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Abstract. This paper deals with nonsteady perturbations of
the magnetosheath parameters which are related to variations
of the interplanetary magnetic field from north to south under
a constant solar wind dynamic pressure. The magnetic field
changes its direction within a thin layer which is convected
with the plasma from the bow shock to the ionopause. In
the course of time, this current layer is amplified during its
motion towards the magnetopause. The intensity of the cur-
rent is increasing, the layer thickness is decreasing, and the
gradients of parameters are becoming much sharper while
the layer is approaching the magnetopause. The curvature
radius of this layer is decreasing while it is draping around
the magnetopause. This curved layer structure with reversed
magnetic field in the magnetosheath is found to be unstable
with respect to the interchange instability. The growth rate of
the instability is obtained for different positions of the layer.
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1 Introduction

Solar wind conditions are very changeable, and in particu-
lar, the interplanetary magnetic field can reverse its direction.
Tangential discontinuities carried by the solar wind are typi-
cal structures with such interplanetary magnetic field (IMF)
variations. Horbury et al. (2001) analyzed solar wind discon-
tinuities using three spacecraft observations, and they identi-
fied about 14% of the observations as tangential discontinu-
ities which are characterized by large variations of the total
magnetic field with respect to its maximum value. The time
scale of a tangential discontinuity estimated from the exam-
ple of Horbury et al. (2001) is less than 1 min. It is rather dif-
ficult to determine the discontinuity scale precisely because
of fluctuations of the magnetic field and plasma parameters
on either side of a discontinuity.
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Thin current layers related to the tangential discontinuities
are coming to the magnetosheath. They are moving towards
the magnetopause, together with the ambient plasma. Ap-
proaching towards the magnetopause, these layers have a cur-
vature radius being approximately equal to that of the mag-
netopause.

As shown by Arshukova and Erkaev (2000), a curved layer
with reversal magnetic fields can be unstable with respect to
the interchange instability if the plasma pressure has a local
maximum which coincides with the magnetic pressure mini-
mum within the layer. The interchange instability is similar
in nature to the Rayleigh-Taylor instability in classical hy-
drodynamics, where the magnetic stress plays the role of an
effective gravitational force (Chandrasekhar, 1968; Alexan-
drov et al., 1984; Freidberg, 1987). In the context of the
Earth’s magnetospheric boundary (magnetopause), the
interchange instability was analyzed for a tangential discon-
tinuity by Alexeev and Maltsev (1990), and also by Rezenov
and Maltsev (1994). The MHD instabilities of structured
plasma layers with piecewise constant parameters were stud-
ied by Arshukova et al. (2002).

The aim of our present paper is to study the interchange in-
stability of a thin current layer with reversal magnetic fields
which is comoving with plasma in the magnetosheath from
the bow shock to the magnetopause. The paper is organized
as follows: In the second section, a numerical solution is dis-
cussed with regard to a current layer moving from the bow
shock to the magnetopause. In the third section, the state-
ment of the instability problem is described, and a boundary
value problem is formulated. In the fourth section, numer-
ical results are described for the instability growth rate and
calculated for two cases: 1) Instability of the layer with an
analytical model profile of the magnetic field; 2) Instability
of the layer in the magnetosheath with the magnetic field pro-
files obtained from the numerical solution of the solar wind
flow problem in the case of a nonsteady IMF variation from
north to south.
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Fig. 1. General view of a curved current layer separating antiparal-
lel magnetic fields.

2 A current layer moving from the bow shock towards
the magnetopause

We assume that the IMF changes its direction from north to
south in the solar wind upstream of the shock under a con-
stant solar wind dynamic pressure. For this magnetic field
variation, there exists a current layer which is convected from
the bow shock towards the magnetopause (see Fig. 1). In this
layer, the magnetic field is depressed and thus the density and
plasma pressure are enhanced.

