dots and crosses)
latitudinal profiles (the geographic latitude is used) of the logarithm
of the relative amplitude of a satellite signal (σ2

χ ) for (a) near zenith
and (b) non-zenith passes over a receiver site on the Kola Penin-
sula. Dots correspond to the case of the best fit between the model
and experiment and crosses correspond to the case of the cross-field
anisotropy orientation rotated by 40◦ anticlockwise from the direc-
tion of the best fit. Also shown is the minimum angleθmin between
the look direction from the receiver site to the satellite and the local
geomagnetic field direction at the F region heights.

in Tromsø andθmin=7.4◦ in Nordkjosbotn. We indicate on
each panel the irregularity parameters for the case of the best
fit between the experimental and theoretical curves. One can
see that the position of the theoretical maximum is not very
sensitive to the choice ofβ in all three cases (whether it is 1
or 7). On the other hand, the width of the curves is strongly
affected byβ. Detailed analysis shows that variations of the
parameterα change the shape of theσ 2

χ curve near the max-
imum while variations of the parameterβ strongly control
the “tails” of theσ 2

χ curve; generally, a decrease (increase)

of eitherα or β makes theσ 2
χ profiles broader (narrower).

Importantly, the analysis shows that a uniquely defined set
of α andβ can be found for each satellite pass, if the best
fit between the theoretical and experimental profiles ofσ 2

χ is
sought. One can also conclude from Fig. 2 that the experi-
mental curves cannot be described by the model of isotropic
irregularities for non-zenith passes; this is in contrast to the
case of the almost-zenith pass considered in Fig. 1a.
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Fig. 2. Experimental (solid line) and theoretical (dots and crosses)
latitudinal profiles of the logarithm of the relative amplitude of a
satellite signal (σ2

χ ) for a pass over K̊arvika, Tromsø and Nordkjos-
botn (all in northern Norway) on 16 November 1997 at∼21:34 UT.
Geographic latitudes are used. Dots (crosses) correspond to the case
of anisotropicβ>1 (isotropic,β=1) ionospheric irregularities. The
irregularity parameters for the best fit between the experimental and
model profiles are given in the upper right corner of each diagram.

2.4 Multi-receiver observations: some conclusions on the
ionospheric conditions

The Tereshchenko et al. (1999) method allows one to infer
the irregularity parameters in the ionospheric region above
the receiver location. If data of several receivers are com-
pared, conclusions on the spatial homogeneity of the irregu-
larity layer can be drawn.

Consider observations presented in Fig. 2. The estimated
irregularity parameters areα=40, β=7, 9=58◦ (±2◦) in
Kårvika, α=40, β=7, 9=60◦ (±2◦) in Tromsø andα=40,

β=7,9=60◦ (±2◦) in Nordkjosbotn. For all three sites, the
data show only one maximum well described by the same
value ofα and the same value ofβ. This implies that the
electron density fluctuations (anisotropic irregularities) are
of the same character (shape) above these sites, and their dis-
tribution is quite uniform. Certainly, this is a very special sit-
uation; generally, one cannot expect such a spatial uniformity
of the density fluctuations over distances of tens to hundreds
of kilometers in the high-latitude ionosphere. In the case of
non-uniform irregularity spatial distribution, one can observe
more than one peak in the latitudinal profiles ofσ 2

χ . Also, for
the case of a single maximum in the profile, different values
of α andβ can be obtained even at close receiver locations.

Figure 3 presents experimentalσ 2
χ curves obtained at

Kårvika, Tromsø and Nordkjosbotn on 14 November 1997
at 18:28 UT and corresponding theoretical profiles. The best
parameters describing the data areα=20,β=4,9=91◦(±3◦)
for Kårvika, α=20, β=4, 9=120◦ (±3◦) for Tromsø and
α=25, β=5, 9=125◦ (±3◦) for Nordkjosbotn. In this case,
only Tromsø and K̊arvika data can be described by the same
model of irregularities, though the orientation of the cross-
field anisotropy is different at these locations. Different ori-
entation of the cross-field anisotropy over Kårvika occurred,
very likely, because of a change in the direction of plasma
convection, as suggested for similar cases by Tereshchenko
et al. (2002).

