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Abstract. A singular evolutive extended Kalman (SEEK) fil-
ter is used to assimilate real in situ data in a water column ma-
rine ecosystem model. The biogeochemistry of the ecosys-
tem is described by the European Regional Sea Ecosystem
Model (ERSEM), while the physical forcing is described by
the Princeton Ocean Model (POM). In the SEEK filter, the
error statistics are parameterized by means of a suitable ba-
sis of empirical orthogonal functions (EOFs). The purpose of
this contribution is to track the possibility of using data as-
similation techniques for state estimation in marine ecosys-
tem models. In the experiments, real oxygen and nitrate
data are used and the results evaluated against independent
chlorophyll data. These data were collected from an offshore
station at three different depths for the needs of the MFSPP
project. The assimilation results show a continuous decrease
in the estimation error and a clear improvement in the model
behavior.

Key words. Oceanography: general (ocean prediction; nu-
merical modelling) – Oceanography: biological and chemi-
cal (ecosystems and ecology)

1 Introduction

One of the major challenges for the coming years in oceanog-
raphy is the design of forecasting systems capable of sup-
porting coastal zone management issues. Data assimilation
systems of coupled physical/biogeochemical models provide
a new perspective regarding the forecasting of ecosystems.
Ecosystem modelling and assimilation are closely connected
with the use of compatible and complementary observing
systems and data assimilation techniques. The development
of adaptive ecosystem models that can respond to changes
in physical forcing will require a complex interplay between
improving model realism and acquisition of measurements
suitable for assimilation. Such systems are very impor-
tant since they enable a reliable comprehension of physical,
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chemical and biological interactions, to predict and monitor
their behavior and to assess extreme ecosystem phenomena.

Data assimilation techniques have been used in several
studies (Matear, 1995; Prunet et al., 1996; Harmon and Chal-
lenor, 1996) for the estimation of poorly known parameters
in marine ecosystem models by essentially trying to min-
imize the misfit between model simulations and observed
data. Based on the assumption that a model with a fixed pa-
rameter set can efficiently reproduce the observations, data
assimilation can be further used for the model’s state esti-
mation. These methods, which can be classified into varia-
tional (based on the optimal control theory) and sequential
(based on the statistical estimation theory), have been widely
used in meteorology and are becoming popular in oceanogra-
phy (Ghil and Malanotte-Rizzoli, 1991). Recently, focus has
turned toward marine ecosystem models. For the purpose of
this study, a sequential method and in particular, the imple-
mentation of a (simplified) Kalman filter has been used.

The Kalman filter is a statistical data assimilation scheme
which provides the best estimate, in the sense of least-
squares, of the state of a linear system, using only obser-
vations available up to the analysis time. Although the im-
plementation of this filter is not difficult, its application in
realistic oceanic models encounters two major difficulties:
nonlinearity and computational cost. The first can be par-
tially resolved by linearizing the model around the state es-
timate, which leads to the so-called extended Kalman (EK)
filter (Ghil and Malanotte-Rizzoli, 1991). The second arises
from the large dimension of the system. Several variants of
the EK filter, which basically reduce the dimension of the
systemn through some kind of projection onto a low dimen-
sional subspace, have been proposed (see De Mey, 1997,
for a review). One of these variants is the singular evo-
lutive extended Kalman (SEEK) filter developed by Pham
et al. (1997). The idea behind this filter is to view the er-
ror covariance matrix as singular with a low rankr � n.
This leads to a filter in which the correction of the errors is
made only along certain directions parallel to a linear sub-
space of dimensionr. In its general form, the “directions of
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correction” evolve in time according to the model dynam-
ics (Pham et al., 1997). However, following Brasseur et al.
(1999) and Hoteit et al. (2001), these directions were not up-
dated in the numerical experiments, in order to avoid expen-
sive calculations. The covariance matrix is then represented
by a limited number of three-dimensional multivariate em-
pirical orthogonal functions (EOFs) as an approximation of
the system error covariance matrix, describing the dominant
modes of the system’s variability and defining in this way the
structure of the directions of correction.

