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Abstract. A theoretical and numerical model is presented
which describes the nonlinear interaction of lower hybrid
waves with a non-equilibrium electron distribution function
in a magnetized plasma. The paper presents some relevant
examples of numerical simulations which show the nonlin-
ear evolution of a set of three waves interacting at various
resonance velocities with a flux of electrons presenting some
anisotropy in the parallel velocity distribution (suprathermal
tail); in particular, the case when the interactions between
the waves are neglected (for sufficiently small waves’ am-
plitudes) is compared to the case when the three waves fol-
low a resonant decay process. A competition between exci-
tation (due to the fan instability with tail electrons or to the
bump-in-tail instability at the Landau resonances) and damp-
ing processes (involving bulk electrons at the Landau reso-
nances) takes place for each wave, depending on the strength
of the wave-wave coupling, on the linear growth rates of the
waves and on the modifications of the particles’ distribution
resulting from the linear and nonlinear wave-particle interac-
tions. It is shown that the energy carried by the suprathermal
electron tail is more effectively transfered to lower energy
electrons in the presence of wave-wave interactions.

Key words. Space plasma physics (wave-particle interac-
tions, waves and instabilities, wave-wave interactions)

1 Introduction

Lower hybrid and whistler waves have been currently ob-
served in space plasmas as the terrestrial magnetosphere or
the solar wind. Moreover, several in-situ measurements have
evidenced their presence simultaneously with suprathermal
fluxes or beams of electrons; for example, they are believed
to play a role in solar type III radio bursts (Lin et al., 1981,
1986, 1998; Kellogg et al., 1992a, 1992b; Reiner et al.,
1992; Stone et al., 1995; Thejappa et al., 1995; Ergun et al.,
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1998; Thejappa and MacDowall, 1998; Moullard et al., 1998,
2001) and in wave-particle processes occurring in the auro-
ral ionosphere (Ergun et al., 1993; Muschietti et al., 1997)
or in the terrestrial electron foreshock, for example (Hoppe
et al., 1982; Zhang et al., 1999). Many questions deserve
up to now to be raised concerning the generation mecha-
nisms of the observed waves, the processes that govern the
high-energy fluxes’ evolution and the role of nonlinear wave-
particle and wave-wave interactions. The study presented
here, which models the interaction of a set of waves with
a non-equilibrium electron velocity distribution in a magne-
tized plasma, contributes to clarify what mechanisms should
to be taken into account or should be neglected for a correct
description of physical situations as those cited above.

In order to study the nonlinear interaction of such waves
with electron beams and fluxes, two approaches have been
mainly considered up to now in the literature (e.g. O’Neil
et al., 1971; Shapiro and Shevchenko, 1968, 1971; Matsi-
borko et al., 1972, 1973; Kovalenko, 1983; Pivovarov et al.,
1995; Volokitin and Krafft, 2000, 2001a, 2001b, 2004; Krafft
et al., 2000; Krafft and Volokitin, 2002, 2003a): first, the
study of the instability and the saturation processes of a sin-
gle monochromatic wave (which can be used for the model-
ing of some experimental situations in laboratory), and sec-
ond, the evolution of a wide spectrum of waves at the stage
when the turbulence is well developed. However, the inter-
mediate case, when only a few wave modes are governing
the nonlinear processes through their mutual interaction and
their interaction with the particles, has also to be considered
for the adequate modeling of some space plasma phenomena.

We present in this paper a theoretical and numerical model
which describes the nonlinear interaction of lower hybrid
waves with suprathermal fluxes of electrons, and, more
generally, which allows one to consider various physical
situations involving the interaction of waves with a non-
equilibrium electron distribution function. This Hamiltonian
self-consistent model is based on a semi-analytical approach
and provides an efficient and original tool to study the vari-
ous features of the wave-particle and wave-wave interactions.
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Indeed, the analytical treatment performed to obtain the po-
tential evolution as a simple linear differential equation leads
eventually to a crucial decrease in the computing time and to
evidence clear and interpretable physical results. Moreover,
this approach allows one to present the wave-particle system
in a Hamiltonian form and thus to use symplectic methods
for the fields’ evolution and the particle’s motion numerical
calculations.

