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Abstract. Multiple discrete-energy ion bands observed by
the Polar satellite in the inner magnetosphere on 9 Febru-
ary 1998 were investigated by means of particle simulation
with a realistic model of the convection electric field. The
multiple bands appeared in the energy vs.L spectrum in
the 1–100 keV range when Polar traveled in the heart of
the ring current along the outbound and inbound paths. We
performed particle tracing, and simulated the energy vs.L

spectra of proton fluxes under the dipole magnetic field, the
corotation electric field, and the realistic convection electric
field model with its parameters depending on the solar wind
data. Simulated spectra are shown to agree well with the
observed ones. A better agreement is achieved when we ro-
tate the convection electric potential eastward by 2 h in MLT
and we change the distribution function in time in the near-
Earth magnetotail. It is concluded that the multiple bands are
likely produced by two processes for this particular event,
that is, changes in the convection electric field (for>3 keV
protons) and changes in the distribution function in the near-
Earth magnetotail (for<3 keV protons).

Key words. Magnetospheric physics (energetic particles,
trapped; electric field) – Space plasma physics (numerical
simulation studies)

1 Introduction

The Polar satellite, on many traversals of the inner magneto-
sphere (L<7), observed multiple peaked ion bands appear-
ing on an energy vs. time spectrum in the energy range be-
tween keV and hundreds keV (Peterson et al., 1998; Fennell
et al., 1998). The multiple peaked ion bands are similar to
the “nose” dispersion (Smith and Hoffman, 1974), which is
understood to the time-dependent penetration of the plasma
sheet ions coming from the near-Earth magnetotail (Ejiri et
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al., 1980). The multiple bands are distinguished from the
bouncing clusters of field-aligned ions (Quinn and McIlwain,
1979; Mauk, 1986; Kazama and Mukai, 2003) and the con-
vective dispersion of field-aligned ions (Winningham et al.,
1984; Bosqued et al., 1986; Frahm et al., 1986; Hirahara et
al., 1996).

A classic “dip” or “gap” is often observed in the morn-
ing and dayside magnetosphere (Lyons and Williams, 1976;
Lennartsson et al., 1979; Kistler et al., 1989; Shirai et al.,
1997; Kovrazhkin et al., 1999; Buzulukova et al., 2002). The
classic “dip” or “gap” is observed to be accompanied by a
single minimum of the ion flux in a spectrum. The wedge-
like dispersion, which is also observed in the inner magneto-
sphere in the sub-keV energy range (Yamauchi et al., 1996;
Ebihara et al., 2001), may be a class of the multiple bands,
but the features are somewhat different.

A sudden appearance of energetic particles is common in
the inner magnetosphere. This is known to be accompa-
nied with energy-time dispersion, and attributed to temporal
changes in the ambient magnetic field configuration in the
near-Earth tail (McIlwain, 1974; Mauk and McIlwain, 1974;
Nagai, 1982; Lopez et al., 1990; Reeves et al., 1991; Grande
et al., 1992; Li et al., 2003).

Sheldon et al. (1998) showed field-aligned beams of
40 keV ions in the heart of the ring current (L=3−7). They
speculated that nose ions (90 keV) create a parallel electric
field that is responsible for the ionospheric beam features.

Modeling has been conducted to understand the formation
of the multiple peaked ion bands. Peterson et al. (1998) pro-
posed that plasma sheet ion clusters, isolated in space and
time in the magnetotail, migrate sunward under the convec-
tion electric field, and form the multiple ion bands.

Fennell et al. (1998) performed a particle simulation (Chen
et al., 1993) under a time-dependent convection electric field,
and suggested that there are two distinct sources of the ions;
the ionosphere for the lower energy bands (∼<1 keV) and
the near-to-distant plasma sheet for the higher energy bands
(∼>1 keV). The multiple peaks can be partially explained
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by the time-dependent transport, that is, the different energy
ions take different times to reach Polor under the time-
dependent convection electric field. Kistler et al. (1999) and
Angelopoulos et al. (2002) showed, on the basis of numerical
simulation, that multiple minima of the ion flux can be pro-
duced in the sub-keV energy range when a realistic convec-
tion electric field model is employed. Multiple bands of elec-
trons have been observed (Burke et al., 1995), and Liemohn
et al. (1998) attributed them to changes in the large-scale con-
vection electric field.

