
Annales Geophysicae (2004) 22: 1103–1113
SRef-ID: 1432-0576/ag/2004-22-1103
© European Geosciences Union 2004

Annales
Geophysicae

Diurnal auroral occurrence statistics obtained via machine vision
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Abstract. Modern ground-based digital auroral All-Sky Im-
ager (ASI) networks capture millions of images annually.
Machine vision techniques are widely utilised in the retrieval
of images from large data bases. Clearly, they can play an im-
portant scientific role in dealing with data from auroral ASI
networks, facilitating both efficient searches and statistical
studies. Furthermore, the development of automated tech-
niques for identifying specific types of aurora opens up the
potential of ASI control software that would change instru-
ment operation in response to evolving geophysical condi-
tions. In this paper, we describe machine vision techniques
that we have developed for use on large auroral image data
sets. We present the results of application of these techniques
to a 350 000 image subset of the CANOPUS Gillam ASI in
the years 1993–1998. In particular, we obtain occurrence
statistics for auroral arcs, patches, and Omega-bands. These
results agree with those of previous manual auroral surveys.

Key words. Ionosphere (Instruments and techniques) Gen-
eral (new fields)

1 Introduction

The spatial structure and temporal evolution of the auroral
luminosity distribution result from the time history of the so-
lar wind-magnetosphere interaction and the physics of the
magnetosphere-ionosphere interaction. Surveys of optical
data obtained from the ground and from space have estab-
lished the existence of the ever-present auroral oval, as well
as variations in its overall brightness distribution and the lati-
tudes of its poleward and equatorward boundaries (Feldstein,
1963; Akasofu, 1966). These are both local time (i.e. “LT”)
and temporal (i.e. “UT”) variations. Simple examples of
this variation are that the oval is on average at higher ge-
omagnetic latitudes at dusk and dawn than at midnight (an
LT variation), and that the overall distribution moves equa-
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torward and poleward as a consequence of magnetospheric
energy loading and dissipation (a UT variation).

Within the oval, the spatial structure and overall brightness
also evolve in time. Early auroral research led to the iden-
tification of several types of aurora, some that have turned
out to be characteristic of the ionospheric footpoint of spe-
cific magnetospheric regimes (cf. Feldstein and Elphinstone,
1992), and others indicating ongoing dynamic activity. For
example, near the equatorward edge of the evening sector
auroral oval there is often proton precipitation in the absence
of electron precipitation. This indicates field lines thread-
ing the inner magnetosphere, earthward of Central Plasma
Sheet (CPS) electron drift paths, and tailward of the inner
edge of strong pitch angle scattering of CPS protons (Ejiri,
1978; Sergeev et al., 1983; Samson et al., 1992).

Specific electron auroral morphologies include arcs,
patches, and Omega-bands. In this study, we use data from
the CANOPUS (Canadian Auroral Network for the OPEN
Program Unified Study) Gillam All-Sky Imager (ASI) (Ros-
toker et al., 1995; Donovan et al., 2003). The instrument’s
characteristics and typical data are discussed below. At this
point, we define the auroral features mentioned here in terms
of their appearance in a single ASI image. We define arcs to
be elongated east-west aligned auroral structures that stretch
across most or all of the ASI field-of-view (FOV), with thick-
nesses (at∼110 km) ranging from several to tens of kilome-
tres. This definition is consistent with that used in previous
manual statistical studies of auroral arc orientation, occur-
rence, and thickness (e.g. Stringer and Belon, 1967; Gustafs-
son, 1967; Akasofu et al., 1972; Nevanlinna and Pulkkinen,
2001; Knudsen et al., 2001). Omega-bands are distortions in
the poleward boundary of the diffuse electron aurora, with
azimuthal scale sizes that are typically comparable to an
ASI FOV (Akasofu and Kimball, 1964; Opgenoorth et al.,
1983). Patchy auroras consist of amorphous emission struc-
tures with temporally evolving boundaries and scale sizes on
the order of tens to hundreds of kilometres. During patchy
auroras, the ASI FOV typically contains numerous patches.
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Over the last forty years, a picture of the global mor-
phology has emerged on the basis of extensive ground and
space-based optical observations. This consists of the auroral
oval, centred roughly on the geomagnetic pole, with a typi-
cal latitudinal extent of 5–10◦ and an equatorward bound-
ary that is typically at 65◦ magnetic latitude at midnight and
at somewhat higher latitudes at other local times (Feldstein,
1963; Akasofu, 1966). Arcs are a pervasive morphology, oc-
curring at essentially all local times (e.g. Stringer and Belon
(1967); Gustafsson (1967)), from the poleward boundary of
the oval equatorward to the proton and/or electron isotropic
boundaries (Lyons et al., 1988; Yahnin et al., 1997). Statis-
tical studies indicate that arc occurrence peaks on the night
side (i.e. Nevanlinna and Pulkkinen (2001)). Omega-bands
are morning sector phenomena that occur either following
or during substorm activity in the midnight sector (Akasofu
et al., 1972; Opgenoorth et al., 1983, 1994). Patchy auroras
occur in the late morning to dawn sector and under a range
of geomagnetic conditions.