To describe time dependent magnetic field and plasma pa-
rameters in the magnetosheath, we apply the nonstationary
ideal MHD equations which can be written as follows (Lan-
dau and Lifshitz, 1960),

ρ
∂U
∂t

+ ρ(U · ∇)U + ∇5 −
1

4π
(B · ∇)B = 0, (1)

∂ρ

∂t
+ ∇ · (ρU) = 0,

∂

∂t

(
P

ρκ

)
+ U∇

(
P

ρκ

)
= 0, (2)

∂B
∂t

− ∇ × (U × B) = 0, ∇ · B = 0, (3)

5 = P + B2/(8π). (4)

For our instability analysis, we use the profiles of the mag-
netic field and plasma parameters which are obtained from
the MHD model of a nonsteady solar wind flow around the
magnetosphere (Erkaev et al., 2002) modeled as a paraboloid
of revolution. This model is similar to that applied previously
to a steady solar wind flow around the Earth’s magnetosphere
(Farrugia et al., 1995), or the nonsteady flow around a mag-
netic cloud (Erkaev et al., 1995). In this model, the total pres-
sure (4) is approximated by the Newtonian formula (Petrinec
and Russell, 1987).

Figure 2 shows from top to bottom, the normalized pro-
files of plasma density, magnetic field, plasma pressure and
magnetic pressure which correspond to different times (in
units of R/Usw). The normalization factors for the plasma
density, magnetic field and pressures areρsw,

√
4πρswUsw,

X / R

Fig. 2. Nonsteady profiles of plasma density, magnetic field
strength, plasma pressure and magnetic pressure along the subso-
lar line.

andρswU2
sw, respectively. The figure indicates a thin layer

related to a nonsteady variation of IMF which is moving
slowly towards the magnetopause. The layer is characterized
by a local enhancement of the plasma pressure and density.
While the layer is moving towards the magnetopause, the
layer thickness is decreasing, the curvature radius is slightly
decreasing, and the magnetic field strength is increasing with
saturation.

It is evident that a steepening of the front of the magnetic
field variation takes place, while it is approaching the mag-
netopause. This front of a large magnetic field gradient is
characterized by enhanced electric current density, which, in-
creases greatly while the front is moving towards the magne-
topause.

The behavior of the layer, as shown in Fig. 2, indicates
that magnetosheath flow structures provide nonlinear trans-
formations and amplifications of smooth solar wind pertur-
bations occurring under a constant solar wind dynamic pres-
sure. Gradients of perturbations of the magnetic field, plasma
pressure, and density are increasing very strongly while the
perturbations are being convected towards the magnetopause.
In particular, this can be the reason for slow mode perturba-
tions observed in the magnetosheath (Song et al., 1992). The



I. L. Arshukova et al.: Interchange instability of a curved current layer 995

variation of the IMF from north to south brings about a tran-
sition current layer which is convecting from the bow shock
towards the magnetopause. The thickness of this layer, as
well as the amplitude of the current density, increase very
strongly in the magnetic barrier.

3 Statement of the instability problem

Generally, a curved layer is characterized by two main local
curvature radii,Ry andRz. We introduce a local coordinate
system related to a surface within the layer. The two coor-
dinatesy andz are the distances along the geodetic lines on
the surface with curvature radiiRy andRz, respectively. The
third coordinatex is the distance along the normal to the sur-
face.

Let us consider small perturbations of the magnetic field
and plasma parameters

B = B∗
+ b, U = U∗

+ u,

5 = P ∗
+ p, ρ = ρ∗

+ ρ
′

, (5)

where|b|�|B|, |u|�|U|, p�P , andρ
′

�ρ. We study in-
compressible modes of perturbations and thus assume

∇ · u = 0. (6)

The background plasma velocityU∗, as well as the normal
componentB∗

x of the background magnetic field, are as-
sumed to be equal to zero. Using these conditions, we obtain
from (1) the following equations for small perturbations of
the velocity components:
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Here,∇∗ is a vector operator defined as
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whereqy andqz are the metric coefficients related to the cur-
vatureqy=1+x/Ry and qz=1+x/Rz.

