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Abstract. Operational forecasting of ocean circulation
and marine ecosystem fluctuations requires multi-parametric
real-time measurements of physical and biochemical prop-
erties. The architecture of a system that is able to pro-
vide such measurements from the upper-thermocline layers
of the Mediterranean Sea is described here. The system was
developed for the needs of the Mediterranean Forecasting
System and incorporates state-of-the-art sensors for optical
and chemical measurements in the upper 100 m and phys-
ical measurements down to 500 m. Independent moorings
that communicate via hydro-acoustic modems are hosting
the sensors. The satellite data transfer and the large auton-
omy allow for the operation of the system in any open-ocean
site. The system has been in pre-operational use in the Cre-
tan Sea since January 2000. The results of this pilot phase in-
dicate that multi-parametric real-time observations with the
M3A system are feasible, if a consistent maintenance and re-
calibration program is followed. The main limitations of the
present configuration of M3A are related: (a) to bio-fouling
that primarily affects the turbidity and secondarily affects the
other optical sensors, and (b) to the limited throughput of the
currently used satellite communication system.

Key words. Atmospheric composition and structure (instru-
ments and techniques.) Oceanography: general (ocean pre-
diction) Oceanography: physical (upper ocean process)

1 Introduction

The fast evolving technology of oceanographic in situ and
remote sensing instruments (Tziavos and Flemming, 1999)
and the advancements in the field of numerical modelling
and data assimilation during the last decade have allowed
for the development of the first applications of Operational
Oceanography. These applications were also boosted by the
increasing demand for reliable observations and forecasts
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of marine environmental conditions (Fisher and Flemming,
1999). The importance of Operational Oceanography was
recognized by the international scientific community and the
Global Ocean Observing System (GOOS) undertook the co-
ordination of scientific efforts to develop regional or global
observing and forecasting systems (IOC 1996).

In the framework of EuroGOOS, which is the European
component of GOOS (Woods et al., 1996), the Mediter-
ranean Forecasting System (MFS) is a multinational effort to
develop an integrated operational monitoring and forecasting
system for the Mediterranean Sea (Pinardi and Flemming,
1998). During the pilot phase of the project (1998–2001), the
goal was to demonstrate the feasibility of weekly forecasts of
basin-scale hydrological and general circulation properties
with assimilation of near real-time data. The observational
basis of the system has 3 main components: (a) XBT mea-
surements from Volunteer Observing Ships (VOS), (b) mul-
tidisciplinary measurements from a network of fixed buoys
and (c) satellite observations of Sea Surface Temperature
(SST), Sea Surface Height (SSH) and Ocean Colour. The de-
velopment of the second observing component of MFS, the
so-called Mediterranean Moored Multi-sensor Array (M3A),
is described here.

The prototype M3A system was designed to form the
base of a permanent network of moored stations for contin-
uous monitoring of open-ocean conditions in the Mediter-
ranean Sea. This effort was based on the experience of the
well-known Tropical Atmosphere-Ocean (TAO) array of the
Equatorial Pacific (McPhaden et al., 1998) and similar devel-
opments on multi-parametric measurements at the Bermuda
Test-Bed Mooring (Dickey et al., 1998).

The TAO array is the main observing system of the Tropi-
cal Ocean-Global Atmosphere (TOGA) program that is fo-
cused on the interannual variability of the coupled ocean-
atmosphere system associated with the El Niño Southern Os-
cillation (ENSO). This program led to fundamental progress
in the understanding of the processes responsible for ENSO
and the development of coupled models for its prediction of
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Table 1. List of parameters measured by the M3A system

Measurements in the water column

−1 −40 −65 −90 −115 −150 −250 −350 −500

Temperature • • • • • • • • •

Salinity • • • • • • • • •

Light Attenuation • • • • •

Dissolved Oxygen • • • • •

Chlorophyll-a • • • • •

PAR • • • •

Nutrients (Nitrate) •

Current speed/direction 0–500 m profile

Measurements at air-sea interface

Air Relative Atmospheric Wind speed and Wave

Temperature Humidity Pressure direction parameters

(Philander, 1999). Today, the TAO array is based on ap-
proximately 70 ATLAS and TRITON buoys that have similar
measuring capabilities and mooring designs. They are devel-
oped to provide real-time measurements of temperature and
salinity in the upper 500 m of the ocean (750 m for the TRI-
TON buoys), as well as meteorological parameters (wind,
air temperature, atmospheric pressure, humidity, precipita-
tion) at the surface. Few sites are equipped with Acoustic
Doppler Current Profilers (ADCP) that provide current data
in delayed mode whenever the moorings are recovered. The
PIRATA array in the tropical Atlantic uses the same type of
buoys and monitoring strategy to study ocean-atmosphere in-
teraction relevant to regional climate variability.

The main goal of the Bermuda Test-Bed Mooring (BTM)
program was to provide to the scientific community a plat-
form for developing, testing and calibrating instruments for
long-term monitoring (Dickey, 1995). The system is a fixed
mooring with a surface buoy equipped with instruments
for meteorological and spectral radiometric measurements,
while various instruments for physical and biochemical mea-
surements at subsurface and deeper layers are attached on
the mooring wire. Special attention is given to the optical
properties and several new instruments have been developed.
Since its deployment in 1994 the system has provided valu-
able information on episodic and periodic processes at dif-
ferent time scales (McNeil et al., 1999). Although the BTM
was not initially designed as a real-time monitoring system,
it has demonstrated the feasibility of operational, long-term,
physical and biochemical measurements in the ocean.