We restrict our definition of an auroral arc to elongated
forms which are more or less L-shell aligned (i.e. east-west).
The conditions under which arcs form typically last tens of
minutes to several hours. This can be at least inferred from
plots showing the location and alignment of arcs in the survey
papers of Stringer and Belon (1967) and Gustafsson (1967).
In recent years, north-south aligned auroral features have re-
ceived considerable attention due to their demonstrated asso-
ciation with transient magnetospheric phenomena (Hender-
son et al., 1998; Zesta et al., 2000). While many north-south
structures share the same fundamental morphology (i.e., they
are elongated discrete auroral features) as typical east-west
aligned auroral arcs, they are considerably more rare and are
in general transient, lasting only one to several minutes.

The schematic diagram in Fig. 1 illustrates the essence of
the Akasofu auroral distribution. This picture was arrived
at on the basis of early ground-based auroral surveys and
contains phenomena that are ever-present (i.e. the oval), fre-
quently occurring and lasting for periods of hours or more
(i.e. arcs and patches), and more infrequent and typically
associated with significant transient magnetospheric events
(i.e. Omega-bands and the north-south auroral forms dis-
cussed below). On a typical night, a single station (or set
of stations) rotates under this distribution. The FOV of the
CANOPUS ASI located at Gillam Canada is indicated in
Fig. 2, as are the scan planes of the CANOPUS Gillam and
Rankin Inlet Meridian Scanning Photometers (MSPs). In
Fig. 3, we present keograms constructed using data from the
Gillam and Rankin Inlet MSPs, obtained on three different
nights. We also include six images from the Gillam ASI.
The keograms illustrate the typical diurnal variation associ-
ated with motion under the auroral oval, most notably in the
auroral “motion” from higher to lower to higher latitude as
the stations sweep through from dusk to midnight to dawn.
Also clearly visible in the keograms are substorm associated
changes in the auroral latitude and brightness distributions.
Changes over each night in the character of the discrete au-
roral features reflect a combination of diurnal variation and

geomagnetic activity. The six images are examples of arcs
(A & C), patches (B & D), a north-south auroral structure (E
– see below), and an Omega-band (F).

In recent years, the digital ASI has become an important
tool in auroral and magnetospheric physics. As increasingly
large ASI arrays, such as MIRACLE (Syrjäsuo et al., 1998)
and NORSTAR (Donovan et al., 2003) operate with con-
stantly increasing frame rates and CCD size, the size of the
resulting data set is becoming formidable. At the present
time, the MIRACLE and NORSTAR arrays deliver upwards
of 6 000 000 and 3 000 000 images annually. Despite the ad-
vances in computer science, ASI images are mostly analysed
manually. This approach is well motivated especially if the
data are used, for example, in supporting satellite measure-
ments, but does not fully utilise the whole data set. In gen-
eral, analysing a large number of auroral images manually for
a statistical study can be done (e.g. Nevanlinna and Pulkki-
nen, 2001; Knudsen et al., 2001), but repeated analysis to
refine results is difficult to justify. Furthermore, newer data
sets are large enough that manual studies are not practical.

