
Annales Geophysicae (2003) 21: 481–492c© European Geosciences Union 2003
Annales

Geophysicae

VLF emission triggering by a highly anisotropic energetic electron
plasma

D. Nunn1, A. Demekhov2, V. Trakhtengerts2, and M. J. Rycroft3

1Dept of Electronics and Computer Science, Southampton University, Southampton ,Hants SO17 1BJ, UK
2Institute of Applied Physics, 46 Ulyanov St., Nizhni Novgorod 603600, Russia
3CAESAR Consultancy , 35 Millington Rd, Cambridge CB3 9HW, UK and Faculty of Computing and Engineering Sciences,
De Montfort University, Leicester LE1 9BH, UK

Received: 28 January 2002 – Revised: 1 October 2002 – Accepted: 21 October 2002

Abstract. A recent paper (Bell et al., 2000) reports observa-
tions from the POLAR spacecraft of highly anisotropic hot
electron distribution functions in the equatorial region of the
magnetosphere atL = 3.4. The particle instrument HY-
DRA measures electron fluxes from 1–20 keV. VLF emis-
sions triggered by pulses from Omega (Norway) are found
to coincide with “pancake” type electron distributions with
average pitch angles>70 degrees, such distributions being
effectively confined to the equatorial zone. We examine the
linear and nonlinear wave particle interaction process be-
tween pancake distributions and continuous wave (CW) or
narrow band ducted whistler mode signals. It is concluded
that the pitch angle range of 67–76 degrees dominates the in-
teraction process, and that with in-duct wave saturation am-
plitudes of 6 pT strong nonlinear trapping occurs for these
particles. Using these data, a 1-D Vlasov Hybrid Simulation
VLF code was run to simulate numerically risers triggered
by a 1 s Omega pulse. The integrated linear trans-equatorial
amplification of∼15 dB agrees well with figures calculated
by Bell et al. (2000) from the HYDRA data. Fallers, hooks
and oscillating tones have also been simulated.

Key words. Space plasma physics (numerical simulation
studies; wave particle interactions) Solar physics, astro-
physics and astronomy (radio emission)

1 Introduction

The phenomenon of triggered VLF radio (whistler mode)
emissions is a very important theoretical problem in space
plasma physics. It is a “clean”, reproducible and highly non-
linear phenomenon. Furthermore, a wealth of supporting ex-
perimental data has been produced by the active Siple exper-
iment in Antarctica (Helliwell and Katsufrakis, 1974; Helli-
well et al., 1980, 1986; Helliwell, 1983), enabling a detailed
comparison to be made between theory and simulations, on
the one hand, and real data on the other.
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In recent years, many papers have been written on the the-
ory and simulation of triggered VLF emissions (Helliwell,
1967; Helliwell and Inan, 1982; Molvig et al., 1988; Roux
and Pellat, 1978; Sa, 1990; Trakhtengerts et al., 1996; Nunn,
1986, 1990; Carlson, 1990). Space prohibits an adequate re-
view; a useful overview of competing theories is found in
Omura et al. (1991), but this review is now in need of up-
dating. There seems to be reasonable agreement that the
driving mechanism is the nonlinear cyclotron resonance be-
tween narrow band/band limited ducted VLF waves propa-
gating along a geomagnetic field line and energetic keV elec-
trons. Particle trajectory nonlinearity is synonymous with the
well-known concept of phase trapping (Nunn, 1990). The
parabolic inhomogeneity imposed by the ambient magnetic
field variation confines the significant interaction region to
within a few thousand kms of the equator, and profoundly
controls the detailed trapping dynamics of the wave particle
interaction process.

In view of the nonlinearity and complexity of the prob-
lem, the main avenue of recent research has been numerical
simulation. Particle-in-cell simulations have provided use-
ful results (Helliwell and Crystal, 1973; Carlson et al., 1990;
Omura and Matsumoto, 1982), but more recent computations
have used the Vlasov Hybrid Simulation (VHS) technique
(Nunn, 1990, 1993, 1997). It is well known that Vlasov sim-
ulation techniques are extremely efficient and effective for
the numerical simulation of plasma, particularly with prob-
lems with one spatial dimension (Cheng and Knorr, 1976;
Denavit, 1972; Chanteur, 1985). VHS simulations have pro-
duced triggered emissions and resulted in the production of
self sustaining “generating regions” that cause sweeping fre-
quencies as observed. In fact, risers, fallers and hooks have
all been modelled (Smith et al., 1998). It should be noted
though that quite a few aspects of experimental reality re-
main poorly described by these codes, in particular the slow
exponential growth phase at low amplitudes observed with
Siple key down signals (Helliwell, 1983) and the absence of
an adequate plasma physical description of the amplitude sat-
uration mechanism operating (Nunn et al., 1997, 1999).
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A difficulty facing simulationists is the absence to date
of experimental wave and particle observations actually at
the site of the wave particle interactions, presumably inside
a narrow duct of enhanced plasma density in the equato-
rial zone. The simulations of Nunn (Nunn, 1993) tended to
use (for the Siple case) maximum wave amplitudes∼3–6 pT,
some 2–3 times larger than the amplitudes at which nonlin-
ear trapping of electrons by the wave commences. Ambient
distribution functions were of the high flux, low anisotropy
type, with typical equatorial linear growth rates∼70 dB/s.
Electrons contributing the most power to the wave field were
in the pitch angle range of 40–60 degrees. Working in this re-
gion of “parameter” space gave “good” emissions, but these
tended to be fairly explosive, corresponding to a nonlinear
absolute instability. Almost any signal injected into the sim-
ulation box resulted in a triggered emission. The question
that has to be asked is: are we working in the correct region
in parameter space?