A similar design is followed by the HALE-ALOHA
(Hawaii Air-sea Logging Experiment, A Long-term Olig-
otrophic Habitat Assessment) station that has collected phys-
ical and biochemical data since 1997. The system is part of

the HOT (Hawaii Ocean Time-series) program, which is a
long-term observation experiment based on both ship and
mooring measurements (Chiswell and Lucas, 1990). The
overall goal of the program is to study the north Pacific sub-
tropical gyre, by understanding the seasonal and interannual
variability of water masses and bio-chemical characteristics
in the area and relate them to gyre fluctuations. Apart from
the HALE-ALOHA system, the fixed mooring network in-
cludes two inverted echo sounder moorings and a sequencing
sediment trap mooring.

A different approach for continuous multidisciplinary
measurements in the water column is the use of profiling
vehicles equipped with sensors (Provost et al., 1996). The
advantage of such systems, usually called yoyos, is their rel-
atively low cost, since a single-set of instruments is required
for all measurements. They are capable of providing mea-
surements with very high vertical resolution, compared to
conventional moorings where instruments are placed at pre-
selected depths. Furthermore, they can minimize bio-fouling
problems since the vehicle can park in a low-fouling zone.
Their deployment procedure is difficult due to their compli-
cated mooring requirements. Up todate, these systems have
not provided long time series, but the ongoing research is
expected to further improve their characteristics and develop
reliable solutions in the near future.

Underwater and satellite communication technologies
have been rapidly developing during the last few years. The
DOMEST project is developing an open network structure
for deep-sea deployments near the Canary Islands (Meinecke
et al., 2000). The system consists of a subsurface platform, as
well as intermediate and deep ocean units equipped with sed-
iment traps, CTD instruments, optical sensors, current me-
ters and ADCP. Their communication technology is based



K. Nittis et al.: The Mediterranean Moored Multi-sensor Array (M3A) 77

Table 2. Type and accuracy of sensors used for the oceanographic measurements of the M3A system

Parameter Instrument type Sensor Range Sensor accuracy Units

Conductivity (1.5 m) Aanderaa 3211 0–7.5 0.015 S/m

Temperature (1.5 m) Aanderaa 3211 −5–35 0.1 Celsius

D. Oxygen (1.5 m) Aanderaa 3713 0–15 0.4 ml/l

Light attenuation (1.5 m) Wetlabs C-star transmissometer 0–100 0.025 %

Chlorophyll (1.5 m) Wetlabs WETStar fluorometer 0.03–75 0.03 µg/l

Conductivity (40–115 m) SBE-16 SEACAT 0–7 0.001 S/m

Temperature (40–115 m) SBE-16 SEACAT −5–35 0.01 Celcius

Pressure (40–115 m) SBE-16 SEACAT 0–200 0.2 dbar

D. Oxygen (40–115 m) SBE 23 DO sensor 0–15 0.1 ml/l

Light attenuation (40–115 m) Wetlabs C-star transmissometer 0–100 0.025 %

Chlorophyll (40–115 m) Wetlabs WETStar fluorometer 0–75 0.03 µg/l

PAR (40–115 m) LI-COR 193SA 0–1000 1. microeinsteins s−1m−2

Nitrate (65 m) WS Ocean NAS2-EN 0–5 0.1 µmol/l

Conductivity (150–500 m) SBE 37 MICROCAT 0–7 0.0003 S/m

Temperature (150–500 m) SBE 37 MICROCAT −5–35 0.002 Celcius

Pressure (150–500 m) SBE 37 MICROCAT 0–600 0.6 dbar

Current (0–500 m) RDI Longranger 75 kHz 0–5 0.05 m/s

on underwater acoustic modems and satellite transmission
through the Orbcomm system, which is a Low Earth Orbit
(LEO) satellite platform. Another category of deep-sea ob-
servatories is using existing submarine telephone cables to
transmit data. The advantage of this approach, apart from the
high throughput for data transmission, is the ability to power
the station on a permanent basis using the same cable (But-
ler et al., 1992). The Hawaii-2 Observatory (H2O) is using
such a cable to operate a deep-sea (5000 m) station equipped
with seismometer, geophone and hydrophone instruments. In
the future, the station will be equipped with instruments for
physical, biological and tsunami studies.

The development of a modular upper ocean observing sys-
tem and the initial results from its first year of operation
are presented here. In Sect. 2, the M3A system architec-
ture and its components are described. Data transmission
and management strategies are also presented in this section.
The operation during the pilot phase of MFS and the various
problems that were encountered are described in Sect. 3. In
Sect. 4, the quality of the M3A data collected during the pi-
lot phase is discussed and selected time series are briefly de-
scribed. The main results and conclusions are summarized in
Sect. 5 and some comments on future perspectives are given.