In this paper, we describe automated pattern recognition
(herein referenced to as “machine vision”) techniques that
we are developing for application to auroral studies. Fur-
thermore, we present the results of applying these techniques
to the CANOPUS ASI data set, delivering in particular the
local time occurrence statistics of auroral arcs, patches and
Omega-bands.

2 Machine vision approach to image classification

There is clearly strong motivation for developing techniques
for automatic classification of ASI images. Such tools could
be applied to large data sets in statistical studies of the au-
rora, to cull enormous data sets quickly with the objective of
identifying auroral events of a particular type, and to quan-
tify the temporal evolution of the auroral distribution. Devel-
oping such algorithms would also further clarify our under-
standing of the aurora by forcing us to further develop what
are presently somewhat subjective definitions of auroral type
(for example, arc, patch, Omega-band, and north-south struc-
ture), making them more objective and suitable for quantita-
tive studies.

In this paper, we describe our initial attempts to develop
and systematically apply automated pattern recognition tech-
niques to a 350 000 image subset of the CANOPUS Gillam
ASI data obtained between 1993 and 1998. More specifi-
cally, we developed a “training set” by manually identifying
good examples of each of the three auroral forms of interest
here (i.e. arc, Omega-band, and patchy). We use techniques
from the fields of pattern recognition and content-based im-
age retrieval in order to classify each image as belonging to
one of the three classes (arcs, patches, and Omega-bands), or
as “other”. Note that we attempt to separate east-west arcs
from north-south structures by incorporating a quantitative
assessment of orientation into our analysis. Our approach
is to identify “features” that can be quantified (a simple
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Fig. 1. Schematic of auroral distribution modified slightly from Akasofu (1966). Note that the original figure was constructed on the basis of
ground-based observations made before global imaging from space was possible. As such, it incorporates a mixture of diurnal (local time)
and temporal (universal time) variations.

example of a feature is average brightness), and that corre-
spond to basis vectors that span a hyperspace that we call our
“feature space”. In this way, a vector representation is gen-
erated for each image in the overall data set. The objective
is to develop features such that image-image distance in fea-
ture space is a meaningful way of determining how similar
the images are to each other in terms of our general under-
standing of auroral morphology.

In principle, in a well constructed feature space, different
hypervolumes correspond to different types of aurora. Hav-
ing a training set consisting of several hundred auroral im-
ages that have been classified as arcs, patches, or Omega-
bands makes it possible to identify these hypervolumes. For
any new image – referred to as a “query image” – its location
in the feature space can be determined. Then, the image is
classified based on the training set images that are closest to
it in the feature space. If most or all of the closest training im-
ages are, for example, arcs, then the query image is classified

as an arc. The same is true for patches and Omega-bands.
The effectiveness of such image classification is strongly af-
fected by the quality of the training set, and the features cho-
sen upon which feature space is constructed. Furthermore, as
in the case of polynomial fitting of data, it is more preferable
to utilise lower, rather than higher dimensional representa-
tions.

In an earlier study, we utilised a simple version of our
present approach to separate images that contained, and did
not contain aurora (Syrjäsuo and Donovan, 2002). We found
that a two-dimensional feature space (average brightness and
peak brightness) had two subvolumes separated by an almost
straight line, and that virtually all images on one side of the
line contained aurora and all images on the other side were
either of blanketing clouds or clear skies absent of aurora.

In what follows, we expand on our earlier work by em-
ploying an extended training set, more features, and attempt-
ing to classify auroral images as belonging to one of three
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types: arcs, patches, or Omega-bands. In the present study,
we restrict our attention to elucidating the diurnal occurrence
statistics of these three auroral types.