Another proposed mechanism is the substorm-associated
electric and magnetic fields that inject the plasma sheet ions
into the inner region rapidly. Li et al. (2000) traced ion drift
trajectories by introducing an electromagnetic pulse emitted
by a substorm-associated dipolarization event in the magne-
totail. In their model, the pulse of electric and magnetic fields
propagates from the magnetotail toL=3.5 at a constant ve-
locity of 100 m/s. The pulse is partially reflected after reach-
ing L=3.5. Multiple peaked spectra of ions are shown to ap-
pear without introducing the convection and corotation elec-
tric fields. They concluded that the multiple peaked spectra
are fully due to a time-of-flight effect, that is, a particle with
a fast drift velocity reaches a certain point first, followed by a
particle with a slow drift velocity when a source population is
confined spatially and temporally. This kind of propagating
pulse of electric and magnetic fields associated with a sub-
storm has been introduced to numerical tracing, to account
for the sudden appearance of radiation belt electrons (Li et
al., 1998) and ring current ions (Li et al., 2000; Ganushkina
et al., 2001).

Multiple discrete-energy ion bands can be produced by
combined mechanisms that coincidently take place in the
real magnetosphere. Since the results depend entirely on the
assumed magnetic and electric field models, an exact solu-
tion describing the phenomena is not desired. We are inter-
ested in finding the most dominant mechanism leading to the
particular multiple ion bands observed on 9 February 1998.
This event has been argued by Fennell et al. (1998) and Li
et al. (2000), but the argument was not fully settled regard-
ing the essential mechanism; the convection (Fennell et al.,
1998), the substorm (Li et al., 2000), the migration of iso-
lated ion clusters (Peterson et al., 1998), and the direct entry
from the ionosphere (Fennell et al., 1998).

2 Observation

The Polar satellite was launched on 24 February 1996 into
an elliptic orbit with perigee of 2RE and apogee of 9RE at
∼86◦ inclination with an orbital period of∼18 h. The MICS
sensor of the Charge and Mass Magnetospheric Ion Com-
position Experiment (Wilken et al., 1992) measures fluxes,
angular distributions and charge states of the major ions
(H+, He+, He++, O<+3,O>+3) in the energy range between
∼1 keV/q and 220 keV/q. On 9 February 1998, the multiple
discrete-energy ion bands were observed by the MICS sen-
sor at 08:39–09:34 UT (inbound) and 11:23–13:13 UT (out-

bound), as shown in the panels 1 and 2 of Fig. 1. Po-
lar was on the morning side for the inbound path (03:48–
04:03 MLT) and the evening side for the outbound path
(15:51–16:27 MLT). The pitch-angle averaged differential
fluxes of the protons are displayed at regular intervals inL.
We focus on the six energy bands that appear clearly in the
diagrams near 45 (band 1), 28 (band 2), and 8 keV (band
3) atL=4.0 on the inbound path, and near 32 (band 4), 18
(band 5), and 3.5 keV (band 6) atL=3.5 on the outbound
path. Their pitch angle distributions show that proton fluxes
perpendicular to the local magnetic field dominate fluxes par-
allel to the magnetic field. This suggests that the protons are
distinguished from ion beams emitted directly from the con-
jugate ionosphere (Sheldon et al., 1998). The bands that ap-
pear on the outbound path (panel 2) are described in detail
by Fennell et al. (1998).