2 The M3A system

The M3A design followed the requirements of the MFS sci-
ence plan (Pinardi and Flemming, 1998), according to which
the system should measure physical properties of the upper
500 m of the ocean, biochemical variables at the upper 100 m
and air-sea interaction variables at the surface (Table 1). In
this way, the system should be able to monitor the upper ther-
mocline variability of the general circulation and biochemi-
cal processes in the euphotic zone. Furthermore, the system
should be able to transmit the collected data in real time to
an operational centre where data should be pre-processed and
delivered in Near Real Time (NRT) to the MFS partners. Fi-
nally, the system should be able to operate in open-sea condi-
tions, and be moored at depths above 1000 m. These require-
ments defined the technical characteristics and the design of
the M3A system.

In the pilot phase of MFS, the M3A data were used for
calibration/validation of ecological models developed for the
Mediterranean Sea, as well as for the development of appro-
priate data assimilation techniques. Hence, these data were
not used in real time by other project components. Their
NRT delivery was mainly a demonstration that coordinated
NRT data collection from the different MFS observational
components is feasible during a Targeted Operational Period
(TOP) of six months. During the next phase of MFS, addi-
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Fig. 1. Design of the M3A system.

tional M3A systems will be developed for other areas of the
Mediterranean Sea and their data will be assimilated into the
operational basin-scale forecasting system.

2.1 Configuration and sensor suites

The M3A system is composed of three independent mooring
lines (Fig. 1), one central (line 1) and two peripherals (lines 2
and 3). This configuration allows for separate and thus, eas-
ier maintenance of lines 2 and 3 that have a high mainte-
nance frequency, (every 2–3 months) and can be handled by
a medium size vessel. In contrast, line 1 has a lower main-
tenance frequency (once a year), but requires the presence
of a larger research vessel. At the same time, this modular
configuration guarantees the expandability of the system that
can be enriched in the future with additional instruments on
separate moorings with acoustic data transfer between them.

Line 1 is the central mooring that hosts a surface buoy
with the code name “Medousa” (Thanos et al., 1997) and
the sensors for physical parameters at deep layers (below
100 m). Four CTDs (element 2 in Fig. 1) are used at 150,
250, 350, 500 m to measure temperature, conductivity and
pressure (Table 2). Data are transferred to the surface by
a 600 m inductive-modem cable. This cable (element 3 in
Fig. 1) is connected to the subsurface umbilical by a conduc-
tive swivel at 30 m. The swivel (from Focal Technologies) al-
lows for the free rotation of the surface buoy, but at the same
time it conducts the signal of the deep sensors (element 4). At
the same depth, the hydroacoustic modem (Orca-MATS-12,
element 5) receives the data of line 2 and transfers the data
to the surface buoy though the umbilical. A pair of acoustic
releasers of 4500 kg capacity is placed above the anchoring
system to allow for easy recovery of the whole line.

The surface buoy is hosting the surface (1.5 m depth)
sensors suite (temperature, conductivity, turbidity, dissolved
oxygen and chlorophyll-a), the meteorological and wave sen-
sors (wind speed and direction, air temperature, atmospheric
pressure, humidity, wave height and direction), plus the data
storage and transmission system. The customized cage of the
oceanographic sensors allows for an easy detachment from
the buoy for cleaning and repair. Those sensors have the
same maintenance requirements as those of line 2.

Line 2 is hosting four CTD instruments at 40, 65, 90 and
115 m, and a nutrient (nitrate) analyser at 45 m depth (Fig. 2).
Apart from temperature, conductivity and pressure sensors,
each CTD probe is equipped with a light attenuation sen-
sor (transmissometer), a chlorophyll-a sensor (fluorometer),
a PAR (photosynthetically active radiation) sensor and a dis-
solved oxygen sensor. The four devices are networked with
an RS-485 interface, while an RS-232 to RS-485 converter
allows for the communication with the nutrient analyser. A
pressure container at 35 m depth (element 11) is hosting the
computer (code name “Nireus”) that controls line 2, stores
the data and transmits the data to mooring line 1 through
the acoustic modem that is attached to the flotation device
(element 10) above the pressure container. For communica-
tion between the two modems, a data rate of 20 bit/s and the
CHIRP modulation, recommended for a horizontal transmis-
sion, were chosen. Line 2 is also equipped with two releasers
at 125 and 1000 m and an Argos beacon (Orca-BASM500)
that transmits the mooring position if the flotation device
comes to surface by accident.

The same type of beacon is used on the flotation device of
line 3 that hosts the upward looking ADCP. This device is at
500 m depth, measuring the current profile from that depth up
to the surface. It was anchored at about 1 nm away for line 1.
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Fig. 2. Details of line 2 of M3A.

This system does not include real-time data transfer to the
surface buoy, since the large volume of ADCP data does not
allow for their transmission through a satellite (at least with
the current system capabilities). With a sampling interval
of 30 min, the autonomy of the system is approximately 6
months, which is the maintenance interval for mooring line 3.
An acoustic releaser at 1000 m allows for the easy recovery
and re-deployment of the system.

2.2 Measurement sequencing and data flow

Two Intel-PCs are used for the acquisition of data and con-
trol of the system: the 80486 PC of the surface buoy and the
CMF 8680 of the “Nireus” logger in line 2. The CPUs of
both systems have been programmed to start operation ev-
ery 3 h. The first step is the acquisition of line 2 data from
the “Nireus” logger and the transmission to the surface buoy
through the acoustic modem. The second step is the data
acquisition from the deep instruments of line 1, using the in-
ductive modem controller. The third step is the acquisition
of data from the sensors of the surface buoy. The whole data
acquisition procedure has a duration of 40 min. When this
procedure is completed, data are encoded and transmitted to
the MFS buoy operational center (Fig. 3).