3 Instrumentation, data and training set

The CANOPUS ASI was operated at Gillam Canada (56.4◦

north and 265.4◦ east geodetic;∼67.3◦ Invariant) from 1986
through to 2001 (Rostoker et al., 1995; Donovan et al., 2003).
This was a typical instrument used in auroral research: a
fish-eye lens provided a field-of-view covering the whole sky
and, after optical filtering (through∼2 nm band-pass filters),
the image was intensified and captured by a CCD (charge-
coupled device) camera. Prior to 1993, the ASI operated in
a low spatial resolution mode, delivering images in three sci-
entific wavelength (558, 428, and 630 nm) at a cadence of
three images per minute per filter. During and after 1993, the
spatial resolution was increased, the 428 nm measurements
were dropped, and the frame rate decreased to one image per
minute per filter. The higher spacial resolution images are
200×200 pixels with a 16-bit intensity reduced to a quasi-
logarithmic 8-bit value. The exposure time for 558 nm im-
ages was 1.6 s. In this study, we used more than 350 000
images (558 nm) collected from 1993 to 1998.

We identified four main categories of auroral appearance
in the all-sky images:

0. No aurora: no visible auroral activity;

1. Arcs: one or more auroral arcs;

2. Patchy aurora: irregular patches of auroral intensity vis-
ible in the whole field-of-view;

3. Omega-band: brighter shapes that resemble those seen
when an Omega-band is visible in the field-of-view;

4. Other/Reject: shapes that cannot be put into any of the
previous categories, such as diffuse aurora, combina-
tions of different types of aurora, north-south structures,
etc.

All images in the category “no aurora” should be rejected
before the shape analysis. Fortunately, this can be performed
automatically as we demonstrated in Syrjäsuo and Donovan
(2002). The method is based on a sample set of images that
have been manually classified as containing aurora or not
containing aurora, and a two-dimensional feature space as
described briefly in the Introduction above. Given an unseen
image, we compare the average and maximum brightness to
those in the sample set in order to identify most similar im-
ages, whose classification can be used to determine the most
likely class of the unseen image.

The rejection of “no aurora” category reduces the number
of images to be analysed from 350 000 to 220 000. From the
remaining categories, arcs are the most subjectively distinct
and have been located in a less sophisticated automated fash-
ion in an earlier study (Syrjäsuo et al., 2001; Kauristie et al.,

2001). Nevertheless, all categories represent a high-level hu-
man concept that must be transferred into a numeric form.
In order to capture this human concept, one of the authors
(EFD) provided a training set consisting of 258 good qual-
ity sample images for the categories of arcs (130), patchy
auroras (109) and Omega-bands (19), which we judged to
be the most unambiguous auroral types that were frequently
encountered in the data set. Sample images from these cate-
gories are shown in Fig. 4.

4 Image content classification

4.1 Content analysis and image feature space

A straight-forward and intuitive approach to image content
analysis is to determine the most similar images, for a query
image, in the training set. These previously unseen images
can then be classified to the class of most similar images in
the training set. Humans are experts at detecting similarity,
but extracting the similarity automatically is not trivial.

In pattern recognition, a number of representative numeric
features are used in classification of data (Therrien, 1989).
For example, the average brightness in the image or the his-
togram of intensity values can be used as features. Usually a
single feature does not provide satisfying classification per-
formance, and several features are used instead. The fea-
tures’ form a basis of the multi-dimensional feature space.
Each image – or its contents – can be associated with a point
in this feature space. For example, using the features av-
erage brightnessBmean and maximum brightnessBmax, the
resulting feature space is two dimensional. An image with
Bmean = 30 andBmax = 100 can be represented byf =

[30, 100]. At the other extreme, a feature vector consisting
of all pixel values in the image forms a 40 000-dimensional
space (200×200 pixels).

Comparing the contents of images is performed by com-
paring the feature vectors. A mathematically convenient so-
lution is to use distances. In our two-dimensional feature
space example above, a distance measure between two im-
ages represented byf (1)

= [30, 100] andf (2)
= [50, 250]

could be the Euclidian distanceS =

∥∥∥f (1)
− f (2)

∥∥∥
2
. A third

imagef (3)
= [10, 40] is closer tof (1) thanf (2) and hence,

more similar, too. Depending on the features, defining a dif-
ferent distance may be more appropriate.