A recent important paper (Bell et al., 2000) provides valu-
able observations of equatorial electron distribution func-
tions in the energy range 1–20 keV at an L-shell of 3.4. Very
high electron anisotropies were found to coincide with the
triggering of VLF emissions by 1 s pulses from the Omega
Norway transmitter. These observations have considerable
significance for the theory and numerical modelling of trig-
gered VLF emissions. In this paper we take the distribution
function used by Bell et al. (2000) to model the observed
electron data, and examine the implications for wave particle
interaction processes and particularly for nonlinear trapping.
A full numerical simulation of Omega pulse triggering, again
using the distribution function of Bell et al. (2000), follows.

2 The wave and particle observations from the POLAR
spacecraft

The particle and wave data reported by Bell et al. (2000)
were obtained from the POLAR spacecraft, with the PWI
instrument furnishing the VLF wave data (Gurnett et al.,
1995) and the HYDRA instrument furnishing the particle
data (Scudder et al., 1995). The data presented were from
the equatorial region atL = 3.4+−0.1 on 13 January 1997,
though these data were typical of the entire data set gath-
ered during 1996/1997. The HYDRA instrument measures
energetic electron fluxes in the energy range 1–20 keV. Bell
et al. (2000) found that the perpendicular fluxesJ⊥ (in the
pitch angle rangeα = 75− 105◦) were greater than the par-
allel fluxesJ‖(α = 0− > 30◦) by a factor of typically 14.
Furthermore,J⊥ decreased abruptly at geomagnetic latitudes
of ±15◦, indicating a “pancake” type distribution with a pre-
ponderance of very high pitch angle (>70 degrees) particles.
Simultaneously with these particle observations the plasma
wave instrument PWI observed triggering activity by 1 s du-
ration Omega (Norway) pulses on 10.2 kHz. According to
the ray tracing analysis in Bell et al. (2000), to which the
reader is referred, evidence is presented that the spacecraft
actually observed unducted signals backscattered from the

duct termination: because of this the spectrograms were a
good deal less clear than those obtained from ground obser-
vations of ducted signals.

Based mainly on the observed latitude dependence of en-
ergetic electron fluxes, Bell et al. (2000) have produced an
analytic model distribution functionFo to fit the observations
of electron differential fluxes as a function of magnetic lati-
tude, which is of the form

Fo(µ,W) = cW−2(µ/W)12.5, (1)

whereµ is the magnetic moment andW is the dimensionless
energy. The exponent of 12.5 shown, however, does not ap-
pear to be consistent with the observed ratios ofJ⊥/J‖ ∼ 14,
and would require values for this ratio∼ 107. For the HY-
DRA data, and using this model, atL = 3.4 the integrated
trans-equatorial amplification at 10.2 kHz was calculated to
be∼7 dB using only electrons with energies up to 20 keV, a
rather modest figure. This value becomes 14 dB if the above
functional form forFo is assumed to extend to all energies
above 20 keV, which is the upper limit of HYDRA’s mea-
surements.

The analytic form above is not necessarily the best fit to the
data, as was pointed out by Pasmanik and co-workers (Pas-
manik et al., 2001; Trakhtengerts et al., 2001). They demon-
strated that step-like discontinuities in the equatorial parallel
velocity of the electrons could account for the HYDRA ob-
servations. In fact, theory points to the need for more sophis-
ticated models, such as the multiple bi-Maxwellian, in which
anisotropy is a (decreasing) function of energy. Considering
gyro-resonance with Omega transmissions, the electron en-
ergy exceeds 20 keV at pitch angles∼ 79◦. We do not know
what the gradients inV⊥/V‖ space are at higher pitch an-
gles. Thus, extending the above model to all energies may
overestimate the anisotropy.

We should also bear in mind that these results represent
one set of observations at a particular L-shell (L = 3.4). It
is not clear what anisotropy levels prevail at higher L-shells,
particularly for Siple atL = 4.2. Nonetheless, it is clear that
these latest observations from Bell et al. (2000) are of con-
siderable importance. We now consider the implications for
the wave particle interaction process, and endeavour to sim-
ulate Omega triggered emissions using distribution functions
of this type.