We should note that some observations do not show a clear
maximum for theσ 2

χ profile, so that the irregularity param-
eters cannot be determined at all. One example is given in
Figure 4 for 9 November 1997 at 15:10 UT. Here the well-
defined isolated maxima are seen at Kårvika and Tromsø;
best fitting for these data givesα=30,β=6,9=41◦ (±3◦) at
Kårvika andα=30,β=6,9=60◦ (±3◦) at Tromsø. We can-
not determine the irregularity parameters over Nordkjosbotn.
The most likely reason is that the irregularities were very
weak or patchy. During the period of 15:08–15:18 UT, the
Tromsø heater was producing artificial irregularities near the
zenith of the station. This allowed us to reliably determine
the irregularity parameters at this location. Since plasma con-
vection was directed poleward, the artificially generated ir-
regularities were drifting poleward and strong satellite sig-
nals scintillations were seen at Kårvika. The artificial ir-
regularities were not able to reach Nordkjosbotn while the
background fluctuations were probably too weak to produce
strong scintillations. Similar situations were described by
Tereshchenko et al. (2000a,b); we present here the additional
case to illustrate and stress some limitations of the method.

The data presented in this section demonstrate that a net-
work of satellite signal receivers separated by less than one
hundred kilometers can provide important information on the
fine structure of the high-latitude ionosphere.

2.5 On the role of time-averaging in the model

The approach based on Eq. (1), that we have discussed so
far, has a minor inconsistency in terms of data handling and
modelling. When experimental data are processed, theσ 2

χ
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Fig. 3. The same as in Fig. 2 but for 14 November 1997, 18:28 UT.

profile is obtained by computingσ 2
χ for every 8–12-s period

and merging all obtained values into one latitudinal profile.
The theoretical curve is obtained by computingσ 2

χ at every
instant of time, for example, for every second (below we will
call such a curve/profile “the instantaneous curve/profile”).
Clearly, it is desirable to produce the theoretical curve in the
same fashion as the experimental one, i.e. instead of an in-
stantaneous value ofσ 2

χ for every second, we consider theσ 2
χ

value averaged over 8–12 s. In this section we investigate the
significance of this averaging effect and its potential impact
on the determination of parametersα andβ. Our analysis
showed that the time averaging does not affect the determi-
nation of9.

Figure 5a shows averaged (crosses) and instantaneous
(solid line) theoretical curves for a near zenith satellite pass
over a receiver at Tromsø. For the purpose of illustration,
we selected typical values ofα=40 andβ=6. The value of

Fig. 4. The same as in Fig. 2 but for 9 November 1997, 15:10 UT.
At Nordkjosbotn, the maximum ofσ2

χ at ∼68.7◦ was not strong,
and the irregularity parameters were not determined.

9=71◦ was selected so that the maximum of theσ 2
χ instan-

taneous profile (solid line) is achieved exactly at the angle
θmin. We show the latitudinal variation forθ by the dotted
line in Figure 5a, and one can see that its minimum coincides
with the maximum of theσ 2

χ curve. The model values of the
anisotropy parameters are also shown in the figure. The value
θp=7.7◦ indicates the zenith angle of the satellite position
corresponding to the peak inσ 2

χ . One can see in Fig. 5a that

the averaged profile ofσ 2
χ (crosses) reaches its maximum at

θ=θmin (at the same latitude as for the instantaneous profile),
but its magnitude is smaller than the maximum of the instan-
taneous profile. Varying the parameter9 only shifts both
the instantaneous and averaged curves horizontally (without
the curves’ distortion), indicating that the averaging effect is
controlled by onlyα andβ. We found that the case of Fig. 5a
is a very typical situation for many passes.
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Fig. 5. Averaged (crosses) and instantaneous (solid line) theoretical
variations ofσ2

χ versus geographic latitude for a receiver at Tromsø.