Lower hybrid waves can be driven unstable by the pres-
ence of some anisotropy in the electron velocity distribu-
tion along the ambient magnetic field, as it was first dis-
cussed in the frame of thermonuclear fusion by Kadomtsev
and Pogutse (1967): this so-called “fan instability”, where
energetic electrons interact with the wave at the anoma-
lous cyclotron resonance, does not require any positive slope
in the suprathermal electron tail (Shapiro and Shevchenko,
1968; Haber et al., 1978). Its threshold is overcome if
the number of electrons giving energy to the wave interact-
ing at the anomalous cyclotron resonance exceeds the num-
ber of electrons taking energy from the wave at the Landau
and the normal cyclotron resonances (Mikhailovskii, 1974;
Omelchenko et al., 1994; Krafft and Volokitin, 2003b). This
instability is worth being studied in the frame of our model,
when one given wave is simultaneously involved in several
resonant interaction processes; for example, a wave excited
by the fan instability through its interaction with some tail
electrons at the anomalous cyclotron resonance can be si-
multaneously damped at the Landau resonance (interaction
with the thermal bulk electrons) and at the normal cyclotron
resonance (interaction with a very small amount of electrons
of negative parallel velocity). This competition between ex-
citation and damping processes, which takes place for each
wave, can lead in the nonlinear stage to new physical effects
when considering a set of several waves: for example, if a
wave is stable in the linear stage, it can become unstable dur-
ing the nonlinear evolution as a result of the modification of
the particles’ velocity distribution functions through the ac-
tion of the other waves. Moreover, the wave-wave coupling
can enhance the interaction between the waves and the parti-
cles.

This paper presents some relevant examples of numerical
simulations showing the nonlinear evolution of a set of three
waves interacting at various resonances (Landau, anomalous
and normal cyclotron) with a flux of electrons which presents
some anisotropy in the parallel velocity distribution; in par-
ticular, the case when the interactions between the waves are
neglected (for sufficiently small waves’ amplitudes) is com-
pared to the case when the three waves follow a resonant
decay process.

2 Nonlinear model for lower hybrid wave-particle inter-
action

The equation describing the evolution of the potential
ϕ(r⊥, z, t) of an electrostatic lower hybrid wave of fre-

quencyω (in the rangeωlh=ωpiωc/
(
ω2

c + ω2
p

)1/2
�ω≤ωc,

whereωlh, ωpi, ωc and ωp are the lower hybrid, the ion
plasma, the electron cyclotron and the electron plasma fre-
quencies, respectively) under the influence of a beam or a
flux of suprathermal electrons of densitynh in a background
magnetized plasma (the ambient magnetic field is uniform
and directed along the z axis,B0=B0z) is given by (Volok-
itin and Krafft, 2001a, Krafft and Volokitin, 2002)
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∫
fh (v, r, t) d3v; fh (v, r, t) is the distribution

function of the suprathermal electron population;r (r⊥, z)

is the coordinate andv (v⊥, vz) is the velocity;−e<0 is the
electron charge. Equation (1), which can be derived from the
Poisson, the fluid and the continuity equations, allows one to
obtain the dispersion relation of the electrostatic lower hybrid
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where k(kz, k⊥) is the wave vector. The ions form
a motionless neutralizing background and their dynam-
ics is not essential in the range of frequencies con-
sidered. Assuming that the wave-particle interactions
are relatively weak and that the lower hybrid wave po-
tential ϕ can be presented as the sum of waves with
potential amplitudesϕk slowly varying along z, that
is ϕ (r⊥, z, t)=Re

∑
k ϕk (z, t) exp(ikzz+ik⊥ · r⊥−iωkt)

(it is assumed that the plasma and the electron flux are ho-
mogeneous along the direction perpendicular to the ambient
magnetic field), we obtain in Fourier presentation
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which gives, for a plasma and a flux homogeneous alongz
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pω2
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)= ∂ωk
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is the parallel group velocity;