3 Wave particle interaction dynamics

We must now address a number of crucial issues. Using the
model “pancake” distribution function of Bell et al. (2000),
what is the relative contribution to the linear equatorial cy-
clotron growth rate at 10.2 kHz as a function of equatorial
pitch angleα? The linear growth rate has a twofold signifi-
cance, in that it provides the initial amplification that raises
the weak input signals to levels at which nonlinear trapping
of electrons by the wave takes place. Second, nonlinear
growth rates in a parabolic inhomogeneity, although in prin-
ciple functions of space and time, generally have an order
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Fig. 1. Contour plot in equatorialVz, |V ⊥ | space of the “pan-
cake” distribution function of Bell et al. (2000). Velocities are in
dimensionless units.

of magnitude equal to the linear growth rate multiplied by a
factor equal to the number of trapping oscillations undergone
by the resonant particles (Nunn, 1990, 1993).

The following development will henceforth employ di-
mensionless units defined as follows. The unit of time is
given by

1t = 1/ω = 2/�e(eq),

where�e(eq) is the electron gyrofrequency at the equator.
The unit of frequency and also the unit of growth rate is

1f = ω = �e(eq)/2.

The unit of length is given by

1z = 1/k = c/5eq ,

where5eq is the electron plasma frequency at the equator
andc is the velocity of light. The unit of wave number be-
comes

1k = k = 5eq/c.

The unit of velocity is1v = 1z/1t , and energy and mag-
netic moment are referred toW = 1v2. Resonant particle
distribution functions are referred to1F = 1/(1v31x3).
The linear cyclotron growth rate at frequencyω0 was given
in Nunn (1990) in the following dimensionless form

γlin = c

∫
∞

0
|V ⊥ |

3
[∂F0/∂W

+(2/ω0)∂F0/∂µ]V z=V res d|V ⊥ |, (2)

whereF0(µ,W) is the zero order distribution function as a
function of magnetic momentµ and energyW , andc is a
dimensionless constant whose exact expression will not be
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Fig. 2. Dependence of particle energy on pitch angle for electrons
cyclotron resonant with Omega pulses.

given here. Following Bell et al. (2000) we assume a zero
order distribution function of the form

F0(µ,W) = cW−n
[µ/W ]

m.

Here, we taken = 2.5, a little larger (and more realistic)
than their Figure of 2, andm = 12.5, corresponding to a
very anisotropic “pancake” pitch angle dependence varying
as (sinα)25. In fact, the exponent ofn = 2 used by Bell
et al. (2000) gives the high energy tail of the hot electron
distribution infinite kinetic energy, which we deemed to be
unrealistic. Other parameters employed aref = 10200 Hz,
L = 3.4, cold plasma densityNe =800/cc and electron gy-
rofrequency� = 22400 Hz.

Figure 1 shows a contour plot ofF0 in the |V ⊥ | ,Vz
plane. Note thatγlin is given by integrating the gradient term
|V ⊥ |

3F0
′ along the line defined byVz = Vres = (ω−�)/k

for the Omega signals atf = 10.2 kHz. Figure 2 plots the
resonant electron energy as a function of pitch angle for this
case; it is seen that the upper energy limit of the HYDRA
detector is reached at a pitch angle of 79 degrees. The dis-
tribution function at higher pitch angles can only be inferred
by extrapolation.

We now compute the cumulative contribution to the linear
growth rate as a function of the equatorial pitch angleα. This
is given by the expression below, in dimensionless units; it is
plotted as the dashed curve in Fig. 4.

γ lin(α) = c

∫ V⊥(0)

0
|V ⊥ |

3
[∂F0/∂W

+(2/ω0)∂F0/∂µ]Vz=Vres d|V ⊥ |, (3)

where

V ⊥ (0) = tan(α)|Vres |.

Half the cumulative total is reached at a pitch angle of 72.5
degrees, where the gradient of the curve is maximal. The
dominant contributors (80%) to the linear growth rate are
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Fig. 3. The nonlinearity factorη, as a function of pitch angle. This
is approximately equal to the maximum number of trapping oscil-
lations of resonant particles in the equatorial zone.

seen to be electrons with pitch angles in the range ofα = 62–
82 degrees, with a maximum at 72.5 degrees. This figure
is somewhat less than that of 80 degrees implied in Bell et
al. (2000), partly because our attention is confined to elec-
trons that are gyro-resonant at the frequency of the Omega
signal.

It is believed that the process of VLF emission trigger-
ing comes about from nonlinear wave particle interactions,
since the process itself is clearly highly nonlinear in charac-
ter (Nunn, 1990). Resonant particle nonlinearity is synony-
mous with particle “phase trapping”, which in a parabolic
inhomogeneity was looked at in some detail by Karpman et
al. (1974) and Nunn (1990, 1993). We do not repeat all the
calculations therein.