Panel a) corresponds to the case of theσ2
χ maximum (achieved at

the angleθ=θp=7.7◦) which is exactly at the latitude ofθmin while
panel b) corresponds to the case of theσ2

χ maximum (achieved at
the angleθ=θp=20.2◦) located at the latitude lower than the lati-
tude ofθmin. Computations were performed for the integration time
of 10 s and typical irregularity parameters wereα=40 andβ=6. Dots
show the latitudinal variation of the angleθ .

For some passes and irregularity parameters the difference
between the averaged and instantaneous curves is not signif-
icant. Figure 5b illustrates such a situation for observations
over Tromsø. Here we consider the pass withθmin=7.7◦ and
the same parametersα andβ as in the previous case, but
the orientation of the cross-field anisotropy (parameter9A)
is different. One can see that the instantaneous (solid line)
and averaged (crosses)σ 2

χ curves coincide and both maxima
are achieved at the look angle ofθp=20.2◦, i.e. significantly
away from the magnetic zenith.

By considering various satellite passes and varying the
irregularity parameters we were able to draw three general
conclusions. First, if an instantaneousσ 2

χ curve has its max-
imum near the pointθ=θmin, then the averaging effect is not
significant for smallα and whenβ<α. For example, if aver-
aging is done over 10 s,α should be less than 10–12. This im-
plies that the irregularities should be moderately anisotropic
to neglect the averaging in the model. Second, for strongly
anisotropic irregularities (for example,α more than 10 and

β<α), the averaging effect is not significant for satellite
passes with theσ 2

χ maximum achieved at large anglesθ of
∼15◦–20◦. Third, the averaging effect is less significant if
an instantaneous curve has its maximum away from the point
θ=θmin. Finally, we found that consideration of the averag-
ing effect is more important for the determination ofα; val-
ues ofβ usually do not change significantly.

To give a sense of the error in estimation ofα andβ we
consider the case of Figure 5a. Application of our standard
procedure (without considering the averaging effect) to the
averaged curve (crosses) givesα=31 andβ=6. We see that
β did not change whileα is now smaller by 9 (31 versus
40). This means that if the instantaneous theoretical curve
(solid line) is fit to the experimental curve for the considered
pass (so that the averaging effect is ignored), then the derived
value ofα is smaller than it should be.

3 Results of joint SuperDARN - satellite signal observa-
tions

In this study we consider data collected in three indepen-
dent experiments. The first experiment was run between
9 and 15 November 1997 in northern Norway, in con-
junction with ionospheric HF heating (Tereshchenko et al.,
2000b). The satellite signal reception was conducted at
three sites, K̊arvika (69.87◦ N, 18.93◦ E), Tromsø (69.59◦ N,
19.22◦ E) and Nordkjosbotn (69.22◦N, 19.54◦ E), separated
by ∼100 km. The SuperDARN radars were operated in the
standard mode with 2-min scanning through the field of view.
Thirteen events of joint radar-satellite data were identified
and studied.

The second experiment of a similar type was run in June
2001, with the exception that the satellite signal reception
was performed at Futrikelv (69.80◦ N, 19.02◦ E), Tromsø
(69.59◦ N, 19.22◦ E) and Seljelvnes (69.25◦ N, 19.43◦ E),
also separated by∼100 km. Seven events were considered
for this experiment.

The third experiment was conducted on Spitsbergen
archipelago, at a settlement of Barentsburg (78.1◦ N,
14.21◦ E) from September 2000 to April 2001. We obtained
28 joint events for this experiment.