A major aim of the Mediterranean Forecasting System
Pilot Project (MFSPP) was to develop methodologies for
the efficient integration of observations with hydrodynami-
cal and biogeochemical models. It is in this framework that
the SEEK filter was used to assimilate real in situ data in a
1-D marine ecosystem model for the Cretan Sea (Triantafyl-
lou et al., 2003b). The principal aim was to customize, im-
plement and verify this sequential data assimilation method
in the context of future operational forecasting applications.
The paper is organized in the following way. The model and
the available data are briefly described in Sects. 2 and 3, and
the SEEK filter is presented in Sect. 4. The validation of the
assimilation scheme with twin experiments and experiments
with real observations is demonstrated in Sect. 5. Finally,
concluding remarks are discussed in Sect. 6.

2 Model description and configuration

The model used in this study is a generic 1-D ecosystem
model originally designed for the North Sea (Allen, et al.,
1998a, 1998b) and later adapted to the Cretan Sea ecosystem
by Triantafyllou et al. (2001, 2002b). It consists of modules
describing the biological and chemical processes in the wa-
ter column, which may be stratified or mixed. It describes
the significant biogeochemical processes affecting the flow
of carbon, nitrogen, phosphorus, and silicate. Each module
consists of a coupled set of ordinary differential equations,
which may be solved by a straightforward explicit method
(Euler integration) or by an implicit higher-order Runge-
Kutta method. The ecosystem is subdivided into three func-
tional types: producers (phytoplankton), decomposers (bac-
teria) and consumers (zooplankton). State variables have
been chosen in order to keep the model relatively simple
without omitting any component that could exert a significant
influence on the energy balance of the system. The organisms
which constitute the food web (Triantafyllou et al., 2003b)
are organized into functional groups, classified according to
trophic levels and subdivided on the basis of trophic links
and/or size. Physiological processes and population dynam-
ics are described by fluxes of carbon and nutrients between
functional groups. Due to the oligotrophic nature of the sys-
tem under study and the significance of the microbial loop, a
modified bacteria module was used (Allen et al., 2002).

The vertical diffusion sub-model of the Princeton Ocean
Model (POM) (Blumberg and Mellor, 1987) is used to pro-
vide the physical forcing to the ecological model where the

Mellor Yamada 2.5 turbulence closure model (Mellor and
Yamada, 1982) calculates the vertical turbulent kinetic en-
ergy, temperature and salinity diffusion coefficients. Other
mixing processes (e.g. internal waves) have been parameter-
ized by a background viscosity.

The combination of food web with coupled nutrient dy-
namics allows for the model to be adjusted to spatial and
temporal variations of carbon and nutrient availability, and
to reproduce the different types of ecosystem behavior. Ver-
sions of the model have been implemented in a wide variety
of regimes from the coastal eutrophic (Allen, 1997; Allen
et al., 1998a,b; Baretta and Baretta-Bekker, 1998; Vichi
et al., 1998; Zavatarelli et al., 2000) to offshore oligotrophic
(Triantafyllou et al., 2002b) and closed systems (Petihakis
et al., 2000; Triantafyllou et al., 2000).

The application area is located north of Heraklion at the
deployment site of the M3A buoy with an approximate depth
of 1050 m, as shown in Fig. 1. The discretization of the
model is 40 boxes in the vertical with a finer resolution
at the euphotic zone, in order to simulate fine scale phe-
nomena. The physical model is forced with 3-hourly real-
time wind speed and air temperature data extracted from
the weather forecast model of the POSEIDON system (Nit-
tis et al., 2001) at the particular area and relaxed to mean
monthly sea-surface temperature and salinity obtained from
the POSEIDON buoy (Soukissian et al., 1999) located at the
Cretan Sea during the period of the M3A deployment (Jan-
uary 2000 – April 2001). The incident surface solar radia-
tion is calculated from the latitude and modified by the cloud
cover data using the methods of Patsch (1994).