Assuming a saturated in-duct wave amplitude of 6 pT, a
realistic but required choice, we have calculated the nonlin-
earity factorη, which is the (maximum) number of trapping
oscillations undergone by resonant particles in the equato-
rial zone, within the physical trapping region lengthL(|V⊥|).
Referring to Nunn (1990, 1993) the dimensionless equations
of motion of cyclotron resonant electrons may be written in
the form below, assuming a CW pulse of constant amplitude
6 pT

v∗
= Vz − Vres(z)

ψ ′
= kv∗

v∗
′

= −Rk0|V⊥|/ω0 · cosψ +Q0(z), (4)

whereR is the dimensionless wave amplitude given by

R = e|E|k/mω2

andψ is the phase angle between the perpendicular velocity
vector and the wave electric field vector, andQ0(z) is the ef-
fective “force” due to the sum of all inhomogeneities present.
This may be written in the form (Nunn, 1990)

Q0(z) = A(|V⊥|)z
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Fig. 4. Accumulated fractional contribution to the linear equatorial
growth rate (dashed curve) and nonlinear growth rate (solid curve)
at f = 10.2 kHz, for the high anistropy “pancake” distribution.
The nonlinear contribution is weighted by the size of the nonlinear
trapping region.

A(|V⊥| = [χ(3Vres/k0 − |V⊥|
2 /2β)+ νzV 2

res/2γe], (5)

whereVres(z) = (ω0 − 2β)/k0 is the local cyclotron reso-
nance velocity,β(z) is the ambient magnetic field strength
relative to that at the equator, and is assumed to have a
parabolic dependence onz

β = 1 + 0.5χz2
= B(z)/B(0)

andγ (z) is the corresponding quantity for cold electron den-
sity

γe = 1 + 0.5νχz2
= Ne(z)/Ne(0),

whereν = 0.5 throughout. From the equations of motion it
is seen that the condition for just trapping is satisfied atZtr ,
where

Rk0|V⊥|/ω0 = A(|V⊥|)Ztr

and hence the maximum possible trapping lengthL for a par-
ticle of a specified perpendicular velocity is as below, where
we are making the assumption that the wave field is constant

L(|V⊥|) = 2Ztr = 2Rk0|V ⊥ |/(A(|V⊥|)ω0).

The nonlinearity factorη is defined as the maximum number
of whole trapping oscillations that an electron may undergo
in the equatorial zone, and is given by

η(|V⊥|) = L(|V ⊥ |)ωtr/2π,

whereωtr is the angular trapping frequency. For simplicity
we use the expression derived at the equator which is

ωtr =

√
Rk2

0|V⊥|/ω0.

Nonlinearity factorη is plotted in Fig. 3, as a function of
pitch angle. In a parabolic inhomogeneity, the trapping dy-
namics are very complex, as the trap geometry is constantly
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changing, and the above calculation is somewhat simplified.
It is seen that the strongest nonlinearity occurs at a pitch an-
gle of 75 degrees and falls off steadily at higher pitch an-
gles. It was shown (Nunn, 1990) that the nonlinear trapping
time goes as|V⊥|

−0.5. The inhomogeneity factorS contains
a term inz|V⊥|. The point where phase trapping is first per-
mitted is whereS = −1 and hence the width of the permitted
zone for trapping,L(|V⊥|) goes as|V⊥|

−1.0 at high pitch an-
gles.

The key question now is what is the relative contribution to
the nonlinear growth rate as a function of pitch angle? Again,
the nonlinear growth rate is purely local in space and time,
but its order of magnitude is estimated by:

γnonlin ∼ η γlin .

We have estimated the cumulative contribution to the nonlin-
ear growth rate through the expression

γ nonlin(α) = c

∫ V⊥(0)

0
|V ⊥ |

3η(|V ⊥ |)[
∂F0/∂W + (2/ω0)∂F0/∂µ

]
VzVres

Ld|V ⊥ |, (6)

where

V ⊥ (0) = tan(α)|Vres |.

It should be noted that in reality the nonlinear growth rate
is a function of space and time, and will be properly cal-
culated in the simulation code. The above expression is a
rough estimation of the size of the nonlinear growth rate and
the relative contributions from electrons of different pitch an-
gles. We have further weighted the contribution to the non-
linear growth by the quantityL(|V⊥|), which is the size of
the nonlinear interaction region along the geomagnetic field
line that becomes very small at extremely high pitch angles.
The result is plotted as the solid curve in Fig. 4, and shows a
maximum contribution from pitch angles of 72 degrees. The
overwhelming contribution (80%) comes from the range be-
tween 63–79 degrees. The curves for the accumulated contri-
bution to the growth rate are actually very close in the linear
and nonlinear cases, with the nonlinear case being shifted to-
wards lower pitch angles.