For the readers convenience, we remind one that Super-
DARN is a network of HF radars continuously monitoring
echoes from the high-latitude ionosphere (Greenwald et al.,
1995). Currently, SuperDARN consists of 9 radars in the
Northern Hemisphere and 7 radars in the Southern Hemi-
sphere. It is assumed that the Doppler frequency of the
echoes is the line-of-sight (cosine) component of the plasma
convection vector. This assumption is justified by the fact
that the phase velocity of the F region decametre irregulari-
ties is very close to the drift of the bulk of the plasma (Ruo-
honiemi et al., 1987). To obtain a map of plasma convection
vectors, all available velocity measurements are fit into the
convection model, and the optimal solution is found by the
least-squares fit procedure (Ruohoniemi and Baker, 1998).
Utilization of SuperDARN data is very convenient for the
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Fig. 6. SuperDARN convection map (thin lines originated at dots)
for 15 November 1997 between 12:16 and 12:20 UT and the ori-
entation of the cross-field anisotropy according to measurements at
Kårvika and Nordkjosbotn (thick lines) at∼12:18 UT. The coordi-
nates are geographic longitude and geographic co-latitude.

purposes of the present work because of the good temporal
(∼1–2 min) and spatial (45 km) resolution of the measure-
ments. In this study, we considered data gathered by all Su-
perDARN radars in the Northern Hemisphere but the major
contribution was always made by the Pykkvibaer (Iceland)
and Hankasalmi (Finland) radars observing directly in the
area of scintillation measurements.

3.1 Auroral zone observations: the case of stationary con-
vection

We first consider results for the auroral zone observations
in November 1997. Joint satellite-SuperDARN data were
available for various periods in between 12:26 and 22:56 UT
(roughly 10:30–21:00 MLT). The orientation of the cross-
field anisotropy varied in between 62◦ and 125◦, clustering
at 75◦–90◦. We remind one that the angles are counted from
geographic north, clockwise. We should note that the orien-
tation of the cross-field anisotropy can only be determined
up to the constant of 180◦. We conclude that the overall ori-
entation of the cross-field anisotropy is consistent with the
prevailing direction of the plasma convection at the latitudes
of the auroral oval.

Let us now show some individual measurements. In 8
cases out of 13 events, the convection and satellite data were
for the same area and the satellite-radar data were compared
quantitatively. Figure 6 gives an example of such a compar-
ison for 15 November 1997. Here the SuperDARN convec-
tion maps (thin vectors originating from the dots) are given
for 12:16, 12:18 and 12:20 UT, together with the orienta-
tion of the cross-field anisotropy of ionospheric irregularities
at Kårvika and Nordkjosbotn (thick vectors). The data on
this map (and all others, considered in this study) are pre-
sented in geographic coordinates. In the past, Tereshchenko
et al. (2000a) used geomagnetic coordinates. This difference
is not important for this study, as the target of the investiga-
tion is the azimuthal difference between the irregularity elon-
gation and the convection direction, which is independent of
the coordinate system used.

At Tromsø there was no strong maximum in theσ 2
χ curve,

and these measurements are not considered. The scintilla-
tion measurements refer to 12:18 UT. The orientation of the
cross-field anisotropy was9K=257◦ (±3◦) in Kårvika and
9N=262◦ (±3◦) in Nordkjosbotn. The convection direc-
tion obtained at the nearest SuperDARN point at 12:18 UT
was9SD=267◦. The difference between the orientation of
the cross-field anisotropy and the convection direction is
19K=−10◦ for Kårvika and19N=−5◦ for Nordkjosbotn.
Importantly, these differences1ψ are small. This signifies
that the small-scale ionospheric irregularities were elongated
in the direction of the plasma convection. The fact that the ir-
regularity anisotropy orientations were the same implies that
the plasma flow was spatially uniform and this conclusion is
consistent with more coarse SuperDARN measurements.