Initially, the plasma is assumed to satisfy quasi-steady
conditions and thus, a gradient of the total pressure has to
compensate the magnetic stress.

From (3) we obtain equations for small perturbations of
the magnetic field components,
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For simplicity, we consider the two curvature radii to be
equal to each other,Ry=Rz=R. For computational conve-
nience, we introduce the dimensionless parameters

x̃ = x/R, k̃ = kR, ρ̃ = ρ/ρsw,

B̃ =
B√

4πρswU2
sw

, Ũ = U/Usw, p̃ =
p

ρswU2
sw

,

ω̃ = ωR/Usw, t̃ = tUsw/R. (12)

Here, the subscript “sw” denotes solar wind parameters.
Near the subsolar line, the coefficients of the equations for

the perturbations are assumed to be functions of the normal
distancex only. Considering all perturbations to be propor-
tional to the complex exponential function exp(i(k·s−ω̃t)),
wheres is a two–dimensional vector in the plane (yz), we
obtain from Eqs. (7) and∇ · u=0,
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q
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whereq=qy=qz=1+x̃. After normalization, the system of
the Eqs. (8–10) yields

i q ω̃ b̃x = −i (B̃ · k̃) ũx,
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∂B̃y

∂x̃
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). (14)

Using the Eqs. (13), together with the Eqs. (14), we obtain
a differential equation for the total pressure perturbation
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For the Eq. (15), we have the following boundary condi-
tions:

x̃ = x̃1 :
∂p̃

∂x̃
= −κ1 p̃ ; x̃ = x̃2 :

∂p̃

∂x̃
= κ2 p̃ . (16)

Thus, a second order ordinary differential Eq. (15) has
to be solved for the perturbation of the total pressure with
boundary conditions (Eq. 16) on either side of the layer. The
coefficients of this equation are functions of the frequency
and the wave number. Using the different functions for the
magnetic field variation across the magnetopause, this equa-
tion is integrated numerically, and the frequency is deter-
mined by satisfying the boundary condition.

In order to clarify the driving term of the instability, we
analyze Eq. (15) in the case of largeka. In this case we can
neglect the term with the first derivative of̃p in Equation
(15), which is simplified to

−
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Using zero conditions for̃p and assuming̃ω=iγ̃ (where
γ is the growth rate), we multiply Eq. (17) with the com-
plex conjugate function̂̃p and integrate it in the range from
(−∞; +∞). After these operations, finally, we obtain the
equation∫
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Here, the growth rateγ is assumed to be real. If∂B2/∂x≤0,
then all terms in Eq. (18) will be positive. In such a case this
equation yields the trivial result̃p=0, and thus, the instability
is not possible.

Therefore, for the interchange instability to appear, it is
necessary to have a region where thex derivative of the mag-
netic pressure is positive,∂B2/∂x≥0. Hence, the driving
term for the instability is a positive magnetic pressure gradi-
ent, and, correspondingly, a negative plasma pressure gradi-
ent in thex direction. This means that the instability takes
place in the subsolar magnetosheath if there exists a local re-
gion with the plasma pressure decreasing along thex axis
which is directed to the Sun.

A qualitative physical explanation of the interchange in-
stability is the following: Considering a positive gradient of
the background magnetic pressure (∂B2/∂x≥0), let us push
slightly a thin magnetic flux tube which was initially in equi-
librium. For this tube being pushed forward along thex axis,
the equilibrium will be broken, and the surrounding plasma
pressure will become less than that inside the tube. A disbal-
ance will appear between the positive force provided by the
gradient of the total pressure and the negative force caused
by the magnetic tension that is directed towards the curva-
ture center. The resulting force will be positive and thus, the
magnetic tube will be further accelerated along thex direc-
tion.