Lz and L⊥ are the spatial periods in the parallel and the
perpendicular directions, respectively. The nonlinear terms
corresponding to wave-wave coupling (neglected in Eq. (2))
will be examined in detail below. The averaging〈〉 ↔

∫
dt
T

is performed on a wave periodT =2π/ω. Moreover, using
the conservation of the phase space volume along the par-
ticles’ trajectories, one can express Eq. (2) as a function of
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the total number of macro-particlesN inside the box of vol-
umeLzL

2
⊥

, whereLz=2π/kz min andL⊥=2π/k⊥ min (kz min
andk⊥ min) are the minimum values of the parallel and the
perpendicular wave numbers, respectively), with the help of∫

d2rdz

LzL
2
⊥

∫
d3vfh (v, r, t) →

1

N

N∑
p=1

, N = nbLzL
2
⊥
, (4)

Note that, as shown by our numerical simulations (see be-
low and Volokitin and Krafft, 2004), the operation of time av-
eraging〈〉 can be omitted without any violation of the model
validity. Finally, one obtains the nonlinear evolution of the
potential amplitude (2) in the form
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)
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whereηp=kzzp+k⊥ ·r⊥p−ωkt is the phase of the particlep
located at the positionrp(r⊥p, zp, t); v∗ is the normalization
velocity andme is the electron mass;n0 is the background
plasma density.

The motion of the electrons in the wave fields is described
by

dr

dt
= v,
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+ v × ωc =
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where ωc=
eB0
mec

=ωc
B0
B0

(all nonlinearities are kept
in the motion Eq. (6)). Note that the Eqs. (5)–(6)
have a Hamiltonian structure. Indeed, introduc-
ing the generalized impulse of the particlep as
pp=mevp−eB0

(
z × rp

)
/c=me

(
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)
, Eq. (6)

can be expressed as follows
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whereA is the vector potential (here∇×A=B0). Then, in-
troducing the normal wave amplitudes as
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the Eq. (5) can be presented as
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where H0 is the energy of the free waves in the volume
L2

⊥
Lz.

3 Wave-wave interaction terms

The wave-wave interactions can be included in the pre-
sented model by adding to the Hamiltonian (13) some
term describing the coupling between the waves; for
a three-wave resonant process with matching conditions
k(k⊥,kz)=k1(k⊥1,kz1)+k2(k⊥2,kz2) andωk=ωk1+ωk2, it
can be written in the following form
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where the wave-wave interaction matrix elementVkk1k2 sat-
isfies to some rules of symmetry. For the case of lower hybrid
waves, the calculations give
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wherek, k1 andk2 are the moduli of the wave vectorsk, k1
andk2. Using the normal amplitudes, the full equations for
the waves are given by

∂Ck
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whereas the two other coupled differential equations can be
obtained by performing adequate permutations of the wave
numbers in Eq. (16), according to the symmetry rules. Re-
turning to the wave potentialϕk we obtain
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where the coefficients of interaction0k1k2 relate to the matrix
elementsVkk1k2 according to

0k1k2 =
mev

2
∗

eωc

k1k2

k

√
ωk

ωk1ωk2

√
ω2

c + ω2
p

8πω2
c

Vkk1k2. (18)

Due to the Hamiltonian nature of the system, its total energy,
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and its total impulse

Pz =
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are conserved.

4 Numerical simulation results

The first results provided by the numerical simulations based
on Eqs. (5)–(6) (without the wave-wave interaction terms)
are presented in Volokitin and Krafft (2004), where differ-
ent instabilities of lower hybrid waves driven by suprather-
mal electron fluxes in a magnetized plasma have been con-
sidered. In this paper we are mainly interested in studying
the nonlinear stage of the evolution of three waves inter-
acting with a suprathermal electron flux at the Landau, the
normal and/or the anomalous cyclotron resonance velocities