For the real-time transmission of data from the buoy, the
ARGOS satellite system was selected. This system is also
used for the transmission of XBT data collected during the
VOS component of MFS. It was selected as the standard
data transmission platform of MFS because (a) it is a sys-
tem commonly used by the oceanographic community, (b) it
has low energy requirements, (c) it has low operational costs

Fig. 3. External data flow of the M3A system.

and (d) it offers data dissemination through the GTS (Global
Telecommunication System). An Argos IESM-PTT07 trans-
mitter loads 12 encoded messages and relays them with a
repetition period of 60 s. The ARGOS satellite passage over
the area is every 2–3 h with maximum gaps of 8 h.

As a backup data transmission method the cellular tele-
phony through the GSM network was selected. This sys-
tem allows for a two-way communication between the oper-
ational center and the M3A buoy. The problem with the GSM
transmission is the low performance during storms. Further-
more, this solution cannot be used at open-sea where such
networks do not operate. The original M3A design included
data transmission through Iridium or Globalstar, but these
systems have not been successful up to now. The Orbcomm
system, which is successfully used by the DOMEST project
(Meinecke et al., 2000), and the Inmarsat-C system used by
the POSEIDON project (Nittis et al., 2001) are possible al-
ternatives. In the near future, the ODL system and the new
generation of Argos are expected to provide new reliable so-
lutions (Gamache and Fogel, 2000).

Before their transmission, data are converted in engineer
units and encoded in standard Argos messages. The encod-
ing procedure takes into account both requirements for high
temporal resolution and high quality of data. Thus, data deci-
mation uses the whole range of each sensor and almost its full
accuracy (e.g. 0.01◦C for temperature and 0.001 S/m for con-
ductivity). Upon reception by the ARGOS land station, data
are automatically transferred by standard internet protocols
(ftp) to the operational center of NCMR (National Center for
Marine Research, Greece) that serves as the buoy data centre
for MFS. Data are decoded and automatic safety controls are
applied (position, battery level, functioning of sensors). This
procedure allows for a fast reaction from the partners who
are responsible for the safety of the system.

The second data transmission pathway through the GSM
network delivers the data to MARTEDEC (Marine Tech-
nology Development Company SA, Greece) every 3 h and
from there to NCMR through automatic ftp every 24 h
(Fig. 3). All data are then transmitted to OGS (Italy) that
has the overall responsibility for the quality control of data.
Using automatic ftp, data are transferred back to NCMR
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Fig. 4. Location of the M3A system during the pilot phase of MFS
(star) and buoy locations during the second Phase of MFS according
to the science plan (filled circles).

from where they are made available to users via web and
ftp services (www.poseidon.ncmr.gr/m3a) in standard ME-
DATLAS format (www.ifremer.fr/sismer/program/medatlas/
gb/gb/format.htm).

2.3 Quality control of real-time data

The quality control (QC) procedure carried out at OGS com-
prises a series of tests on the data in order to identify er-
roneous and anomalous values. Automatic QC consists of
checks on individual or consecutive data points; these checks
provide tests for instrument errors, physical limits of the data,
rate of change, and stationarity of data. The checks consid-
ered in the procedure are the following:

– the values have to lie within the instrument’s ranges;

– the values have to lie within the prefixed physical
ranges;

– the values have to respect a rate of change in the time;

– the values cannot be constant over a time period relevant
to the specific parameter.

Each QC check is performed in sequence and only if the pre-
vious one has been passed. Each of the automatic QC checks
generates a flag when the check fails and the flag is ascribed
to the data point failing the check. Data that pass all the
checks are considered as “correct data”. No editing of invalid
data or replacement of missing data is performed. The over-
all procedure generates an output file in MEDATLAS format.
The data quality control program is activated by an automatic
procedure, running on a computer of OGS that daily:

– collects files of data coming from the M3A buoy via the
ARGOS system or via GSM;

– prepares an input file for the data quality control pro-
gram;

– activates the data quality control program providing the
data for the last 24 h;

– transmits the results (MEDATLAS file) to NCMR.

3 Operation during the pilot phase of MFS

According to the MFS science plan, the M3A system should
be developed and tested during the first pilot phase of the
project and should be expanded during the next two phases
into an array that will cover the whole Mediterranean Sea.
In Fig. 4, the positions of the M3A buoys during the first and
second phases of MFS are presented. The Cretan Sea was se-
lected as the area of operation of M3A during the pilot phase
of MFS, for a variety of reasons. It is an area where open-sea
conditions can be found in a relatively small distance from
the coast. Furthermore, the Cretan Sea has been selected for
the development of the 1D ecosystem model of MFS. The
upper 100 m physical and biochemical data of M3A will be
used for the initialization and calibration of this model. An-
other major advantage is the presence of the Institute of Ma-
rine Biology of Crete (IMBC) that facilitates the access to
the system and guarantees a quick response in case of an ac-
cident.

The Cretan Sea has been extensively studied during the
last decade in the framework of major international projects
(POEM, CINCS, PELAGOS, MATER) and its characteris-
tics are well documented (Theocharis et al., 1993, 1999b;
Tselepides et al., 2000). The eastern Mediterranean has been
characterised as one of the most oligotrophic areas of the
world (Azov, 1986), with phosphorus being the liming nu-
trient (Krom et al., 1991; Thingstad and Rassoulzadegan,
1995). Among its main characteristics are the open-sea con-
vection processes, responsible for the formation of the so-
called Cretan Intermediate Water (Theocharis et al., 1999a).