4 Results

To clarify the influence of different parameters of the layer
on the interchange instability, we first analyze the case of an
analytical monotonic variation of the magnetic field between
two valuesB̃m (x̃=x̃2) andB̃s (x̃=x̃1). We suppose that the
magnetic fields̃Bm andB̃s are antiparallel. The model profile
of the magnetic field in dimensionless form is,

B̃ = −
(B̃s + B̃m)

2
tanh

[
5

ã
(x̃ − x̃0)

]
+

B̃m − B̃s

2
, (19)

where x̃0=(x̃1+x̃2)/2. This model is very convenient for
analyzing the dependence of the instability growth rate on
the different parameters; as the curvature radius, the wave
number, and the layer thickness. The instability growth rate,
magnetic field, and plasma parameters are normalized in ac-
cordance to Eq. (12). The dimensionless magnetic field,
which is scaled to

√
4πρswUsw, is assumed to vary from

B̃m=1.3 (x̃2=1) to B̃s=1.17 (x̃1=x̃2+ã), whereã=a/R, a

is the thickness of the layer.
These values are chosen to be suitable for the subsolar

magnetopause. The first value 1.3 is related to the geomag-
netic field at the subsolar point which can be estimated from
the pressure balance condition,

B2
m/(8π) = CρswU2

sw.

The second value is related to the magnetic barrier close to
the magnetopause, where the magnetic pressure is enhanced,
but it is slightly less than the total pressure estimated as
CρswU2

sw. Here,Usw is a speed of the solar wind, and the
coefficientC is equal approximately 0.9 (see Spreiter et al.,
1966).

Figure 3 illustrates the geometrical situation for the first
case. Shown is the interchange instability of a fixed curved
layer between antiparallel magnetic fields with a smooth
variation of the magnetic vector. From the numerical solu-
tion, the instability growth rate is found as a function of the
layer thickness, curvature radius, and wave number.

Figure 4 shows the growth rate of the interchange instabil-
ity (in units γ ∗

=Usw/R) as a function of the dimensionless
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Fig. 3. Illustration for the first case with a fixed curved layer with
reversal magnetic fields.

Fig. 4. Normalized instability growth rate as a function ofkR for
the model profile of the magnetic field. Different curves correspond
to different values ofa/R=0.1; 0.01.

parameterkR for two different ratios of the layer thickness
and the curvature radius,a/R=0.1, 0.01. This figure in-
dicates that the instability growth rate is larger when the
perturbation wavelength is shorter, and the layer is thicker.
From the normalization it follows that the physical value of
the growth rateγ , as well as the magnetic field strength at
the layer boundaryBm, are proportional toUsw, and thus,
γ∝Bm.

The second case considered in our work is that for the in-
stability of a thin layer convected from the bow shock to the
magnetopause. This layer is related to a nonsteady IMF vari-
ation in the solar wind. For this layer, the profiles of magnetic
field, plasma pressure and density are varying slowly in time
because of the layer motion to the magnetosheath. And cor-
respondingly, the instability growth rate is depending on the
position of the layer.

Fig. 5. Normalized instability growth rate as a function ofkR for the
nonsteady magnetosheath profiles corresponding to different times:
t=1.0; 1.8; 2.5; 3.2.

Fig. 6. Normalized instability growth rate as a function of time
for the nonsteady magnetosheath profiles corresponding to different
wave numberskR=10; 20; 30; 40.

Figure 1 shows the geometrical situation for the second
case. A curved layer with antiparallel magnetic fields is mov-
ing from the bow shock towards the magnetopause. For our
instability analysis, we use the profiles of the plasma den-
sity, magnetic field, and plasma pressure which are shown in
Fig. 2.

Figure 5 shows the normalized growth rate of the inter-
change instability as a function of the wave numberkR for
different positions of the current layer during its motion in
the magnetosheath from the bow shock towards the magne-
topause. Different curves are obtained for the numerical pro-
files corresponding to different normalized timest=1.0; 1.8;
2.5; 3.2 (in unitsR/Usw). It is evident that the instability
growth rate is a monotonic increasing function of the wave
number. For larger time, this monotonic dependence be-
comes stronger. Taking a reasonable valueR=10RE for the
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Earth’s magnetosheath, we estimate the following range of
wave numbers related to the figure, 0.5/RE≤k≤5/RE . This
range corresponds to the scales of perturbations estimated as
1.RE≤λ≤2RE . For the same layer, the instability growth
rate is also shown in Fig. 6 as a function of the convection
time (in unitsR/Usw). The different curves are correspond-
ing to the different wave numberskR=10; 20; 30; 40. One
can see that the largest instability growth rate corresponds to
the shortest scales of perturbations. The figure indicates that
the maximal growth rate of the instability is about 2Usw/R,
whereR is a curvature radius of the subsolar magnetopause.