A good agreement between the orientation of the cross-
field anisotropy and the convection direction was observed
in other cases; we present statistics in Fig. 7 for all 8
events. The data were binned with a 5◦-step in the orientation
angle. The positive (negative) values denote those measure-
ments for which the satellite-inferred value of9 was larger
(smaller) than9SD. The histogram shows that the differ-
ences are less than 5◦ in most cases.

In 5 cases for the November 1997 experiment, the in-
formation on the convection was not available for the im-
mediate vicinity of scintillation measurements because the
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Fig. 7. Histogram distribution for the difference19 between the
orientation of the cross-field anisotropy and the direction of the
plasma convection for observations between 9 November and 15
November of 1997. 5◦ bins of the azimuth are used.

SuperDARN data were patchy. For these cases we compared
the data only qualitatively. Figure 8 gives an example of such
a comparison for 14 November 1997. The scintillation mea-
surements were performed at Tromsø at 17:02 UT. Super-
DARN was continuously providing data over 10-min inter-
val of 16:54–17:04 UT, but there were no convection vectors
in the region of the scintillation measurements. One can see
that the convection pattern is fairly stable, with similar con-
vection vectors to the south, west and east of Tromsø. If more
vectors were available, we would expect a good agreement
between the SuperDARN and scintillation measurements at
17:02 UT (note, that observations such as shown in Fig. 8
were not included in the statistics of Fig. 7). We found a
general agreement between satellite and radar measurements
for all five events.

3.2 Auroral zone observations: a case of non-uniform con-
vection

For the second auroral zone experiment, conducted in June
2001, reasonable quality SuperDARN convection maps were
obtained for 2, 5 and 11 June. The orientations of the cross-
field anisotropy were available for 2 June in Futrikelv and
Seljelvnes, for 5 June in Futrikelv, Tromsø and Seljelvnes,
and for 11 June in Tromsø and Seljelvnes. Unfortunately,
for most of these events, the SuperDARN convection vectors
were quite separated from the areas of satellite measurements
and we were not able to compare the data quantitatively.
Qualitatively, the orientation of the cross-field anisotropy
was always in reasonable agreement with the convection di-
rection in nearby regions. Interestingly, for 2 June 2001, the
orientation of the cross-field anisotropy and the plasma con-
vection were both in the geographically meridional direction.

Interesting results were obtained for 5 June 2001. In Fig. 9
we show the convection map, together with the satellite mea-
surements of the orientation of the cross-field anisotropy

Fig. 8. SuperDARN convection maps (thin lines originating from
dots) for 14 November 1997 between 16:54 and 17:04 UT and the
orientation of the cross-field anisotropy (thick lines) according to
Tromsø measurements at 17:02 UT. The coordinates are geographic
longitude and geographic co-latitude.

for 21:08 UT. Convection maps prior to this moment were
very similar to the one shown in Fig. 9. For this event,
9F=222◦ (±1◦) at Futrikelv,9T =236◦ (±2◦) at Tromsø and
9S=256◦ (±2◦) at Seljelvnes. The convection direction mea-
sured by SuperDARN at the nearest point was9SD=256◦ so
that the differences between the orientation of the cross-field
anisotropy and the convection direction were19F=−34◦ at
Futrikelv,19T =−20◦ at Tromsø and19S=0◦ at Seljelvnes.
Clearly, only the Seljelvnes measurements at the most equa-
torward site were in good agreement with the convection di-
rection. However, the SuperDARN measurements show that
the convection pattern was strongly non-homogeneous; the
convection was turning from the eastward flow at the very
high latitudes of∼75◦ to westward flow at latitudes of∼70◦.
In other words, the azimuth of the convection vectors was
increasing with a decrease of latitude. Thus, there was a
correlation in spatial variations of9 and9SD. The large
differences between9 and9SD at Futrikelv and Tromsø
signify that the convection direction experienced significant



E. D. Tereshchenko et al.: Orientation of the cross-field anisotropy 1235

local variations that were not detected by SuperDARN. This
example illustrates the fact that multipoint scintillation ob-
servations can be convenient for investigations of local struc-
turing in the plasma flow.