The IMF and the solar wind data from the MFI (Lepping
et al., 1995) and the SWE (Ogilvie et al., 1995) instruments
aboard the Wind satellite are plotted in Fig. 2. As can be
seen, the multiple ion bands were observed when the IMF-
Bz was nearly zero, on the average, andDst ranged between
1 and−22 nT. This means that the magnetosphere was rela-
tively quiet. A noticeable magnetic activity was recorded half
of a day prior to the measurement. The IMFBz turned south-
ward at∼16:00 UT on 8 February, and the negative IMFBz

lasted 9 h. A consequent decrease inDst started at 17:00 UT
on 8 February, and its minimum reached−23 nT at 23:00 UT
on 8 February.

3 Model

Bounce-averaged drift trajectories of protons were traced in
the dipole magnetic field, the corotation electric field, and the
convection electric field model. The bounce-averaged drift
velocity in the dipole magnetic field is described by (Ejiri,
1978)

〈V s〉 =
B

B2
×

(
∇8 + ∇8c +

KG(y0)

qB
∇B

)
, (1)

whereB is the magnetic field,8 the convection electric po-
tential,8c the corotation electric potential,K the kinetic en-
ergy,q the charge,y0 sine of the equatorial pitch angle, and
G is the function given by Ejiri (1978).G is 1.0 for the equa-
torial pitch angle of 90◦ and 0.85 for 30◦. Assuming that the
first two adiabatic invariants are conserved, the change in the
equatorial pitch angle due to a drift in the radial direction is
written by

dy0

dt
= −

y0I (y0)

4F(y0)

1

R

dR

dt
, (2)

whereR is the radial distance from the center of the Earth.
The functionsI (y0) andF(y0) are also given by Ejiri (1978).

Two different empirical models of the convection electric
field were employed in the calculation. One is the model de-
veloped by Weimer (2001) (hereinafter referred to the W2K
model). Another is the Volland-Stern type model (Volland,
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Fig. 1. From top to bottom, energy vs.L spectra of pitch-angle averaged proton differential flux measured by POLAR/CAMMICE/MICS on
9 February 1998 (panels 1 and 2), energy spectra of locally mirroring proton flux calculated with the Volland-Stern type convection electric
field model (panels 3 and 4), same as panels 3 and 4, except that the spectra were calculated with the W2K model (panels 5 and 6), same as
panels 5 and 6, except that the spectra were calculated with suspended injection during the period between 14:00 and 16:00 UT on 8 February
(panels 7 and 8), same as the panels 7 and 8, except that the W2K model is rotated eastward by 2 hours in MLT (panels 9 and 10). The left
column is spectra for the inbound path and the right column for the outbound path.

1973; Stern, 1975). The W2K model gives an ionospheric
electric potential depending on the solar wind velocity, IMF,
and the dipole tilt angle of the Earth’s rotation. The electric
potential is expressed by a spherical harmonic series as

8(φ, θ) =

4∑
l=0

min(l,3)∑
m=0

(Alm cosmφ + Blm sinmφ)P m
l (cosθ), (3)

whereφ is the MLT,θ is the geomagnetic colatitude, andP m
l

is the associated Legendre function. The spherical harmonic
coefficientsAlm andBlm were derived with a least error fit,
with satellite measurement done by the Dynamics Explorer-2
satellite on 2645 polar cap passes. Following the manner
performed by Weimer (2001), we used a sliding average of
IMF and solar wind data. The averages were taken for the
20-min period prior to the polar observation. Before averag-
ing, the IMF and solar wind data was delayed by the travel

time to the Earth. Assuming that a field line is equipotential,
we mapped the ionospheric potential to the equatorial plane
along the field line.

We also used the Volland-Stern type model for the purpose
of reference;

8(φ, L) = 8PCP

sinφ

2

(
L

LB

)2

, (4)

where8PCP is the polar cap potential drop, andLB is theL-
value at the magnetopause at dusk and dawn.LB is assumed
to be 10.47RE in this particular simulation. The polar cap
potential drop was calculated with the empirical model of
the relationship between the solar wind parameters and the
polar cap potential drop (Boyle et al., 1997) as

8PCP = 1.1 × 10−4Vsw(km/s)2
+



1300 Y. Ebihara et al.: Multiple discrete-energy ion bands

0
10

20

30

40

S
W

 N
(c

m
-3
)