3.1 System deployment and periodic maintenance

The deployment of the M3A system was carried out dur-
ing January–March 2000. Lines 1 and 2 were deployed
by R/V Aegaeo of NCMR on 30 January at a depth of
1030 m, approximately 30 nm NW of the city of Heraklion,
Crete. Due to a problem with the exact depth of the sen-
sors on line 2 (see also Fig. 6), the line was recovered on 9
February and re-deployed on 4 March 2000, together with
line 3. Up until summer 2001, maintenance cruises were
performed on 15 May 2000, 31 July 2000, 28 October 2000
and 19 April 2001. Additional visits at the buoy location
were carried out for in situ repair of surface buoy electronics
(March–May 2000) and for the second deployment of line 3
on 3 September 2000. Deployments of lines 2 and 3 and the
maintenance cruises were carried our by R/V Filia of IMBC.
Each maintenance expedition had a 3–4 day duration that in-
cluded recovery and re-deployment of the system during the
first and last day, respectively, and lab work at IMBC during
the rest of the time. The typical activities during each visit
included:

(a) at sea:

– Recovery of Line 2 and Line 3 (if applicable);

– Acquisition of water column samples at the exact
depths of the M3A instruments. Preparation of
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samples for dissolved oxygen and nutrient analysis,
filtering of samples for chlorophyll-a analysis;

– CTD cast down to 1500 m (using a SBE-25 CTD
with auxiliary sensors for dissolved oxygen, fluo-
rescence, transmittance, PAR);

– Checks/repairs on the surface buoy and recov-
ery/cleaning of underwater instrument’s cage at-
tached to the buoy;

– External cleaning of all recovered devices (instru-
ments, floats, ropes, etc.) using soapy water;

(b) in the Lab:

– Analysis of water samples for dissolved oxygen,
chlorophyll-a and nutrients (PO4, NO3, Si);

– Downloading of data from the “Nireus” PC and the
loggers of the individual instruments;

– Cleaning of instruments and sensors. For the de-
fouling of instruments, standard methods proposed
by the manufacturers were followed. The CTD
probes (including the optical sensors) were flushed
with soapy water and the tubes were cleaned using
methanol. A Triton X-100 solution was used for
cleaning of the conductivity sensors;

– Replacement of reagents in the nutrient analyzer;

– Replacement of batteries where needed, lubrication
of o-rings, inspection of instrument’s functionality;

– Re-assembly of line 2 and line 3 (if applicable).

3.2 Calibration and delayed-mode quality control

During each maintenance visit, the quality of M3A data
was controlled against reference in situ measurements.
Chlorophyll-a, dissolved oxygen and nutrients data were
checked against the results of the laboratory analysis of wa-
ter samples. The standard Winkler method (Carpenter, 1965)
was used for dissolved oxygen, while a Turner 00-AU-10
fluorometer was used for the chlorophyll-a analysis. Flu-
orescence is converted to chlorophyll-a using the formula
of Yentsch and Menzel (1963). Temperature, salinity, light
attenuation and PAR data were compared against reference
CTD measurements carried out by the SBE-25 of R/V Filia
and the SBE-911 of R/V Aegaeo. Salinity measurements of
the reference CTD casts were corrected against salinometer
analysis of the water samples.

For the calibration procedure, both water samples and
CTD casts were collected twice during each maintenance
cruise, once during the recovery of the instruments and once
during their deployment 2–3 days later. The first set of data
was used for the estimation of fouling effects during the pre-
ceding measuring period, while the second data set was used
for the re-calibration of sensors that had been cleaned dur-
ing the above described maintenance procedures. Thus, this
procedure corrects each time the data of the next measuring
period.

From the values provided by the M3A instruments and the
reference values, correction coefficients were estimated for
the transfer functions that convert the sensor’s output to en-
gineering units. In all cases, correction coefficients were ap-
plied to the oxygen and chlorophyll-a measurements where
the deviation between in situ and reference measurements
was far above the sensor’s accuracy (0.5–1.2 ml/l for dis-
solved oxygen, 1.2–3.2µg/l for chlorophyll-a). In fact, the
initial values of chlorophyll-a estimated by the M3A fluo-
rometers were one order of magnitude higher than the ref-
erence values (0.6–3.2µg/l instead of 0.05–0.5µg/l). This
is probably related to the fact that the sensors had been cali-
brated by the manufacturer with different phytoplankton pop-
ulations. Furthermore, the instrument’s range (0–75µg/l) is
much larger than the typical ranges of the oligotrophic Cretan
Sea.

It is interesting to note that for each oxygen or chlorophyll
sensor, the correction coefficients estimated during the first 8
months of operation were each time the same (January, May
and August 2000). This indicates that the sensors had a sta-
ble behavior during that period. The coefficients estimated
during the following maintenance visits were different, indi-
cating an important impact of the increased fouling during
the summer period (see also Sect. 4).