Intuitively, if two images have similar contents and if the
features capture this property, the image locations in the fea-
ture space should be close to each other. Conversely, dis-
tant points in the feature space should correspond to dissim-
ilar images. Unfortunately, this intuition can break down,
because the features do not necessarily capture the human
higher-level concept properly. This is illustrated in Fig. 5:
using qualitative features representing brightness and “arc-
ness” we have a query image and manually classified arc and
non-arc images, which form the training set. We then clas-
sify the query image to the class represented by the nearest
image in the training set. In the left panel, the query image is
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Fig. 2. The ASI used in this study is located at Gillam, Manitoba (56.4◦ north, 265.4◦ east). The circle indicates the Gillam ASI FOV
assuming an emission altitude of 110 km. As well, we also show the FOVs of the Gillam and Rankin Inlet MSPs, again assuming an
emission height of 110km. Contours of constant geomagnetic latitude (at 5◦ spacing) and longitude (at 15◦ or 1 h magnetic local time
spacing) are also shown.

classified as a non-arc despite its arcness – we are comparing
a dim arc to a bright arc. In the right panel, we have sample
arcs at all brightness levels and the query image is classified
correctly. We included as many images of arcs, patchy auro-
ras and Omega-bands as possible in our training set without
excessively tedious manual labour.

4.2 Classification

Given a query image, we determine its location in the feature
space and examine the nearby region. The closest training set
images – or neighbours – are used to determine the category
of the query image. If all neighbours represent the “arc” cat-
egory, then the query image most likely also contains an arc.
On the other hand, if there is no single dominant category
among the neighbours, the classification of the query image
is ambiguous.

As mentioned above, a single image feature does not usu-
ally provide good classification results and several features
are needed. We used features dedicated for (1) auroral bright-

ness, (2) north-south and (3) east-west aligned brightness dis-
tribution, and (4) a multi-scale texture measure. The result-
ing feature space is a hyperspace and the “meaning” of each
basis is illustrated in Fig. 6. Once extracted, the features are
normalised across the training data set. The total image-to-
image distance is calculated as a weighted sum of individ-
ual feature distances. Mathematical details are given in the
Appendix.

We utilised a variation of the K-nearest-neighbours (KNN)
classifier for determining the contents of an auroral image. A
KNN classifier outputs the class to which the majority of the
neighbouring samples belongs to, and it has been shown that
its error is never more than twice that of a Bayesian classifier,
which is the optimal classifier in a statistical sense (Devroye
et al., 1996). Since our stricter classifier provides an output
class only if all neighbouring samples are in the same class,
we can assume that its error should be smaller or equal to that
of a standard KNN classifier, because all problematic cases
are rejected and left without classification.
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Fig. 3. Keograms from three nights constructed from 558 nm data collected by the CANOPUS Gillam and Rankin Inlet MSPs. The latitudinal
extent of the ASI FOV is indicated by the two horizontal black lines. We include six 558 nm ASI images from Gillam, showing arcs(A) &
(C), patches(A) & (D), a north-south aligned auroral form(E), and an Omega-band(F).
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Fig. 4. Sample images from the three main auroral shape categories.
Rows from top to bottom: auroral arcs, patchy auroras and Omega-
bands.

4.3 Automated analysis of temporal distribution

We used the previously described scheme to analyse several
years worth of auroral images automatically in order to deter-
mine the relative temporal occurrence of arcs, patchy auroras
and Omega-bands. For each image a unique ordering of the
training set was determined based on the distances between
the query and training images. Only if the five most similar
images belonged to the same category, the query image was
given the same classification. All other images were rejected
(class “other”). This approach left us with only the strongest
cases of occurrences for each shape category and neglected
more ambiguous auroral appearances. Finally, the individual
occurrence distributions were smoothed and normalised by
the total number of all images with auroral activity for the
same time instant.