0
10

20

Northward

Southward

Inbound

Outbound

N
(c

m
          

 

0
100
200
300
400
500

S
W

 V
(k

m
/s

)

0
100
200
300
400
500

V
(k

m
/s

)

          
 

0

5

10

15

IM
F

 |B
|

(n
T

)

0

5

10

15

(n
T

)

          
 

180

90

0

C
lo

ck
 a

ng
le

(d
eg

)

180

90

0

C
lo

ck
 a

ng
le

(d
eg

)

          
 

-30
-20
-10

0
10
20

D
st

(n
T

)

-30
-20
-10

0
10
20

D
st

(n
T

)

 
0000
Feb 8
1998

 
0600

 
1200

 
1800

 
0000
Feb 9
1998

 
0600

 
1200

 
1800

 
0000
Feb10
1998 

 UT

Fig. 2. From top to bottom, the solar wind density (SW N), the solar wind velocity (SW V), the intensity of the IMF (IMF B), the clock angle
of IMF andDst on 8–9 February 1998.

11.1BIMF (nT) sin3 θIMF

2
(kV). (5)

The differential flux along the Polar orbit was calculated
with the same manner that Ebihara et al. (2001) performed.
We started tracing at a satellite position specified by a five-
dimensional phase space, that is,L, φ, K, magnetic latitude
λ, and sine of the local pitch angley. Assuming that there
is no parallel electric field, we can reduce the number of the
dimensions from five to four, that is,L, φ, K andy0. Particle
tracing backward in time was performed until it reached the
outer boundary of 10RE , or the elapsed time exceeded 36 h.
According to Liouville’s theorem, the phase space densities
at the two points, the satellite position and the boundary po-
sition, are equal except for loss effects, that is,

f (L, MLT , K, y0)

∣∣∣∣
satellite

= f (L, MLT , K, y0)

∣∣∣∣
boundary

− 1f,

where1f denotes the loss of the phase space density. The
charge exchange loss with the neutral hydrogen contributes

to 1f in the calculation, and is calculated along the bounce-
averaged drift trajectory as

1f =

∫ f (L, MLT , K, y0)
∣∣
boundary

τ(L, K, y0)
∣∣
trajectory

dt,

where τ̄ is the bounce-averaged lifetime of the charge ex-
change (c.f. Ebihara et al., 2001). The Hodges (1994) model
with aF107 value of 80 was employed for the neutral hydro-
gen density, and the cross section of the charge exchange re-
action was given by Janev and Smith (1993). The local pitch
angle of 90◦ at the Polar latitude was taken into account in
the calculation. This means that the equatorial pitch angle
for a fixed local pitch angle varies along the orbital paths be-
cause of high inclination of the orbital plane. For the dipole
magnetic field, the sine of the equatorial pitch angley0 is
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Fig. 3. Same as panels 9 and 10 of Fig. 1, except that time is fixed to 11:00 UT on 9 February 1998.

given by

y0 = y
cos3 λ

(1 + 3 sin2 λ)1/4
, (6)

wherey is the sine of the local pitch angle.
The phase space density at the outer boundary (L=10) was

assumed to be isotropic Maxwellian, with a temperature of
2 keV and a density of 0.1 cm−3. The phase space density
at the boundary (L=10) does not significantly modify the
result because we focus, in particular, on the formation of the
banded structure, and not the absolute intensity of the fluxes.

4 Results

4.1 Volland-Stern convection model

Spectra of proton flux calculated along the Polar orbit un-
der the Volland-Stern type convection electric field model
are shown in panels 3 and 4 of Fig. 1. A traditional “nose”
dispersion (Smith and Hoffman, 1974) is displayed on the
inbound and outbound paths. Additionally, fine-scale struc-
tures are seen to be attached to the high energy portion of
the “nose” dispersion. The fine-scale structures may be asso-
ciated with the multiple bands observed by Polar/MICS, but
the features are somewhat different from the observed ones,
especially on the outbound path. First, band 6 is invisible in
the calculated spectra. Second, the high energy edge of the
“nose” structure increases withL, but the high energy edge
of the band 5 decreases withL.