Since the saturation in-duct amplitude has not yet been
measured directly, it is important to ask: with the Bell et
al. (2000) distribution, at what wave amplitude does nonlin-
earity set in? We estimate this by assuming that trapping
commences when the nonlinearity factor exceeds unity at
some pitch angle. Some numerical experiments showed that
this is close to 2 pT. Thus, for the pancake distribution func-
tion the nonlinear theory of triggered Omega VLF emissions
requires in-duct amplitudes to exceed 2 pT. This requirement
must not be confused with the input amplitudes of the signals
from the transmitter, which are of course small,∼0.1 pT. The
input signal is subject to considerable linear and nonlinear
amplification during propagation to the equator, and further-
more, in the nonlinear zone, the nonlinear growth rates can
be very large (∼300 dB/s).
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Fig. 5. Accumulated fractional linear and nonlinear growth rates, as
functions of pitch angle for a low anisotropy distribution function
n = 2.5,m = 3.

By way of comparison it is useful to consider a distribu-
tion function with a more modest anisotropy, namely with
n = 2.5, m = 3. Figure 5 shows the accumulated contri-
bution to linear and nonlinear growth rates as a function of
pitch angle for this case. In the linear case (dashed curve)
the maximum contribution comes from pitch angles∼55 de-
grees, with the range of 40–71 degrees accounting for 80% of
the power input. In the nonlinear case (solid curve) the con-
tribution peaks at a higher pitch angle of 61 degrees, with the
range from 46–73 degrees accounting for 80% of the power
input. Experimentation with the simulation showed that, in
this case, nonlinear trapping commences at wave amplitudes
∼1.6 pT.

It is clear that highly anisotropic pitch angle distributions
do not radically alter the nature of resonant particle dynam-
ics. Use of a Bell et al. (2000) type distribution function
has raised the pitch angle of maximum nonlinear contribu-
tion from 61 to 72 degrees, and reduced the particle nonlin-
earity somewhat, in that the onset of trapping occurs at 2 pT
rather than 1.6 pT. It seems that the in-duct wave amplitudes
and the overall energetic electron fluxes are more important
than the values of the anisotropy levels.

4 Numerical modelling of Omega triggered VLF emis-
sions

We have established that, even with highly anisotropic en-
ergetic electron distribution functions of the kind described
by Bell et al. (2000), nonlinear trapping of cyclotron reso-
nant electrons will be the dominant feature of the wave par-
ticle interaction process and the root cause of triggered VLF
emissions. Such excellent particle and wave data are an op-
portunity to put theory and simulation to the test. A logi-
cal progression is now to undertake a full numerical mod-
elling of VLF emissions triggered by Omega pulses, using
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Fig. 6. Run 1. Omega triggered riser. Frequency time spectrogram
of the wave field data stream exiting from the interaction region.
Actual numerical values are arbitrary.

the zero order distribution functions as described by Bell et
al. (2000). We have used the highly anistropic model of Bell
et al. (2000), based on the latitudinal dependence of electron
fluxes. A model based on the ratioJ⊥/J‖ ∼ 14 would have a
lower anistropy, but the main conclusions of this paper would
apply in equal measure to cases of intermediate anisotropy.

The simulation code used is a 1-D Vlasov Hybrid Simu-
lation code (VHS/VLF) whose methodology has been fully
described in the literature (Nunn, 1990, 1993). A phase
space simulation box is defined in a 4-dimensional space
{z, V ∗, |V ⊥ |, andψ}. The coordinatez is the curvilinear
distance from the equator along the ambient magnetic field
line and covers a region of about 3000 km on either side of
the equator, which is where nonlinear trapping occurs. The
quantityψ is the phase of the perpendicular velocity|V ⊥ |

relative to the wave electric field, whileV ∗
= Vz − Vres

is the parallel velocity relative to the local initial cyclotron
resonance velocityVres . The phase box occupies a range
of V ∗ equal to about 3 trapping widths plus the range of
resonant velocity appertaining to the simulation bandwidth.
Since triggered emissions have sweeping frequencies, it is
imperative that the phase box moves inV ∗ to track the local
resonant region inz andt , and thus to resolve the nonlinear
resonant particle dynamics at all times.

In the present problem az grid of 2048 points is used, more
than sufficient to resolve the spatial structure of the genera-
tion region. The simulation time-step is1t = 1z/|Vres |,
which is small enough to integrate resonant electron trajecto-
ries accurately. The number of grid points inV ∗ isNV ∗ = 40
and in9 is N9 = 16. The coordinate|V ⊥ | is relatively
“weak” in that only a few grid points are needed. We shall
use a valueNV⊥ = 3 throughout. The unperturbed distri-
bution function taken is the “pancake” distribution of Eq. 1.
We have reverted ton = 2, which is justified as the simula-
tion only employs electrons with energy up to∼20 keV. The

|V ⊥ | grid values will correspond to pitch angles of 66◦,
71◦ and 77◦, which are the 25%, 50% and 75% values for
the integrated contribution to the nonlinear growth rates as
shown in Fig. 4. At each time step the wave field is band-
pass-filtered to a bandwidth of∼20 to 40 Hz, somewhat less
than the maximum trapping frequency∼70 Hz here. When
wider bandwidths of the order of the trapping frequency or
greater are used, sidebands develop, causing detrapping of
resonant electrons, reducing the degree of particle nonlin-
earity and growth rates. Numerical experimentation showed
that broad bandwidths give either weak triggering or none at
all. The bandpass filtering operation is formulated to permit
the development of linear spatial gradients in wave-number
(Nunn, 1997, 1999).