(that is,vR= (ω−mωc) /kz for m=0, m=1 andm=−1, re-
spectively). Indeed, we consider a lower hybrid wave (k, ωk)
which is excited by the fan instability and decays resonantly
in two other lower hybrid waves (k1, ωk1) and (k2, ωk2),
whereas satisfying the matching conditionsk=k1+k2 and
ωk=ωk1+ωk2; each of the three waves can interact with the
particles at several resonance velocities simultaneously. The
following numerical results are presented in a dimensionless
form: the time is normalized by the electron cyclotron pe-
riod, τ=ωct/2π , the particles’ velocities are measured in
units of some typical velocityv∗, all space coordinates are
normalized by the corresponding Larmor radiusv∗/ωc and
the normalized wave potentials areeϕk/mev

2
∗. As a result,

the normalized equation of the potential evolution (17) con-

tains the dimensionless parameterp=
ω2

p

ω2
c+ω2

p

nb

n0
<1 which de-

scribes the electron flux intensity. All normalized variables
used below are described by the same notations as the phys-
ical ones. Let us note that, because we study the interaction
of a wave with electron fluxes in strongly non-equilibrium
states, as, for example, with particle distributions of differ-
ent perpendicular and parallel temperatures, the typical en-
ergy of the plasma electrons can differ from the thermal
energy; however, in most cases, it is possible to consider
that it is close to the characteristic energy of the bulk elec-
trons. The total velocity distribution function is constituted
by two populations of electrons: the bulk (or the core) and
the tail. In general, for instabilities involving energetic elec-
trons, the thermal bulk electrons are non-resonant and do not
participate directly in the wave-particle interaction, even if
they influence on the waves through the dielectric tensor; the
tail involves the suprathermal electrons which can be in cy-
clotron resonance with the waves. Thus, in the numerical
simulations, in order to point out clearly the wave excita-
tion mechanisms at work, the bulk electrons are generally
not represented as macro-particles; however, their interac-
tion with particles can be modeled by taking into account
some Landau damping through the introduction of a distri-
bution function in the bulk region. The tail electrons are dis-
tributed uniformly in space within a numerical box of size
[Lx, Ly, Lz]=[L

⊥
, L

⊥
, Lz] with periodic boundary condi-

tions; this box contains a finite number of wavelengths of
each wave present in the system. The particle velocity dis-
tributions can model a very wide set of physically interest-
ing distributions, ranging in the parallel direction up to sev-
eral tens of thermal velocities. These nonuniform distribu-
tions are loaded using classical methods as the method of
inversion of cumulative distribution functions. The electrons
are distributed in phase space either randomly, or using quiet
start methods, in order to decrease the numerical noise; in the
latter case, the distributions are sampled using the so-called
Hemmersley’s sequence. The normalized first order differ-
ential equation governing the potential is solved at each time
step using a finite-difference numerical scheme; the Newton-
Lorentz equations are computed self-consistently owing to
the usual leap-frog method. It is worth noting that in all cal-
culations the accuracy of the conservation with the time of
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Fig. 1. Interaction of three waves with a particle distribution in the presence of a suprathermal tail of electrons extending in the parallel
directionvz>0. The waves’ frequencies and wave vectors are satisfying the matching conditions:k=k1+k2 andωk=ωk1+ωk2; the cou-
pling between the three waves is neglected.(a) Variation as a function of the normalized timeτ=ωct/2π of the normalized wave energy

densityEwk (proportional to
∣∣∣ϕ2

k

∣∣∣) of each of the three waves (each wave is indicated by its normalized frequencyωk/ωc): the amplitudes

of the second and third waves,
(
ωk1, k1

)
and

(
ωk2, k2

)
, are negligibly small compared to that of the first one;(b) Parallel velocity distri-

bution functionF(vz) at different times:τ=0, 334, 525, 907. The electron distribution is modeled by a maxwellian in the perpendicular
direction and by a thermal bulk and a suprathermal tail in the parallel direction (see (b) forτ=0). The main normalized parameters are the
following: p=0.113, k=(kx , ky , kz)=(0.2, 0.15, 0.12), k1=(−0.2, −0.2,−0.04), k2=(0.4, 0.35, 0.16), ωk/ωc=0.411, ωk1/ωc=0.133,
ωk2/ωc=0.273, 1ω/ωc'0.005 (frequency mismatch),vR(m=0)=3.42, vR1(m=0)=−3.32, vR2(m=0)=1.7 (Landaum=0 normalized
resonant velocities for each of the three waves),vR(m=−1)=11.7, vR1(m=−1)=−28.3, vR2(m=−1)=7.9 (anomalous cyclotronm=−1
resonant velocities), vR(m=1)=−4.9, vR1(m=(1)=21.7 , vR2(m=1)=−4.5 (normal cyclotronm = 1 resonant velocities), N=50 000.

the total energy and impulse was sufficiently high, as their
variations did not exceed 1%.