The PAR sensors did not operate properly and thus, no cor-
rection was applied. For the light-attenuation sensors, there
were no directly comparable measurements because the ref-
erence instruments were operating in different wavelengths.
For the rest of the line-2 sensors, the maximum deviation
between reference and in situ measurements was 0.08◦C for
temperature, 0.05 for salinity and 0.2µmol/l for nitrate, i.e.
outside the accuracy limits of the sensors (Table 2). Nev-
ertheless, such deviations are expected given the methodol-
ogy that was followed (“quasi” simultaneous measurements
at “quasi” the same depths at a distance of 100–500 m) and
thus, no correction was applied to these data.

A more precise method for re-calibration of sensors would
be to carry out simultaneous measurements using exactly the
same water sample. This method requires the use of a mix-
ing tank that will guarantee homogenous conditions during
the measurement procedure. For better results, comparative
measurements have to be taken at different concentrations,
typical of the area of interest. This procedure is already
used in the framework of the POSEIDON project with very
promising results (Nittis et al., 2001) and will be applied in
the next phase of MFS.

3.3 System performance

The main problem during the first year of pilot operation
was caused by a false connection of the umbilical cable with
the surface buoy. The first sign of the problem was the
decreasing quality of data transmission from lines 1 and 2
through the umbilical. The problem appeared 3 weeks after
the deployment of the system, but could not be traced until
5 months later when the same problem caused the detach-
ment of the surface buoy from line 1 (end of June 2000).
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Fig. 5. Weekly performance of the vari-
ous system components during the Pilot
Phase of MFS. Colors indicate the qual-
ity of data, based on comparison against
reference measurements. Blue: no need
for calibration. Green: data were cal-
ibrated. Red: data could not be cali-
brated. White: no sensor during that
period.

The buoy drifted for 3–4 days and was retrieved a week later
(2 July 2000) from the northeast coasts of Crete, severely
damaged. After the accident, the system continued its opera-
tion without real-time transmission and without surface data.
Data from lines 2 and 3 were downloaded during the mainte-
nance of the system, while data from line 1 were downloaded
once (March 2001) when line 1 was retrieved. The analysis
of those data followed the same quality control procedures
that were defined for the real-time data and were made avail-
able in “delayed mode” to project partners.

During the operation of the surface buoy, data were trans-
mitted mainly through the backup solution of GSM network.
This was due to technical problems with the Argos antenna.
During the short period of transmission through the Argos
system, the successful retrieval of data was approximately
60%. The main reason was the large volume of data that had
to be transmitted through the system. Each cycle of measure-
ment (every 3 h) is encoded in 3 Argos messages. According
to the transmission strategy that was selected, the last 3 cy-
cles of measurement are transmitted each time, i.e. 9 mes-
sages are repeated continuously for 3 h. The average num-
ber of messages received by the satellite at each passage was
much smaller and this resulted in a reduced success in data
retrieval. These statistics are from approximately 5 months
of operation of the Argos system. The backup solution of
GSM provided an 80% overall successful data retrieval.

In Fig. 5, the overall performance of the M3A system
during the pilot operation is presented. The table includes
the performance of the individual sensors, as well as the
above described functioning of internal and external com-

munications. The white color indicates the absence of instru-
ments/sensors that were at the lab or sent back to the factory
for repair. Overall, problems were encountered with the sen-
sors of light transmission and PAR. The light transmission
sensors were found to be very sensitive to bio-fouling, even
in the extremely oligotrophic conditions of the Cretan Sea.
The PAR sensors did not operate properly due to a problem
with their amplifier. Dissolved oxygen sensors gave reliable
data after their re-calibration during the maintenance visits
of the first six months, but an attempt for in situ repair was
not successful and thus, data are missing after August 2000.
All temperature and salinity sensors operated properly and
there was no need for re-calibration during this period of op-
eration.

4 Presentation of selected time series

Time series of pressure measurements from the sensors lo-
cated at 150 m depth for line 1 (upper-most deep sensor)
and 115 m depth for line 2 (deepest sensor for this line) are
presented in Fig. 6. Remarkable vertical displacements of
both mooring lines are observed, especially during the pe-
riod September 2000 to January 2001. The most important
event was on 15 December 2000 when a vertical displace-
ment of 110 m was recorded on line 2 and 64 m on line 1.
All the events have a typical duration of 5–15 days and are
associated with intensifications of the current field (Fig. 7).
Smaller events observed during March–April 2000 are asso-
ciated with higher frequency variability, possibly related to
inertial waves. The maximum value of subsurface currents
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Fig. 6. Time series of pressure measurements for Line 1 (red) and
Line 2 (blue).

(50 m) during the periods of maximum vertical displace-
ments exceeds 50 cm/s, while the mean value is 15 cm/s.
Similar values of currents have been considered during the
design phase of the system in order to estimate the appropri-
ate buoyancy for each mooring line. Values around 50 cm/s
were considered as extreme cases, but they turned out to be
typical in this area, which is strongly influenced by energetic
mesoscale structures (Theocharis et al., 1999b). These re-
sults indicate that the 450 kg buoyancy used for line 2 must
be increased in the future in order to avoid such vertical
displacements of the instruments that, among other factors,
seem to influence the functioning of individual sensors (e.g.
chlorophyll-a sensor, see Fig. 10). This is not valid for line 1,
since during the period of extreme displacements, line 1 was
not stabilized by the surface buoy and thus, its behavior can-
not be considered typical.