The state vector consists of the model prognostic variables
that have to be initialized independently. The prognostic bio-
geochemical variables of the ecosystem model are 115, and
the state vector dimension is 115× 40 = 4600.

3 The data

In this study high frequency in situ data collected during the
MFSPP project at north Crete during 30 January 2000 to
20 April 2001 are used (Fig. 1). The parameters measured on
a 3-hourly basis were temperature, salinity, oxygen, nitrate
and chlorophyll-a concentrations at 40, 65, 90 and 115 m, as
described in Nittis et al. (2003). For the experiments, high
frequency in situ measurements of oxygen and nitrate were
chosen as observation data in the assimilation scheme, while
chlorophyll data were used as independent measurements to
validate the assimilation system.

Dissolved oxygen sensors gave reliable data for the first
six months, but an attempt for in situ repair was not suc-
cessful and, thus, data are missing after August 2000 (Nittis
et al., 2003). The nitrate data are also fragmented since there
were some difficulties with the instrument after 7 July 2000.
Chlorophyll-a, dissolved oxygen and nutrients data were
post-calibrated using in situ bottle measurements obtained
during maintenance trips. As described in Nittis et al. (2003)
for the calibration procedure, water samples were collected
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Fig. 1. Map of M3A mooring.

at the respective depths during each maintenance cruise, once
during the recovery of the instruments and once during their
deployment 2–3 days later. CTD measurements to a depth
of 1000 m were also carried out during each cruise. The
calibration coefficients for the M3A sensors were calculated
separately for each period between maintenance cruises, us-
ing the reference data collected during each re-deployment
when all sensors had been cleaned. Possible sources of er-
rors in the measurements, which could have affected the as-
similation system, might be the vertical movements of the
mooring caused by the increased water currents (110 m on
15 December 2000). However, the estimation of these errors
(error covariance matrix) will be avoided in this preliminary
study, making use of a simple property of the SEEK filter
(see Sect. 4).

4 The assimilation scheme: the SEEK filter

The method used to assimilate real in situ data in the 1-D
ecological model is the singular evolutive extended Kalman

filter, called the SEEK filter, which is a sequential data assim-
ilation scheme derived from the extended Kalman filter. This
filter has been already implemented successfully in several
ocean general circulation models (Pham et al., 1997; Verron
et al., 1998; Brasseur et al., 1999; Hoteit et al., 2001, 2002).

To present the algorithm of the SEEK filter, the notation
proposed by Ide et al. (1997) has been adopted. Considering
a physical system described by:

Xt (tk) = M(tk−1, tk)X
t (tk−1) + η(tk), (1)

whereXt (t) denotes the vector representing the true state at
time t , M(s, t) is an operator describing the system transition
from times to timet , andη(t) is the system noise vector. At
each timetk, one observes

Y o
k = HkX

t (tk) + εk, (2)

whereH k is the observational operator andεk is the obser-
vational noise. The noisesη(tk) andεk are assumed to be
independent random vectors with mean zero and covariance
matricesQk andRk, respectively.
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The SEEK filter proceeds in two stages in the same way
as the EK filter, excluding the initialization stage. For the
initialization the objective analysis was chosen, based on the
first observationY o

0 : and the initial analysis state vector was
taken as:

Xa(t0) = X(t0) + LU0L
T HT

0 R−1
0 (Y o

0 − H0X̄), (3)

whereH0 is the gradient ofH0 evaluated atX(t0) andX(t0)

is an a priori estimation of the model state at the time of the
first available observation,L is an × r matrix containing the
r retained EOFs on its columns,

U0 = [LT HT
0 R−1

0 H0L]
−1. (4)

The initial analysis error covariance matrix may be taken as:

P a(t0) = LU0L
T . (5)

Note that for the initialization the first observation was used;
thus, the algorithm actually starts with the next observation.