4.2 W2K convection model

Calculated spectra under the W2K model are shown in panels
5 and 6 of Fig. 1. In comparison with the spectra under the
Volland-Stern model, the multiple bands, which are similar
to the observed bands 1-5, are clearly presented. This sug-
gests that the changes in the large-scale convection electric
field are sufficient to produce the multiple discrete-energy
ion features, at least, observed by Polar/MICS on 9 February
1998.

The low energy feature (<3 keV) on the outbound path
(panel 6 of Fig. 1) is similar to the observed band 6 (panel
2), but no banded feature is apparent. The disagreement is

resolved when we suspend the injection atL=10 for a while.
The particle tracing determines a time window in which
the low energy protons (<3 keV) observed on the outbound
path departs at the outer boundary (L=10), that is, between
∼12:00 UT and∼20:00 UT on 8 February. When we sus-
pend the particle injection, for example, between 14:00 UT
and 16:00 UT on 8 February, a banded feature, which resem-
bles the observed band 6, appears in the spectrum as shown
in the panel 8. It may be safe to say that band 6 is attributed
to a change in the distribution function (e.g. decrease in the
number density) in the near-Earth magnetotail. Of course, we
cannot determine the absolute time of the period of the sus-
pended injection, because it depends entirely on the convec-
tion electric field and magnetic field models assumed. Band
6 may be a class of the type 2 wedge-like dispersion which
is often seen in the dayside magnetosphere (Ebihara et al.,
2001).

Panel 6 of Fig. 1 exhibits that bands 4 and 5 seem to be
merged atL=5.1, while the merging occurs atL=7.3 for the
observation (panel 2). We achieve a better agreement ana-
logically between them when we rotate the W2K convection
potential slightly eastward as shown in the panel 10. The
merging occurs atL = 7.3 when we rotate the W2K convec-
tion potential eastward by 2 h in MLT.

Figure 3 also shows the calculated spectra, but the time
was fixed at 11:00 UT on 9 February 1998. The W2K con-
vection potential was rotated by 2 h eastward in MLT, and
the injection was suspended between 14:00 and 16:00 UT on
8 February 1998. The presence of the multiple bands means
that the multiple-bands are primarily due to spatial effect,
rather than temporal effect (i.e. the time-of-flight effect, as
suggested by Li et al., 2000).

5 Discussion

On the close analogy between the observed and calculated
spectra, the multiple bands observed on 9 February 1998 are
probably understood as follows; the change in the large-scale
convection electric field driven by the solar wind and IMF
for bands 1–5, and the change in the distribution function
of the plasma sheet for band 6. The particle tracing indicates
that bands 1–5 consist of protons coming from the near-Earth
magnetotail passing through the outer boundary (L=10) by
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Fig. 4. Possible explanation for the ion gaps observed by Po-
lar/MICS on 9 February 1998. Equipotential lines of the equato-
rially mirroring ions with the magnetic momentµ of 80.65 eV/nT
(corresponding to the kinetic energy of 20 keV atL=5) under the
corotation electric potential and the W2K convection potential for
the southward IMF (solid line; IMFBz of −5 nT, the solar wind
velocity of 400 km/s and the solar wind density of 10 cm−3) and
the northward IMF (dashed line; IMFBz of +5 nT, the solar wind
velocity of 400 km/s and the solar wind density of 10 cm−3) are
plotted at the interval of 10 kV. Separatrix between the open and
closed drift paths is indicated by a thick line. IMFBx andBy were
kept constant at zero.

way of dusk, while band 6 consists of protons coming from
the tail by way of dawn. The transition between band 5 and
6 corresponds to the classic “dip” or “gap” (Jordanova et al.,
1999, 2001a, b).