The time series of temperature at different depths describe
a complete annual cycle of the surface thermocline due to
seasonal heating and cooling (Fig. 8). The onset of strat-
ification starts at mid-April and the thermocline is at ap-
proximately 50 m. Maximum subsurface temperature val-
ues are recorded at mid-October, followed by a gradual mix-
ing that brings the thermocline into deeper layers, until it
disappears in early January. Although the Cretan Sea is a
well-known area for open-sea dense water formation pro-
cesses (Theocharis et al., 1993), no deep mixing event was
observed during these two winters. In fact, the weak strati-
fication between 100 and 500 m remains very stable during
the 15 months of observation. This weak stratification is typ-
ical for the Cretan Sea that has minimum temperatures above
13.9◦C, even at its deepest layers.

The vertical structure of salinity is more complicated since
at least 3 different water masses can be detected (Figs. 8
and 9). The low salinity Modified Atlantic Water occupies
the layer 40–100 m, the saline Cretan Intermediate Water in
the layer 150–350 m, while the upper part of the Transitional
Mediterranean Water is observed at 500 m. Salinity varia-
tions in the upper layer are very strong (38.6–38.9), even in
the synoptic time scale that is possibly under the influence
of mesoscale eddy activity. During late October 2000 when
the surface thermocline starts to weaken, the salinity values

Fig. 7. Time series of current speed at 60 m depth. A low pass filter
has been used to eliminate variability below 12 h.

at 40 m increase significantly (39.1–39.3) under the influence
of the surface saline waters formed during summer due to ex-
cess evaporation and warming. A more detailed description
of water mass characteristics and their variability is given by
Cardin et al. (2003).

Time series of chlorophyll-a (chl-a) concentrations in the
upper 115 m are presented in Fig. 10. Data have been cal-
ibrated against water samples following the procedure de-
scribed above. The chl-a profile given in Fig. 9b has not
been calibrated and thus, its absolute values should not be
directly compared to the time series. It is mainly used to de-
scribe the vertical structure of chl-a, which is characterized
by the sharp chlorophyll maximum at approximately 100 m.
Overall, the chl-a values are very low, less than 0.5µg/l at
the chl-a maximum layer and less than 0.1µg/l below, in to-
tal agreement with previous findings for the area (Tselepides
et al., 2000). During winter (February-March), chl-a concen-
trations are more uniform in the upper 100 m due to verti-
cal mixing, while with the development of the thermocline,
the chl-a maximum becomes more pronounced as the con-
centrations above 70 m decline significantly (see time series
at 40 m and 65 m of Fig. 10). The effect of bio-fouling is
mainly visible in two periods: between August and October
2000 at almost all depths and at the end of March 2001 for
the 90 m sensor. At the end of these periods, the chl-a mea-
surements deviate by more than 0.1µg/l from the reference
measurements (maximum deviation of 0.5µg/l at the upper-
most sensor for October 2000 and 0.4µg/l for March 2001).
It is interesting to note that although the chl-a concentrations
are at the same range during the whole period, the increasing
trends, probably related to bio-fouling, are more pronounced
during summer and they start just after the redeployment of
the sensors (beginning of August). The second increasing
trend at end of March 2001 is rather expected due to the long
residence of the instrument in the sea without maintenance
(6 months). A second source of erroneous data in the chl-a
time series is the vertical displacements of the mooring. In-
deed, peaks of chl-a at 40 m during early October 2000 and
at 115 m between December 2000 and January 2001 coincide
with the strongest vertical displacements of mooring line 2.
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Fig. 8. Time series of temperature and salinity at 8 and 4 depths, respectively.

5 Summary and conclusions

The M3A system is one of the first efforts on a European
level for multi-parametric real-time measurements of the up-
per and intermediate layers of the ocean. Similar efforts, such
as the Bermuda Test-Bed Mooring and the HALE-ALOHA
have provided not only very important data sets, but also
the possibility to test and develop new instrumentation. The
value of operational monitoring, even with less complicated
systems, has been already demonstrated by the TAO array
that provides the necessary data for the efficient forecast of
El Niño many months in advance. Open ocean observing sys-
tems are now being developed for many of the world’s oceans

under the global perspective of GOOS. The prototype M3A
system was developed and tested during the pilot phase of the
Mediterranean Forecasting System. Its design takes into ac-
count the requirements for multi-parametric data necessary
for the development of ecosystem models for the Mediter-
ranean. The system integrates state-of-the-art sensors and
communication techniques. Its modular design allows for
independent handling of systems that have different mainte-
nance requirements. In fact, during the pilot phase of MFS,
the maintenance of M3A was carried out using a small re-
search vessel, while a larger one was only used twice for the
deployment and retrieval of all 3 mooring lines. In this way,
the overall maintenance cost was significantly reduced. This
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Fig. 9. Salinity and chlorophyll-a profiles at the M3A site on
18 May 2000. Data were collected during a regular maintenance
cruise of R/V Filia using a SBE-25 CTD.

economic benefit is much larger than the additional cost of
developing 3 instead of 1 mooring lines (cost of ropes, flota-
tion and anchoring devices etc.). Another benefit is the quick
response to system failures, since the access to small sized
local vessels is usually much easier than the use of large re-
search vessels. During the first 4 months of operation, line 2
was recovered twice for emergency repairs, apart from the
regular maintenance visits. The system is expandable and
can be enriched in the future with new sensors. For the next
phase of MFS, the addition of a Phosphate analyzer in moor-
ing line 2 is planned. The need for such a device was fore-
seen during the development phase of M3A, but no commer-
cial system with the appropriate specifications (i.e. for the
very low nutrient concentrations of the Mediterranean Sea)
was available at that time. Overall, the use of distributed
units that communicate through underwater acoustic links is
a promising technology that is being tested in several new
developments of operational systems (Frye et al., 1999; Mei-
necke et al., 2000).