1. Forecast stage:At time tk−1, the estimate of the system
state isXa(tk−1) and its corresponding error covariance
matrixP a(tk−1), in the factorized form is expressed as:

P a(tk−1) = LUk−1L
T , (6)

where the matrixUk−1 are of dimensionr × r. The
model (1) is used to forecast the state as:

Xf (tk) = M(tk−1, tk)X
a(tk−1). (7)

The corresponding forecast error covariance matrix can
then be approximated by:

P f (tk) = LUk−1L
T

+ Qk. (8)

2. Correction stage: The new observationYk at timetk is
used to correct the forecast according to:

Xa(tk) = Xf (tk) + Gk[Y
o
k − HkX

f (tk)], (9)

whereGk is the gain matrix given by:

Gk = LUkL
T H T

k R−1
k , (10)

with Uk computed from:

U−1
k =

[
Uk−1 + (LT L)−1LT QkL(LT L)−1

]−1

+LT HT
k R−1

k HkL. (11)

The corresponding filter error covariance matrix is then
equal to:

P a(tk) = LUkL
T . (12)
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Fig. 2. Percentage of inertia versus the number of retained EOFs.

Since Eqs. (8) and (12) are not needed in the algorithm, the
SEEK filter (with fixed directions of correction) drastically
reduces the computational cost with respect to the EK filter.
Basically, it requires only one integration of the numerical
model to compute the forecast state.

To deal with the model and observation errors, the ap-
proach proposed by Pham et al. (1997) was adopted. Thus, a
so-called compensation technique that replaces the contribu-
tion of the imperfect model by amplifying the already exist-
ing modes of the background error is used to parameterize the
model error. The term(LT L)−1LT QkL(LT L)−1 expressing
this error in Eq. (11) is then taken into account by means of
a forgotten factorρ. This equation is rewritten as:

U−1
k = ρU−1

k−1 + LT HT
k R−1

k HkL. (13)

Concerning the observation errors, nitrate and oxygen are
assumed to be independent Gaussian variables of mean zero
with variancesσ 2

N andσ 2
O , respectively. Thus, the observa-

tion errors covariance matrix is expressed by1

Rk =

σ 2
N Id

... 0
· · · · · · · · ·

0
... σ 2

OId

 . (14)

To avoid the estimation ofσ 2
N andσ 2

O , a simple property
of the SEEK filter was used. Considering that the order of
magnitude of oxygen is about 3–4 times the order of magni-
tude of nitrate and the nominal instrument error about 10%,
it can be assumed thatσ 2

O = 10σ 2
N . Thus, the matrixRk can

be rewritten:

Rk = σ 2
N R̃, (15)

1Id is the identity matrix



I. Hoteit et al.: A singular evolutive extended Kalman filter to assimilate real in situ data 393

0 100 200 300
1

1.5

2

2.5

3
Nitrate

Days

m
m

ol
s/

m
3

twin
ref 
free

0 100 200 300
0

0.02

0.04

0.06

0.08

0.1
Phosphate

Days

m
m

ol
s/

m
3

twin
ref 
free

0 100 200 300
0

0.2

0.4

0.6

0.8

1
Chlorophyll

Days

m
gC

/m
3

twin
ref 
free

0 100 200 300
0

10

20

30

40

50
Bacteria

Days

m
gC

/m
3

twin
ref 
free

Fig. 3. Reference, model free run and
filter estimation fields of nitrate, phos-
phate, chl-a concentrations and bacteria
biomass.

where

R̃ =

 Id

... 0
· · · · · · · · ·

0
... 10Id

 . (16)

It can be easily seen that onlỹR is necessary for the algorithm
of the filter, sinceU0 is, in general, very large compared to
σ 2

N , so that onlyUk/σ
2
N enters into the computation.