The assumption of an incompressible plasma as used in
our model, can be justified as follows: Perturbations of the
density propagate with the fast magnetosonic speedcs+.
The incompressible MHD model can be applied when the
distance of the compressible wave propagation exceeds the
wave scale of the interchange mode,cs+τ�1/k (wherecs+

is the fast magnetosonic speed andτ=γ −1). The fast mag-
netosonic speed is higher than the Alfvén speed, and thus,
the last condition is covered by the more strong condition
Vaτ�1/k, which can be written in dimensionless form,

(Va/Usw)(kR)τ̃ � 1. (20)

Inside the magnetic barrier, there isB≈
√

8πρswUsw,
ρ≈ρsw, and thus,Va/Usw≈1. Finally, the condition (20)
is simplified to(kR)τ̃�1, which is fulfilled becausẽτ≥0.5
andkR�1.

5 Discussions and conclusions

The growth rate of the interchange instability is studied for a
thin curved layer with smooth variations of plasma parame-
ters and reversal magnetic field structure. There are five main
factors providing an enhancement of the interchange instabil-
ity growth rate for the layer: 1) Increase in the thickness of
the layer; 2) Increase in the magnetic field strength on the
both sides of the layer; 3) Decrease in the plasma density; 4)
Increase in the wave number; 5) Decrease in the local curva-
ture radius of the layer.

In particular, the interchange instability is analyzed for
the layer in the Earth’s magnetosheath which is caused by a
nonsteady variation of the interplanetary magnetic field from
north to south. For a steady-state solar wind flow around the
magnetosphere, the magnetic field is enhanced near the mag-
netopause in the boundary layer, which is called magnetic
barrier or plasma depletion layer (see Erkaev et al., 2000 and
references therein). In the case of a nonsteady IMF variation,
we analyze the behaviour of a thin layer which is moving on
the background of the magnetic barrier. The interchange in-
stability growth rate is obtained which is increasing mono-
tonically while the layer is approaching towards the magne-
topause. This monotonic behavior of the growth rate is re-
lated to an enhancement of the magnetic field strength in the
magnetic barrier in the course of the layer moving towards
the magnetopause. This instability has a pure imaginary fre-

quency and thus, the wave perturbations do not propagate,
instead they are just transported with a bulk plasma flow.

Using the maximal growth rate from Figs. 6, 7 and taking
the solar wind velocityUsw=500 km/s, and a radius of the
magnetosphereR=10RE , we estimate the instability growth
time asτ=1/γ∼0.5R/Usw∼60 s. This time is short enough,
and thus, the instability can evolve into a nonlinear stage.

In our model we consider a reversal time scale of about
1 min. This is consistent with observations of Horbury et
al. (2001). The reversal length scale is dependent on the po-
sition of the convecting current sheet with respect to the mag-
netopause. In our case, it decreases along the subsolar line
from the value of about 1RE near the bow shock to a value
of 0.1RE near the magnetopause.

We consider a fully reversed field current layer, for sim-
plicity. In such a case we have the largest growth rate. For
a nonlocal analysis with smooth profiles, it is rather compli-
cated to take into account a shear angle. However, effects of a
finite shear angle have been studied previously by Arshukova
et al. (2002) for the particular case of a uniform layer with en-
hanced plasma pressure which is separated by two tangential
discontinuities. The interchange instability growth rate was
obtained by Arshukova et al. (2002) as a function of the mag-
netic shear angle. This growth rate was found to be positive
for a finite interval of the shear angle.