The first example we present concerns the interaction
of three waves with a particle distribution presenting a
suprathermal tail along the parallel directionvz>0; the nor-
malized parallel velocityvz extends up tovzmax ' 14 (that is,
up to several thermal velocities), whereas there are no parti-
cles withvz.−5; the parallel and perpendicular velocity dis-
tribution functions of the thermal electrons are maxwellian.
The three waves satisfy to the matching conditionsk=k1+k2
andωk=ωk1+ωk2; however, as a first step, we neglect the
nonlinear wave-wave interaction term in Eq. (17). The first
wave (ωk, k) (resp., the third wave (ωk2, k2)) can interact
with the particles at the anomalous cyclotron resonance ve-
locity vR=11.7 (resp.,vR2=7.9) and at the Landau reso-
nance velocityvR=3.42 (resp.,vR2=1.7), whereas the sec-
ond wave does not verify any resonance conditions with the
particles of the distribution. Moreover, no interaction can
take place at the normal cyclotron resonances as all the cor-
responding resonant velocities are out of the domain of the
parallel particles’ velocities (−5.vz.14). Figure 1a shows
the evolution with the normalized timeτ=ωct/2π of the nor-
malized energy densityEwk (proportional to

∣∣ϕ2
k

∣∣) of each
wave (the normalized frequencies of the three waves are
ωk/ωc=0.411,ωk1/ωc=0.133 andωk2/ωc=0.273, respec-
tively). One observes that the first wave (ωk, k) is excited
by the fan instability and saturates by particle trapping near
τ'100, reaching a level which slowly grows with time (see
also Volokitin and Krafft, 2004). As expected, the second

wave cannot be resonantly excited and the third wave, which
has initially a small negative growth rate, oscillates around
some low noise level. The evolution of the parallel velocity
distributionF(vz) is presented in Fig. 1b, showing the ap-
pearence of some perturbation near the anomalous cyclotron
resonant velocity of the first wave (vR=11.7) which per-
sists during all the evolution. Meanwhile, the parallel (resp.,
perpendicular) kinetic energy of the particles, proportional
to
∑N

p=1 v2
zp/N (resp.,

∑N
p=1 v2

⊥p/N ) is decreasing (resp.,
increasing), with a net loss of particle kinetic energy (not
shown here); this is characteristic of the fan instability where
the deceleration of anomalous cyclotron resonant electrons
allows wave excitation. Note that the Landau damping of
the first wave atvR=3.42 is not sufficient enough to sup-
press its excitation atvR=11.7. Moreover, the third wave
(ωk2, k2) begins to be weakly excited by the fan instability
nearτ'700, which can be seen on the distribution function
F(vz) where some small peak is appearent nearvR=7.9 (see,
for example, Fig. 1b forτ=907).

The same wave-particle system has been studied when
the interactions between the three waves are no longer ne-
glected in Eq. (17). Figures 2a and b show the variations as a
function of timeτ of the normalized energy density of each
wave,Ewk, and of the total wave energy density,

∑
k Ewk,

respectively. In the presence of wave-wave coupling, the
first wave, excited by the fan instability, exchanges quasi-
periodically some energy with the two other waves, so that
the periodic decrease of its energy density is accompanied by
the excitation of the two other waves and inversely (see the
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Fig. 2. Resonant three-waves decay (k=k1+k2 andωk=ωk1+ωk2) in the presence of a suprathermal tail of electrons extending in the
parallel directionvz>0 (wave-wave interaction terms are not neglected). Variation as a function of the normalized timeτ (a)of the normalized
wave energy densityEwk of each of the three waves (each wave is indicated by its normalized frequencyωk/ωc) and (b) of the total
normalized wave energy density

∑
k Ewk ; (c) Parallel velocity distribution functionF(vz) at different times:τ=0, 72, 191, 334, 477, 1050.