We should say that measurements with9-9SD differences
as large as 20◦ were not rare for spatially non-uniform or
temporally changing convection patterns. For the cases of
quasi-stationary convection in time but non-homogeneous in
space (around an area of measurements), the angle9 was
varying with latitude, in general agreement with expected
changes of the convection pattern.

Our conclusion from the analysis performed is that multi-
receiver scintillation measurements can provide additional
information on plasma convection and supplement the Su-
perDARN maps.

3.3 Polar cap observations

Now we consider observations on the Spitsbergen
archipelago, at the settlement of Barentsburg. The
analysis of scintillation data for this location showed that
the Tereshchenko et al. (1999) method works quite well
for polar cap conditions; the latitudinal profiles ofσ 2

χ show
typically a single maximum with values below 0.3 (the
criterion for the amplitude scintillations to be treated as
small-amplitude ones) and the shape and latitudinal location
of theσ 2

χ curve can well be described by a theoretical curve
defined by parametersα, β and9.

For the Baretsburg observations, measurements covered
the time sector of 01:06–23:32 UT (almost all MLT times).
The orientation of the cross-field anisotropy varied from 8◦

to 173◦ with no preferential direction. The reason for this is
that the observations were quite frequently carried out near
the foci of the large-scale convection cells with rather circu-
lar flows, contrary to the zonal flows typical for the mainland
Norway observations in the auroral zone.

We split available experimental data into two groups. For
the first group, the SuperDARN convection maps were fairly
stationary in time. For the second group, the maps showed
significant temporal variations. A stationary convection map
to us was one for which the convection pattern in the vicin-
ity of scintillation measurements did not show significant
changes within several minutes (6–12 min) prior to a moment
of the comparison.

Figure 10 gives an example of the SuperDARN/satellite
comparison for a relatively stable convection pattern on 5
February 2001, 13:06–13:12 UT. According to scintillation
measurements at 13:10 UT, the orientation of the cross-field
anisotropy was9 =258◦ (±1◦). The SuperDARN convec-
tion direction at the closest point in time (13:10 UT) and in
space was9SD=259◦ so that the difference in angles was
small19=1◦, within the error of measurements. One can
see that over a 6-min interval, the convection pattern did not
change much in the area of the comparison. The convection
directions were9SD=259◦–262◦. It is not a surprise to see
small differences between the convection direction and the
orientation of the cross-field anisotropy for these stable pat-

Fig. 9. SuperDARN convection map (thin lines originating from
dots) for 5 June 2001 at 21:08 UT and the orientation of the
cross-field anisotropy (thick lines) according to measurements at
Futrikelv, Tromsø and Seljelvnes at 21:08 UT. The coordinates are
geographic longitude and geographic co-latitude.

Fig. 10. The same as in Fig. 8 but for SuperDARN observations
on 5 February 2001, 13:06–13:12 UT and for measurement of the
orientation of the cross-field anisotropy at 13:10 UT.
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Fig. 11. The same as in Fig. 9 but for SuperDARN observations on
22 March 2001, 02:48–02:56 and the anisotropy orientation mea-
surements at Barentsburg, Spitsbergen at 02:52 UT.

Fig. 12. Histogram distribution for the difference19 between
the orientation of the cross-field anisotropy and the direction of the
plasma convection for observations at Barentsburg, Spitsbergen be-
tween September 2000 and November 2001. 5◦ bins of the azimuth
are used.

terns. This was not the case for non-stationary convection
patterns.