An interpretation is needed for the physical understand-
ing of the mechanism leading to the multiple discrete-energy
bands as follows. Figure 4 shows an example of equipoten-
tial lines, satisfyingq8+µB=const, whereµ is the mag-
netic moment, for the magnetic moment of 80.65 eV/nT un-
der the modeled electric potential for the southward IMF
(IMF Bz=−5 nT; solid line) and the northward IMF (IMF
Bz=+5 nT; dashed line). These lines are equal to the drift
trajectory of equatorially mirroring ions with the same mag-
netic moment of 80.65 eV/nT (20 keV atL=5). During the
period of the southward IMF (solid line), the open-closed
boundary is atL=4 at 18:00 MLT, and the plasma sheet ions
drift inward along the equipotential lines and approach the
open-closed boundary. It has to be noted that it takes infinite
time to reach the open-closed boundary from the near-Earth
tail, especially near the stagnation point, where the sum of
the drift velocities is near zero. Consequently, a “gap”, which

is schematically drawn by the shaded region in Fig. 4, ap-
pears near the stagnation point.

When IMFBz turns northward, the ions start to follow the
equipotential lines indicated by the dashed lines. The open-
closed boundary is extended, and the “gap” drifts westward
by the grad-B and the curvature drifts. The satellite placed
on the closed trajectory would detect the “gap” periodically.

We can generalize the relationship among the energy of
the “gap”,L, and the traveling time of an ion. The bounce-
averaged drift velocity of the curvature and grad-B drifts un-
der the dipole magnetic field is written by (Ejiri, 1978)

dφ

dt
= −

3G(y0)LK

qk0a2
, (positive eastward), (7)

wherek0 anda are the magnetic field atL=1, and the Earth’s
radius, respectively. The MLTφ at an elapsed timeT is

φ = φ0 +
dφ

dt
T , (8)

where φ0 is the MLT at T =0, corresponding to the mo-
ment when the convection electric field is weakened. Sub-
stituting Eq. (7) into Eq. (8) and assuming that the stagna-
tion point takes place at 06:00 MLT (φ=π/2−2πj , where
j=1, 2, 3...), we obtain

Kj =
qk0a

2

3G(α0)LT

(
φ0 −

π

2
+ 2πj

)
, where j = 1, 2, 3... (9)

The kinetic energyKj (j=1, 2, 3...) gives the discrete en-
ergy of the “gap”. The interval of the gap is

1K =
2πqk0a

2

3G(α0)LT
(MKS) (10)

=
732

G(α0)LT (hour)
(keV) for singly charged ion.

For example, substitutingL of 5, T of 9 h andα0 of 90◦ into
Eq. (10), we obtain1K=16 keV for singly charged ions.
The Eqs. (9) and (10) expect that the energy of the “gap”
decreases with increasingL, and that the energy interval1K

decreases with increasing the elapsed timeT (or L). The
equations also expect that the feature of the “gap” depends on
the energy/charge ratio. Unfortunately, the MICS instrument
was unable to detect clearly the multiple bands of other ion
species for this event.

This estimation is valid for the dipole magnetic field, but
probably describes a general feature of the multiple discrete-
energy bands that appear in the energy vs.L spectra obtained
by a satellite in the inner magnetosphere. This may be a good
explanation for bands 1–4. In addition to this, a complicated
representation of the equipotential lines of the W2K model
makes band 5 complicated.

Changes in the distribution function of the plasma sheet
ions (e.g. decrease in number density) are expected to ac-
count for band 6. The concept is similar to that previ-
ously proposed by Peterson et al. (1998) and Ebihara et
al. (2001), that is, the migration of spatially varying plasma
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sheet ions produces the banded ions in the inner magneto-
sphere. Our calculation indicates that the migration is possi-
ble to produce band 6, but not entirely to produce the remain
of the bands. As suggested by Peterson et al. (1998) and Ebi-
hara et al. (2001), we can monitor remotely the history of the
plasma sheet ions by investigating some of the dispersed ion
structures. Indeed, a 2-h decrease in the plasma sheet density
(or corresponding change in the distribution function) was
predicted by our simulation scheme.
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