The main normalized parameters and the initial particle distribution functions are the same as in the Fig. 1.

Fig. 2a): the total wave energy is shared between the three
waves according to the interaction coefficients (18). More-
over, the saturation stage of the total wave energy density,
characterized by oscillations around a roughly constant level,
now involves additional physical processes: the slow growth
of the saturation level observed previously (see Fig. 1a),
which could be connected with stochastic processes of wave-
particle interactions where the wave eventually gains some
energy, is strongly reduced when the wave energy is trans-
fered to other waves (note that the motion of the particles
in a wave field with oscillating amplitude has a complex
and sometimes chaotic behavior; indeed, the examination
of the trajectories of many test particles shows that stochas-
tic processes of particle trapping and detrapping takes place,
which occur for electrons located near the separatrix of the

resonance region, see also Volokitin and Krafft, 2004). As
shown by the Fig. 2c, where the evolution with the time
of the parallel velocity distribution functionF(vz) is pre-
sented, the linear stage of the interaction is dominated (see
Fig. 2c for τ=0, 72) by the excitation of the first wave by
the fan instability at the anomalous cyclotron resonance ve-
locity vR=11.7, which overcomes the Landau damping oc-
curing atvR=3.42. Nearτ'100, the energy gained by the
first wave owing to the deceleration of the resonant parti-
cles atvR=11.7 begins to be shared with the second and the
third waves which are, in turn, excited. Figure 2c forτ=191
shows the appearance in the parallel distribution function
F(vz) of a perturbation at the anomalous resonance velocity
vR=7.9 (that is, the third wave is excited by the fan insta-
bility), together with a noticeable modification ofF(vz) near
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Fig. 3. Interaction of three waves with a particle distribution in the presence of a suprathermal tail of electrons extending in the parallel
directionvz>0. The waves’ frequencies and wave vectors are satisfying to the matching conditions of the three-waves resonant decay:
k=k1+k2 andωk=ωk1+ωk2; the coupling between the three waves is neglected.(a) Variation as a function of the normalized timeτ

of the normalized wave energy densityEwk (proportional to
∣∣∣ϕ2

k

∣∣∣) of each of the three waves (each wave is indicated by its normalized

frequencyωk/ωc) and (b) of the total normalized energy density
∑

k Ewk . The electron distribution is modeled by a maxwellian in the
perpendicular direction and by a thermal bulk and a suprathermal tail in the parallel direction. The main normalized parameters are the
following: p=0.0625,k=(kx , ky , kz)=(0.556,−0.111, 0.125), k1=(0.222, 0.444, 0.0625), k2=(0.333,−0.556, 0.0625), ωk/ωc=0.211,
ωk1/ωc=0.122, ωk2/ωc=0.0942, 1ω/ωc'0.005 (frequency mismatch), vR(m=0)=1.7, vR1(m=0)=1.9, vR2(m=0)=1.5 (Landaum=0
normalized resonant velocities for each of the three waves), vR(m=−1)=9.7, vR1(m=−1)=17.9, vR2(m=−1)=17.5 (anomalous cy-
clotronm=−1 resonant velocities), vR(m=1)=−6.3, vR1(m=1)=−14, vR2(m=1)=−14.5 (normal cyclotronm=1 resonant velocities),
N=100 000.

the Landau resonance velocityvR=1.7 (resonant electrons
are accelerated by the third wave), indicating that signifi-
cant Landau damping occurs (this effect was much weaker
for the previous case when the wave-wave interactions were
neglected, see Fig. 1b). Thus, the presence of wave cou-
pling effects enhance the interaction of the waves with the
particles, as shown by the progressive and significant modifi-
cation of the electron distribution functionF(vz) during the
time evolution (see Fig. 2c forτ>191), for example, one can
see nearvR=1.7 the formation of a plateau (see Fig. 2c for
τ'191) followed by the appearance of a small peak (see the
Fig. 2c forτ=477) which can, in turn, allow the excitation
of the third wave by the bump-in-tail instability owing to the
presence of a positive slope (indeed, one observes an increase
in the saturation level of this wave forτ&400, see Fig. 2a).