Figure 11 compares SuperDARN and satellite data for an
event of 22 March 2001, 02:48–02:56 UT for which the con-
vection pattern was significantly changing. The scintillation
measurements were performed at 02:52 UT. For the closest
points,9=205◦ (±5◦) and9SD=205◦ (02:52 UT), meaning
that19=0◦. For other frames, significant differences are ob-
vious. This event demonstrates the importance of comparing
radar and satellite data for as close as possible spatial areas
and minimal difference in time. Clearly, utilization of the Su-
perDARN radars that can monitor the convection dynamics

with a 2-min resolution is advantageous for the purposes of
the present work; averaging over longer intervals can lead to
smoothing out the short-lived local features in the convection
map and more significant differences between the convection
direction and the orientation of the cross-field anisotropy. On
the other hand, this event lends additional support to the no-
tion, first expressed by Tereshchenko et al. (2002) and fur-
ther discussed in this study (Sect. 2.4), that significant dif-
ferences in the orientation of the cross-field anisotropy at
closely spaced points occur because of the local non unifor-
mity in ionospheric convection flows.

Figure 12 presents statistics of the Barentsburg’s compar-
isons for 28 events. The dark (grey) columns refer to those
events for which the convection pattern was stable (non-
stable); out of all events, in exactly half of them, the con-
vection pattern was stable. One can see that the differences
19 were smaller for the stable convection patterns; for most
of the events,19 was within an interval of−5◦

÷0◦. For the
non-stable convection events, the majority of the events also
demonstrated relatively small differences,19 was within
±10◦. For some events the differences were as large as 40◦.

Our overall conclusion for the polar cap is that there is a
reasonable agreement between the orientation of the cross-
field anisotropy and the convection direction.

4 Summary and conclusions

In this study we further investigated the relationship between
the orientation of the irregularity cross-field anisotropy and
the plasma convection direction in the high-latitude iono-
sphere. The orientation of the cross-field anisotropy of ir-
regularities was inferred from the amplitude scintillations of
the satellite signals received on the ground. To achieve this,
the latitudinal profile for the variance of the logarithm of
the relative amplitude of the received signal was compared
with the theoretically expected profiles, and the irregularity
parameters corresponding to the best fit of the theory and
experiment were obtained. The ionospheric plasma convec-
tion measurements were performed with the SuperDARN HF
radars. We considered three different experiments, two in the
auroral zone and one in the polar cap.

We demonstrated that the method of the irregularity pa-
rameters determination works well for observations not only
in the auroral zone but also in the polar cap. To further im-
prove the method, we investigated the effect of time aver-
aging on the quality of model predictions; in previous stud-
ies, one instantaneous theoretical profile of signal fluctua-
tions versus latitude has been used. We demonstrated that the
time averaging has to be considered if one needs to estimate
the elongation of the irregularities along and perpendicular
to the geomagnetic field with better accuracy than from the
time- independent model. Importantly, the time averaging
does not affect the model estimates for the orientation of the
cross-field anisotropy.

By comparing the satellite and SuperDARN data for three
independent experiments we showed that the orientation of
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the irregularity cross-field anisotropy was fairly close, within
±10◦, to the direction of the plasma convection for the events
with quasi-stationary convection pattern in the area of com-
parison. For the cases with quickly changing convection pat-
terns, the agreement was satisfactory, with maximum differ-
ences of the order of 40◦, if the comparison was performed
for nearly the same moments. We can conclude that the
ionospheric small-scale irregularities are elongated with the
plasma convection direction in the plane perpendicular to the
magnetic field. This conclusion is in line with expectations
from the theory of the gradient-drift plasma instability in the
high-latitude F region; it is predicted that as the instabil-
ity progresses, plasma blobs experience stretching along the
convection direction.

We also demonstrated that the multipoint satellite signal
observations with the site separation of less than 100 km can
be useful for studying the small-scale structures in the iono-
spheric plasma flows and thus provide additional information
to the large-scale SuperDARN convection maps. The satel-
lite scintillation data can successfully supplement the Super-
DARN maps in those regions of the high-latitude ionosphere
where the HF echoes are not detected. Finally, the multipoint
satellite data may give information about the spatial unifor-
mity of flows and their temporal stability.
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