It is important to note that the interchange instability might
also take place for convected tangential discontinuities in the
magnetosheath with monotonic variations of the magnetic
field decreasing towards Earth.

Smooth magnetic field variations occurring under a con-
stant total pressure might be the reasons for the correspond-
ing variations of plasma pressure and density. Wide and
smooth variations of the density can develop into sharp and
relatively smallscale perturbations in the magnetic barrier.

A nonlinear behaviour of the unstable interchange modes
in the magnetosheath can be described qualitatively as fol-
lows: The instability will destroy the structure of a tangen-
tial discontinuity, and finally, it will result in the appearance
of two kinds of thin magnetic flux tubes: a) magnetic tubes
with enhanced plasma pressure with respect to the ambient
medium; b) magnetic tubes with decreased plasma pressure.
The scale of these tubes is expected to be of about 500 km.
The first type of tube could have a zero velocity because of
the equilibrium of two forces: The first force directed oppo-
site to the magnetopause is provided by a disbalance between
the total pressure gradient and the magnetic tension; The sec-
ond force is a hydrodynamic one provided by the ambient
plasma flow towards the magnetopause. The second kind of
tube is just convected downstream with the ambient plasma.
This is a possible qualitative explanation of the existence of
slow modes of the enhanced plasma pressure and density in
the subsolar magnetosheath, which look similar to the so–
called “slow mode transition regions” observed in the mag-
netosheath (Song et al., 1992).
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D., Österreichische Akademie der Wissenschaften, Vienna, 43,
2000.

Arshukova, I. L., Erkaev, N. V., and Biernat, H. K.: Magnetohydro-
dynamic instability of a high magnetic shear layer with a finite
curvature radius, Phys. Plasmas, 9, No 2, 401, 2002.

Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability,
Oxford University Press, London, 1968.

Erkaev, N. V., Farrugia, C. J., Biernat, H. K., Burlaga, L.F., and
Bachmaier G.A.: Ideal MHD flow behind interplanetary shocks
driven by magnetic clouds, J. Geophys. Res., 100, 19 919, 1995.

Erkaev, N. V., Biernat, H. K., and Farrugia, C. J.: Ideal magnetohy-
drodynamic flow around a blunt body under anisotropic pressure,
J. Geophys. Res., 7, 3413, 2000.

Erkaev, N. V., Farrugia, C. J., and Biernat, H. K.: The role of mag-
netic barrier in the solar wind- magnetosphere interaction, Planet.
Space Sci., 51, 745, 2003.

Farrugia, C. J., Erkaev, N. V., Biernat, H. K. and Burlaga, L. F.:
Anomalous magnetosheath properties during passage of an inter-
planetary magnetic cloud, J. Geophys. Res., 100, 19 245, 1995.

Freidberg, J. P.: Ideal Magnetohydrodynamics, Plenum Press, New
York, 1987.

Horbury, T., Burgess, D., Fränz, M., and Owen, C. J.: Three Space-
craft Observations of Solar Wind Discontinuities, Geophys. Res.
Lett., 28, 677, 2001.

Landau, L. D. and Lifshitz, E. M.: Electrodynamics of Continuous
Media, Pergamon Press, Oxford, 1960.

Petrinec, S. M. and Russell, C. T.: Hydrodynamics and MHD equa-
tions across the bow shock and along the surfaces of planetary
obstacles, Space Sci. Rev., 79, 757, 1987.

Rezenov, B. V. and Maltsev, Y. P.: Role of interchange instability in
flux transfer event origin, Ann. Geophys., 12, 183, 1994.

Song, P. C., Russel, C. T., and Thomsen, M. F.: Slow mode transi-
tion in the frontside magnetosheath, J. Geophys. Res., 97, 8295,
1992.

Spreiter, J., Summers, A. L., and Alskne, A. Y.: Hydrodynamic flow
around the magnetosphere, Planet. Space Sci., 14, 223, 1966.