The main problems during this pilot operation of the sys-
tem were related to telecommunications and bio-fouling on
optical sensors. A problem with the umbilical cable that
transfers the data from both lines 1 and 2 to the surface buoy,
disrupted the internal data flow of the system a few weeks af-
ter the deployment. For this reason, the hydro-acoustic com-
munications could not be tested for a long period, especially
during the summer when problems with the seasonal ther-
mocline were expected. During the short period of operation
of the Argos system, the data recovery was approximately
60% mainly due to the large volume of data that should have
been transmitted. Transmission through the GSM network
had a success rate of approximately 80%, but the system is
not applicable in the open sea and thus, cannot be used as
the standard communication system of the M3A array. For
the next phase of MFS, the Inmarsat-C satellite has already

been selected for the standard transmission of data in real
time. This system is being used on the 11 Seawatch buoys
that operate in the Aegean Sea in the framework of the PO-
SEIDON project and has proved to be very stable and reli-
able during the 3 years of continuous operation (Nittis et al.,
2001). It has increased energy requirements compared to the
Argos system but with a transmission frequency every 3 h, it
does not create any problems to the present energy budget of
the surface buoy. Its operational costs are approximately in-
creased by 30% compared to Argos, but it has the advantage
of increased throughput and it offers two-way communica-
tion. The increased capacity of the next generation of Argos
satellites and the development of new systems (e.g. Global-
star) are expected to provide additional reliable solutions in
the near future.

Light transmittance sensors were found to be the most sen-
sitive to bio-fouling, and the possibility of correcting the
collected data is still under evaluation. Chlorophyll-a sen-
sors (fluorometers) are also sensitive, but problems with bio-
fouling were encountered only during certain periods of the
year and at the end of long deployments. These sensors were
also found to be sensitive to the strong vertical displacements
of the mooring line during intensification of the current field.
The results of these displacements are visible in all time se-
ries but their effect can, in general, be removed by using
simple interpolation methods, since the exact displacement is
recorded by the pressure sensors. Chlorophyll-a data cannot
be corrected for this effect due to the unexpected response of
the fluorescence sensors to these pressure variations. Over-
all, dissolved oxygen and chlorophyll-a sensors were able to
provide reliable data after consistent re-calibration against in
situ measurements during each maintenance cruise.

A preliminary analysis of data collected during the first
year of operation shows the value of this data set for stud-
ies of physical-biological coupling in the open sea at various
time scales and demonstrates the importance of continuous,
multidisciplinary deep-sea monitoring. The area of study is
found to be dominated by the presence of a strong dipole
consisting of an anticyclonic gyre to the west and a cyclonic
to the east of the mooring site. The interaction of these gyres
influences both the current field and hydrological character-
istics, at least in the upper 500 m of the water column. The
bottom of the seasonal thermocline is at 50–70 m and thus,
the signal of the annual cycle of heating and cooling is hardly
detected below that depth.

The overall experience from the pilot deployment during
2000–2001 suggests that a continuous operation of the M3A
system is feasible, but new developments that will improve
certain characteristics of the system are required. The main
problems encountered during the first year (communications,
stability of mooring lines) can be solved with engineering
improvements of the system. The effect of bio-fouling is
probably the most important problem, especially for the sen-
sors that use optical measurements. New methods and anti-
fouling techniques, such as the generation of biocide chlorine
compounds on tin oxide coating (Festy et al., 1998) or the use
of UV pulses, are being developed in the framework of ongo-
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Fig. 10. Time series of chlorophyll-a at 40, 65, 90 and 115 m depth.

ing research projects and have started to give promising re-
sults. In the next phase of MFS, the copper shutters that have
tested with very promising results at the BTM system, and
the bromide-pumping technique (Strahle et al., 1998) pro-
posed by certain manufacturers, will be tested. The applica-
bility of other techniques, such as the tin oxide coating, will
be explored. The performance of the different methods will
be evaluated during a dedicated experiment using the instru-
mentation of M3A. Indeed, the M3A system could be used
in the future as a test-bed where prototypes and new method-
ologies are evaluated.

The M3A data are being used by the MFS community
for both process studies that improve our understanding of
the Mediterranean Sea functioning (Cardin et al., 2003) and
for the development of ecological models that simulate its
ecosystem variability (Siddorn and Allen, 2003). Data as-
similation methods are being developed by MFS partners in
order to be able to use real-time M3A data into the MFS
operational forecasting system. Furthermore, the M3A op-
tical measurements will be used by the MFS remote sensing
group to improve the analysis of space-born ocean color data.
The major challenge for the next few years will be the de-
ployment of additional M3A systems in the western and cen-
tral Mediterranean Sea. This will be a main step towards a
permanent, multi-parametric, open-ocean observing network
that will support operational forecasting in the Mediterranean
Sea.
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