The essence of the VHS technique is as follows. The phase
box is evenly filled with simulation particles (SPs) at a den-
sity of about 1.2 per grid cell. Each SP acts as a marker
embedded in the Vlasov phase fluid. As the simulation pro-
ceeds, each SP trajectory is integrated, and the integrated par-
ticle energy change1W is calculated. Using Liouville’s the-
orem, which states that the distribution functionF is exactly
conserved along a particle trajectory,1F is known at each
SP location in phase space. At each step1F is interpolated
from the particles onto the phase space grid. With1F de-
fined on the phase grid, it is a simple matter to compute the
resonant particle currentJres and, using the appropriate field
equation, to time advance the wave field. When particles fall
outside the simulation box, they are discarded from the sim-
ulation and their data destroyed. Such particles have either
exited from the left-hand end of the spatial box defined inz

(transmitter side) or else have fallen out of resonance with
the local wave-field (i.e.V ∗ is out of range). Conversely,
where the phase fluid is flowing into the phase box, new par-
ticles must be carefully inserted into the phase fluid with the
required density. Thus, the code has a dynamic particle pop-
ulation, in that particles providing information which is not
required are removed. Such a feature gives great efficiency
gains, particularly in inhomogeneous wave particle interac-
tion problems such as this.

One aspect of the triggered VLF emission problem causing
some difficulty is that the purely 1-D problem in a parabolic
field inhomogeneity becomes absolutely unstable in the non-
linear domain, when the linear growth rate exceeds a thresh-
old value, in this case,∼40 dB/s. To perform a simulation
of triggered emissions, this threshold must be exceeded, and
it is then necessary to insert a saturation mechanism phe-
nomenologically, even though the saturation mechanism lies
outside the confines of this 1-D view of the process. Candi-
date mechanisms for saturation are nonlinear unducting loss
from a VLF duct, or the diffusion effect of electrostatic Lang-
muir waves on the time averaged distribution function.

Overall, the VHS method has been found to be extremely
robust and efficient, far outperforming the popular particle-
in-cell method. The computational noise level is extremely
low, due mainly to the fact that the code “pushes”1F rather
thanF .

The first simulation (run 1) is of an Omega triggered
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riser. The simulation uses the following data:L = 3.4;
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Fig. 9. Run 1. Plot of wave amplitudeR = |E| (dashed line) and
8 = Ad/dz{Ji/R} (solid line) as functions ofz at t = 1.1 s. Note
the generally positive value of8 ∼ +400 Hz/s.

input field magnitudeBin = 0.1 pT; saturation amplitude
Bmax = 8.8 pT; linear equatorial growth rateγlin = 78 dB/s;
cold plasma densityNe = 800/cc; input pulse length = 1 s;
f = 10200 Hz. With these data the integrated linear amplifi-
cation along the field line at the trigger frequency is∼15 dB.
This is only a little more than the figure of 14 dB calculated
by Bell et al. (2000) from actual measurements of the par-
ticle fluxes, though for this figure they make the reasonable
assumption that the anisotropy extends to beyond the mea-
sured maximum energy of 20 keV.

Figure 6 shows the frequency-time spectrogram derived
from the wave field data stream exiting from the receiver side
of the simulation box. The timet = 0 is that at which the
leading edge of the triggering pulse exits from the simulation
box. The spectrogram is presented as a shaded MATLAB
contour plot, and shows the triggering, before the end of the
initial pulse, of a strong riser with a sweep rate∼ +2 kHz/s.
Figure 7 shows the exit field amplitude as a function of time.
The amplitude rises gradually to the saturation level over
a period∼0.5 s, but this is nothing like the slow exponen-
tial growth reported in some Siple experiments (Helliwell,
1983). Further, there are oscillations due to the sideband
instability. Figure 8 represents a snapshot att = 1.215 s
of the wave amplitude profile in the spatial box, and also
shows the profiles of the resonant particle current component
in phase with the wave electric field(Jr) and that in phase
with the wave magnetic field(Ji). Herez = 0 is the equa-
tor. Note that the in phase current gives (nonlinear) a wave
growth proportional to−Jr , and that the out of phase cur-
rentJI changes the wave phase at a rate ofAJi/|E| (Nunn,
1990, 1993). What we see here is essentially the nonlinear
generation region (GR) of a triggered rising frequency VLF
emission. This is a surprisingly stable dynamical structure
not unlike a soliton in its behaviour. The form of the resonant
particle current is readily understood as being due to phase
trapping of cyclotron resonant electrons in the parabolic in-
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Fig. 10. Run 1. Exit wave amplitude (pT) history of the entire
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tion box, in units ofJr (lin); this component gives nonlinear wave
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of the emission, increasing resonant electron fluxes, and increasing
growth rates.

homogeneity. Figure 9 shows the same snapshot and plots
the quantity8 = Ad/dz(Ji/R) in Hz/s, whereR = |E|. It
was shown in Nunn (1993) that8 is the local rate of change
of frequency due to the resonant particle current having a
wavelength shifted from that of the in situ wave. It should be
pointed out though that in a VLF emission generating region,
a sizeable spatial gradient of wave number is set up, and the
overall sweep rate seen by a stationary observer is due mainly
to this. The graph reasonably shows a pronounced positive
value in the GR of8 ∼ +400 Hz/s.