Figure 7 shows the resulting distribution curves. The clas-
sification, which discarded ambiguous shapes, detected ap-
proximately 17000 auroral arcs, 9700 patchy auroras and
600 Omega-bands. Because we cannot determine the ac-
tual number of arcs, patchy auroras or Omega-bands in the
whole image set, we studied only the relative occurrence
within each category. Not surprisingly, auroral arcs occur
mostly in the evening sector with a maximum at approx-
imately 21 magnetic local time (MLT). Omega-bands and
patchy auroras have clearly distinct maxima at 03:00 and
06:00 MLT, respectively.

4.4 Error analysis

The experimental error was determined by first re-classifying
the training set. Here, one expects that each image should be

Table 1. The experimental error determined by comparing man-
ual and automatic classification. First, all images in the training
set (258 images) were classified automatically and the results were
compared to their class label. Then, using the results from the auto-
matic classification, 1700 randomly chosen images labelled as arcs
(600 images), patchy auroras (600 images) and Omega-bands (500
images) were manually re-classified to determine the accuracy.

Image test set Correct classification (%)

The training set with strict rules 99±0.5
The training set set with standard KNN 90±3

Auroral arcs (593/600) 99%
Patchy aurora (533/600) 89%
Omega-bands (59/500) 12%

classified to the category it represents. The analysis indicated
that for any practical purposes, the classifier can be consid-
ered errorless. For comparison, we also used the standard
KNN classifier, in which all closest neighbours need not to
be within one category. Now, even the problematic cases –
for example, neighbouring samples are two arcs and three
patchy auroras – are classified instead of being rejected as
shapes which are too ambiguous . This results in poorer per-
formance with a 90±3% correct classification.

To evaluate the classifier performance in the full data set,
we analysed 1700 randomly chosen images and compared
their manual and automatic classifications. Arcs and patchy
auroras were accurately classified, whereas Omega-bands are
clearly more problematic. Table 1 summarises the error anal-
ysis.

5 Discussion

The image contents were analysed without using the tem-
poral context – either in the form of (known) local time
or by analysing the images as a sequence. The concept of
“patchy auroras” is usually reserved for morning sector auro-
ral shapes, and few auroral physicists would classify evening
sector shapes as patchy auroras. However, individual images
may resemble patchy auroras, especially in short-lived auro-
ral activations. This is apparently also true for Omega-bands
and leads to the slow rise in the respective distributions be-
tween 17:00 to 24:00 MLT.

Many auroral images share similar numeric features,
which may provide conflicting information regarding their
actual content category. This behaviour is verified by ob-
serving that only 12% of all ASI images (27 000 of 220 000)
could be classified into one single category with confidence.
We studied images which could not be classified into a sin-
gle category, and, indeed, many of them seemed to contain
visual features from more than one auroral category or other
shapes, such as breakup auroras. An auroral arc may have
brighter sections, which naturally results in numerical simi-
larity to both arcs and patchy auroras.
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Fig. 5. Improperly constructed (left) and properly constructed (right) training set. The white circle denotes the query image while the squares
denote the training set images with the black square being an image with an arc and the white square is one without an arc. The query image
is connected to the nearest training set image by a dotted line. In the left panel, the query image is incorrectly classified as a non-arc. In the
right panel, the training set has enough representative samples of arcs and the query image is correctly classified.

Feature 1
"Brightness"

Low contrast,
aurora not much brighter
than background

High contrast,
bright auroral shapes

Big auroral blobs Small auroral blobs

East to west aligned

North to south aligned

Circular

Feature 4
"Texture"

Even distribution,
no distinctive maxima Clear and distinctive maxima

Many maxima - "multiple arcs"

A single maximum- "a single arc"

Feature 2
"North-south"

Even distribution,
no distinctive maxima Clear and distinctive maxima

Many maxima

A single maximum

Feature 3
"East-west"