Let us now consider three waves satisfying the match-
ing conditionsk=k1+k2 and ωk=ωk1+ωk2, with the first
wave (ωk, k) interacting with the particles at two resonance
velocities, vR=1.7 (Landau) andvR=9.7 (anomalous cy-
clotron). The second and the third waves are resonant with
the bulk particles at the Landau resonance velocitiesvR=1.9
andvR=1.5, respectively. Initially, the first wave is unstable
and the two others are damped. Numerical simulations per-
formed without including the wave-wave interaction terms
in Eq. (17) show that the first wave withωk/ωc=0.211 is ex-
cited by the fan instability (see Fig. 3a), whereas the third
wave’s amplitude (ωk2/ωc=0.0942) remains very small dur-
ing the entire time evolution (compare Figs. 3a and 3b),

the second wave (ωk1/ωc=0.122) is weakly excited by the
bump-in-tail instability driven by the small modification of
the parallel velocity distribution function in the region where
this wave can interact at the Landau resonance with the parti-
cles. Without this modification, only Landau damping occurs
and the second wave could not be excited at all through res-
onant wave-particle interactions.

When the wave coupling effects are included in the numer-
ical calculations (see the Fig. 4b), the maximum and the sat-
uration level of the total wave energy density remain roughly
the same, as in the previous case, but the redistribution of the
energy between the waves during the evolution time is quite
different. The first wave shares its energy with the two others
through nonlinear coupling (one can see in the Fig. 4a sev-
eral clear oscillations with a period of the order of1τ'20),
which leads to a strong modification of the parallel veloc-
ity distribution in the region where the two daughter waves
are resonant with the particles (that is, within the domain
1.5.vR.1.9): as a result, lower energy particles are acceler-
ated (not shown here). Meanwhile, the variations of the par-
allel and the perpendicular kinetic energies between the ini-

tial and the final evolution times, that is,1
(∑N

p=1 v2
zp/N

)
and 1

(∑N
p=1 v2

⊥p/N
)
, are 4 times larger than when the

wave-wave interactions are neglected, whereas the net loss
of kinetic energy is roughly the same.

The nonlinear evolution of a set of three lower hybrid
waves interacting with suprathermal electrons at various



2178 C. Krafft and A. Volokitin: Resonant three-wave interaction

0
200

400
600

800
1000

1200

0.1
0.12

0.14
0.16

0.18
0.2

5

10

15

x 10
−5

τ

(a)(a)(a)

ω
k
/ω

c

E
w

k

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−4

τ

Σ k E
w

k

(b)

0
200

400
600

800
1000

1200

0.1
0.12

0.14
0.16

0.18
0.2

5

10

15

x 10
−5

τ

(a)(a)(a)

ω
k
/ω

c

E
w

k

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−4

τ

Σ k E
w

k

(b)

Fig. 4. Resonant three-waves decay (k=k1+k2 andωk=ωk1+ωk2) in the presence of a suprathermal tail of electrons extending in the
parallel directionvz>0 (wave-wave interaction terms are not neglected). Variation as a function of the normalized timeτ of (a) the normalized
wave energy densityEwk of each of the three waves (each wave is indicated by its normalized frequencyωk/ωc) and(b) the total normalized
wave energy density

∑
k Ewk . The main normalized parameters and the initial particle distribution functions are the same as in Fig. 3.

resonance velocities shows that a competition between ex-
citation (due to the fan instability with tail electrons or to the
bump-in-tail instability at the Landau resonances) and damp-
ing processes (involving bulk electrons at the Landau reso-
nances) takes place for each wave, depending on the strength
of the wave-wave coupling, on the linear growth rates of the
waves and on the modifications of the particles’ distributions
resulting from the linear and nonlinear wave-particle interac-
tions. Moreover, it is shown that the energy carried by the
suprathermal electron tail is more effectively transfered to
lower energy electrons in the presence of wave-wave interac-
tions.
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