The next three graphs (Figs. 10–12) give a history of the
entire simulation. They are contour plots of wave ampli-
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Fig. 12.Run 1. History of out of phase current−Ji , which changes
the wave phase, in units ofJr (lin). The steady increase with time
relates to the rising frequency of the emission, increasing resonant
electron fluxes, and increasing growth rates.

tude (in pT), in-phase currentJr and out of phase currentJi ,
the latter in units ofJr (lin), the linear equatorial current that
would result at the triggering frequency and at the saturation
amplitude. The most remarkable feature is the almost static
nature and stability of the riser GR. This is a strongly non-
linear case, with particles being trapped for many trapping
periods. The nonlinear currents rise steadily with time, since
the particle fluxes and linear growth rates increase with rising
frequency. The overall current magnitudes go from∼5 times
linear to∼25 times. This is an important result. Nonlinear
growth rates are normally of the same sign as the linear one
and larger by a factor of the order of the number of trapping
periods for which resonant particles are trapped. Nonlinear
growth rates may, therefore, be many times larger than linear
ones.

The second run is a simulation of a faller. The parameters
used are the same as for run 1, except that the linear equa-
torial growth rate is higher, at 80 dB/s, the saturation level is
set at 6 pT, giving a weaker degree of nonlinearity, and the
simulation bandwidth is 22 Hz. Figure 13 shows the spectro-
gram of the exit wave field data stream: a vigorous faller is
triggered before the initial pulse ends. The sweep rate is very
stable at−2000 Hz/s, and the emission terminates at 1.6 s
due to the falling power input due to the decreasing frequency
and corresponding increasing resonance velocity. Figure 14
gives a snapshot of the wave profile and8 = Ad/dz(Ji/R)

{Hz/s} at t = 1.0 s. The latter has a pronounced negative
region∼ −400 Hz/s, but becomes positive in the far tail of
the GR. Note again that the sweep rate in a faller is mainly
due to the establishment of a negative wave-number gradient
across the GR.

It is of some interest to examine the behaviour of the distri-
bution function in velocity space in the neighbourhood of the
resonance velocity. Considering the|V ⊥ | “beam” with a
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Fig. 13. Run 2. Omega triggered faller.
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8 (solid line) as functions ofz at t = 1.0 s. Note the pronounced
region where8 is negative and the fact that the wave profile extends
further upstream (towards the transmitter) in the case of a faller GR.

pitch angle of 71 degrees, Fig. 16 plots the integrated energy
change dW (proportional to dF) as a function of gyrophase
relative to the waveE field (ψ) andV ∗

= Vz − Vres in units
of “trapping widths”. This is at the locationz = +447 km
on the receiver side of the equator, where inhomogeneity is
negative and the phase locking (or trapping) angle lies in the
quadrant 180–270 degrees, (Nunn, 1990). The “bunch” of
stably trapped resonant electrons, defined by a large positive
dW, manifests itself at once, and defines the physical location
of the trap inψ,V ∗ space. There is a popular misconception
that the electrons trapped by the wave alone provide the en-
ergy for wave amplification. Here trapped electrons are ac-
celerated, but untrapped electrons give up more energy to the
wave-field, giving net growth.
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beam with a pitch angle of 71 degrees; recorded att = 1.0 s and
at z = −42.7 km (on the ground TX side). The stably trapped
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The gyrophaseψ is the phase of theV ⊥ vector relative to wave
electric field.
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Fig. 16. Run 2. Surface plot of dW, but atz = 447.2 km.

Figure 15 shows the same data further upstream, atz =

−43 km. An overall positive contribution to dW is seen due
to the start of trapping in the positive inhomogeneity, with
negative peaks due to the history of trapping in the negative
inhomogeneity region.