Fig. 6. Qualitative interpretation of the
features. Feature 1 measures the over-
all contrast and distinctiveness of au-
rora in the image. Features 2 and 3
provide information about the distribu-
tion of the aurora – a clear maximum in
north-south distribution, combined with
an even distribution in east-west direc-
tion, usually represents an auroral arc.
Similarly, many peaks presumably cor-
respond to multiple arcs. Feature 4 is
a proxy to “patchyness” or the size and
shape of auroral blobs in the image.
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Fig. 7. Individual relative occurrences
for auroral arcs, patchy auroras and
Omega-bands vs. magnetic local time.
The sharp cut-offs around 16:30 MLT
and 07:30 MLT are due to local day-
light. Note that the occurrences are in-
dividually normalised and do not repre-
sent relative occurrence frequency be-
tween arcs, patches and Omega-bands.

The accuracy of classification is very good when detecting
arcs and patchy auroras. However, even though the classi-
fication for Omega-bands does not appear particularly suc-
cessful, we noticed that the majority of the images reported
as Omega-bands contained a boundary between diffuse au-
rora and background sky. If this boundary had looked like
the Greek character�, the classification would have been
correct. One should also note that, while we used features
specially designed for arcs and patchy auroras, we did not
have an Omega-band feature that would utilise the shape of
the boundary of background sky and aurora.

We did not have any training images for north-south
aligned aurora in this study and we did not present any statis-
tics for those shapes either. Intuitively, north-south structures
and auroral arcs are apparently similar if either one is ro-
tated 90◦. The features for north-south and east-west aligned
auroral distributions apparently provide enough information
to recognise arcs, and we believe that adding north-south
aligned auroral structures in the training set is definitely
worth exploring in the future.

6 Conclusions

We have applied machine vision techniques in analysing the
contents of 350 000 auroral images automatically. First, one
of the authors (EFD) provided a small training set consist-
ing of sample images for different auroral shape categories.
The automated process then examined a larger set of unla-
belled images by searching for images similar to those in the
training set. Content classification was accomplished by ex-
amining the category labels of the most similar images.

Studying the classification errors indicates that the auto-
mated analysis is consistent and accurate when classifying
arcs and patchy auroras. However, there is a larger error in
detecting Omega-bands. We believe that there are two major
factor affecting the clearly worse classification with Omega-
bands: (1) small number of representative samples in the
training set and (2) no dedicated feature to detect or verify
the existence of Omega-band-like shapes in the aurora. Nev-
ertheless, the location of the peak of relative Omega-band
occurrence is in agreement with previous manual surveys.

Improving the training set would result in more accurate
results by occupying more of the feature space in which im-
age comparisons are performed. However, using some unsu-
pervised clustering technique might prove to be even more
fruitful: instead of relying on a naming tradition based on
(subjective) auroral shape classification, automated analysis
utilising millions of images could result in a more accurate
spectrum of auroral forms.

In a recent study (Syrjäsuo et al., 2002), we searched for
patchy auroras in the same CANOPUS data set using a differ-
ent image-to-image distance measure. The search was per-
formed in a content-based image retrieval fashion, in which
the user provides a query image and the computer retrieves
a fixed number of “similar” images (Rui et al., 1999; Smeul-
ders et al., 2000). Essentially, the query image is analysed
and the distance to all images in the data set is calculated.
Then, the closest images are determined and these most sim-
ilar images are then shown to the user. The performance of
the more advanced classifier presented in this paper indicates
that, in the near future, browsing auroral ASI data based on
auroral shapes will be a realistic approach.

The required time for the actual classification operation
for a single image is small enough to be implemented at the
ASI stations in real time. Clearly, more studies are required,
but one possible application is to capture images at increased
temporal resolution and cull the resulting data on site. This
would reduce the amount of data while maintaining superior
temporal resolution during “interesting auroras”. Another in-
teresting research direction would be to study the time evo-
lution of the aurora utilising motion in a well constructed
feature space.