The final run (run 3) is with a much larger growth rate of
110 dB/s, strong nonlinearity being provided by a saturation
amplitude of 9 pT, with an input amplitude of 0.12 pT, and a
wider simulation bandwidth of 44 Hz. Trans-equatorial am-
plification is now 22 dB, somewhat higher than the values
considered by Bell et al. (2000). Strong power input often
results in an oscillatory emission or “wandering tone” and
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Fig. 17. Run 3. Omega triggered oscillating frequency emission.
This kind of behaviour requires a high linear growth rate, here
110 dB/s.
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Fig. 18.Run 3. Wave amplitude (pT) history of the simulation. The
central region fromt = 1.5 s to t = 3.0 s corresponds to a faller
GR, which extends further upstream into the positive inhomogene-
ity region. Note the consistent amplitude trough in the vicinity of
the equator atz ∼ −500 km. This is a region of damping which
occurs when the phase trapping angle moves between quadrants.

that is shown in the case here. Figure 17 shows the spec-
trogram of the output field. Triggering takes place almost at
once att = 0.2 s, and a riser is produced with a sweep rate
∼ 1 kHz/s. This becomes a faller at 1.6 s and again a riser at
3.0 s. The next three graphs (Figs. 18–20) give a “history” of
the event by plotting field wave field amplitude and the cur-
rentsJr andJi in thez, t plane. The generation region of the
faller (t = 1.5 to 3.0 s) extends further upstream (towards the
transmitter) into the positive inhomogeneity region, whereJi
becomes positive and8 = Ad/dz(Ji/R) becomes negative
(Nunn, 1997, 1999). The latter term is responsible for set-
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Fig. 19. Run 3. History of in phase current−Jr in units ofJr (lin).
Large positive values are evident 500 km upstream from the “am-
plitude trough”.

ting up the negative wave-number gradients that cause the
falling frequency. A noticeable feature of the faller GR is the
consistent trough in wave amplitude just upstream from the
equator. TheJr values become positive in this region, giv-
ing wave damping. By contrast the riser generation region
is confined almost entirely downstream of the equator in the
negative inhomogeneity region, whereJi is negative and8
positive. Both riser and faller GRs are distinct and differ-
ent stable dynamical structures. Transitions between the two
may occur. Clearly, excess power, such as that which may
occur with increasing frequency, will extend the wave profile
upstream and change the GR into the faller type. Conversely,
decreasing power, such as that which occurs with falling fre-
quency, will either cause the wave profile to slip downstream
and convert a faller GR into a riser GR, or else cause the
termination of the emission. The increased oscillations in
the plots are due to sideband activity permitted by the larger
bandwidth of the simulation.

5 Conclusions

Bell et al. (2000) have reported useful, interesting and impor-
tant observations of electron distribution functions in space at
L∼3.4. For the energy range 1–20 keV “pancake” distribu-
tions with very high anisotropies were observed consistently.
They suggested that such new distribution functions would
radically alter existing theories of triggered VLF emissions
and chorus, based on the nonlinear trapping of cyclotron
resonant electrons in a parabolic (B field) inhomogeneity.
When the relative contributions of different pitch angles to
the linear and nonlinear growth of Omega VLF pulses were
investigated, however, it was found that the “pancake” dis-
tribution functions did not make too much of a difference.
The range of pitch angles providing the maximum power
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Fig. 20. Run 3. History of out of phase current−JI in units of
Jr (lin). In the faller GR, positive values are encountered upstream
of the equator, which are directly instrumental in modifying wave
phase such that wave frequency falls.

increased from∼53–67 degrees to∼67–77 degrees. For a
fixed wave amplitude the degree of particle nonlinearity fell
by only a small amount.

The space borne observations of distribution functions and
actual energetic electron fluxes represent a priceless real data
input to the theoretical problem of triggered VLF emissions.
To make the most use of the data we decided to use a 1-D
VHS code to simulate Omega triggered emissions with the
Bell et al. (2000) “pancake” distribution function. Risers,
fallers, hooks and oscillating tones were all simulated. Inter-
estingly, the integrated trans-equatorial linear growth∼15 dB
used in the simulations (an indicator of particle fluxes) was
only slightly larger than those calculated by Bell et al. (2000)
from real data, though they did assume that the particle
anisotropy extended beyond 20 keV, the limit of their mea-
surements.

What are we to conclude? Certainly nonlinear trapping
theory remains the only credible theory of triggered emis-
sions and chorus on the table at the moment, though one must
always remain receptive of new ideas and theories. Difficul-
ties do remain, however; notably these are of understanding
the saturation mechanism (nonlinear unducting) , the mech-
anism whereby one chorus element triggers the next, and the
reason why triggered emissions stay in so narrow a band
when theoretically, the nonlinear wave particle interaction
process is upper sideband unstable.

It is important that the scientific community does not get
too carried away by these exciting new observations. It is not
certain that “pancake” distribution functions are universal at
L = 3.4, let alone anywhere else. Satellite observations from
Geotail atL = 10 showed quite low particle anisotropies,
but discrete emissions were nonetheless simulated using this
same VHS code (Nunn et al., 1997). Clearly, chorus and
triggered/discrete emissions occur in a wide variety of lo-

cation in the near-Earth space environment, not to mention
in Jupiter’s magnetosphere. The underlying plasma physi-
cal mechanism is obviously the same. It would be a matter
of some surprise if a “pancake” distribution observed at one
location invalidated the theory.
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