Appendix A. Image features and similarity measure

Let I(x, y) be an auroral image. Indicesi andj denote the
two images being compared. Each image is first rotated
so that pixel rows are aligned to the (magnetic) east-west
direction (direction ofx). Correspondingly, pixels columns
are in north-south direction (y). The size of the image is
xmax×ymax pixels.



1112 M. T. Syrj̈asuo and E. F. Donovan: Diurnal auroral occurrence statistics

A1 Brightness

A heuristic intensity feature for auroral brightness is defined
as

f 1 = [µ bmax]
T , (A1)

whereµ is the average brightness,bmax the maximum bright-
ness in the auroral image, andT denotes transpose. The
distanceS1 or similarity between two images is simply the
Euclidean distance of the feature vectors

S1 =

∥∥∥f
(i)
1 − f

(j)

1

∥∥∥
2
. (A2)

A2 Brightness distribution in (magnetic) N-S and E-W

The feature representing the north-south distribution of auro-
ral brightness essentially summarises the auroral brightness
as a function of latitude within the FOV of the imager. How-
ever, we cannot simply average image rows because the FOV
is circular. For each image rowy, we determine the eastern-
most to the westernmost pixel columns within the FOV, de-
notedCE(y) andCW (y), as illustrated in Fig. A1. This is
done to compensate for the circular FOV. Now, the average
brightnesses in each row

P(y) =
1

|CE(y) − CW (y)|

CW (y)∑
x=CE(y)

I (x, y) (A3)

are collected into a feature vector

f 2 = [P(0)P (1) . . . P (ymax)]
T . (A4)

In practise, the distribution is binned to 16 bins and nor-
malised between 0. . . 1. The distance is defined as

S2 = min
k

∥∥∥f
(i)
2 − rot (f

(j)

2 , k)

∥∥∥ , (A5)

where f 2 denotes the 16-element feature vector and
rot (f , k) denotes a circular shift of vector elements byk

positions. The circular shift provides invariance in the north-
south direction: a bright arc in the north has a short distance
to a bright arc in the south. The idea is illustrated in Fig. A2.

The distribution in east-west direction is defined similarly,
as well as the corresponding distance measureS3.

A3 Texture

The category of patchy aurora contains images in which the
auroral classification should be based on the overall appear-
ance instead of on a single identified auroral shape. Visually,
patchy auroras resemble patterns of differently sized auro-
ral “blobs”. Depending on the size and orientation of these
blobs, the patterns – called textures – vary. For identify-
ing different textures, we used a multi-resolution Gabor-filter
technique. Essentially, the elements of the texture feature
vectorf 4 can be associated with the response of 36 band-
width filters that are tuned into different “auroral blob” scales
and orientations. This is analogous to having “blob spec-
trum” and comparing the spectra of images. The distanceS5

xy

C    (y)W
C   (y)E

All-sky image

Field-of-view

Fig. A1. Extracting brightness distribution: since the field-of-view
produces a circular image, only a section of each row (east-west)
contributes to the north-south aligned brightness profile. The east-
ernmost and westernmost pixels for each rowy are CE(y) and
CW (y).
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Fig. A2. The distance between two brightness distribution is the
minimum distance obtained by circularly shifting one of the pro-
files. Distribution 1 in the plot is a result of having an arc south
of zenith and Distribution 2 is another arc but north of zenith. By
shifting Distribution 2, we obtain a better match – smaller distance
– with Distribution 1, which is desirable because both brightness
distributions represent a single arc. Each distribution is binned into
16 bins before distance calculation.

is small if the spectra – average blob size and orientation –
are similar. For details and the definition of the distanceS5,
see Manjunath and Ma (1996) and references therein.

A4 Feature weighting

We used the iterative technique described in Rui et al. (1998)
to determine the value of the weight vectorW used in
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calculating the total image-to-image distance

S = W T
[S1 S2 S3 S4]. (A6)

We used automated retrieving in the training image set to
determine a weighting for features: because all images are
already labelled, the similarity feedback for iterative weight
adjustment is easily programmed. We simulated five re-
trievals with weight updating and averaged the weight vec-
tors obtained by using each image in the labelled set as a
query image.
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