5 Assimilation experiments

5.1 Model initialization - EOF analysis

Following Pham et al. (1997), the computation of the EOFs
is made through a simulation of the model itself. Thus, the
model has been spun up for 30 years initialized with field
historic January biogeochemical data, relaxed to climatolog-
ical temperature and salinity obtained from MODB (Brasseur
et al., 1996) and forced with climatological atmospheric data
obtained from ECMWF, with the aim of reaching a statis-
tically quasi-steady state. Next, another integration of five
years is carried out to generate a historical sequenceHS of
model realizations. A sequence of 600 state vectors was re-
tained by storing one state vector every three days, to reduce
the calculations, because successive states are quite similar.
Since the variables of the state vector of the model are not
of the same nature, a multivariate EOF analysis was applied.
Each state variable has then been normalized by the inverse

of the spatial average (over all the grid points) of its com-
ponents variance. The “directions of correction” were then
obtained via a multivariate EOF analysis on the sampleHS .
Figure 2 plots the number of EOFs and the percentage of
variability (or inertia) contained in the sampleHS they ex-
plain.

5.2 Assimilation results

In an attempt to explore the assimilation performance of the
ecosystem model, two experiments were conducted. First,
a twin experiment approach, a technique for validating data
assimilation schemes, was used. In these experiments, in-
stead of using real data, pseudo-data were simulated by the
model. With this methodology, the performance of the as-
similation scheme can be investigated on unobserved model
variables, indicating how the assimilation results converge
toward the “truth” and how sensitive the results are to the
number of retained EOFs. In a second application, real in
situ data were used and the filter results evaluated against in-
dependent chlorophyll-a data available at 40, 65 and 115 m.

5.2.1 Twin experiments

In the first series of experiments, the “truth” is assumed to
be provided by the model itself. A reference experiment is
then performed and the reference states are retained to be
compared later with the fields produced by the filter. Fol-
lowing the five years of simulation for the generation of the
HS sequence, the model was run for a further year to pro-
vide the initialization field (January data) for the reference
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Fig. 4. Evolution in time of the relative
error of the SEEK filter with 5, 10, 15
and 20 EOFs, for nitrate, phosphate, sil-
icate, oxygen, dino flagellates and bac-
teria from twin experiments.

experiment. The assimilation experiments are performed us-
ing pseudo-measurements on a daily basis for nitrate in the
45 m layer and for oxygen in the 65 and 115 m layers (co-
inciding with the available in situ measurements), which are
extracted from the reference states. In these experiments, the
filter starts from the mean state of the sampleHS .

The reference solution compared with (a) the assimilated
(from the filter with 15 EOFs and a forgotten factor equal
to 0.9) and (b) the simulated (from a model-free run with-
out assimilation, starting from the initial state of the filter)
fields (nitrate, phosphate, chl-a concentrations and bacteria
biomass) at 70 m is shown in Fig. 3. In all cases the perfor-
mance of the assimilation scheme was satisfactory, leading
to a clear improvement in the model behavior. Also, it satis-
factorily reproduces a chl-a maximum at approximately day
100 and a subsequent decrease in phosphate and nitrate. The
model produces a distinct chl-a maximum during spring and

autumn with rather significant concentrations within this pe-
riod, while minimum values occur during winter. Bacteria
follow the chl-a distribution with a short time lag, indicating
a rather tight coupling as expected in such an oligotrophic
system.

Figure 4 shows the RMS (relative mean square) misfit be-
tween the reference and the assimilated state by the filter
with four different values of retained EOFs: 5, 10, 15 and
20, which explain 87.9%, 97.1%, 98.9% and 98.9% of the
inertia of the sampleHS , respectively. In all cases, the for-
gotten factor was chosen equal to 0.9. The chosen rank of the
initial error covariance matrix has a direct effect on the per-
formance of the algorithm, and adding more than 10 EOFs
does not really improve the assimilation performance. Such
an observation was also made by Cane et al. (1996) and Ver-
ron et al. (1998).
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Fig. 5. Simulated chl-a concentrations plotted with in situ val-
ues and assimilation results at 40, 65 and 115 m for the period of
5 March 2000–12 May 2000 from the experiment with real obser-
vations.

5.2.2 Experiments with real observations

Finally, available daily real observations of nitrate at 45 m
layer and of oxygen at 65 and 115 m layers over a period of
69 days (5 March 2000 to 12 May 2000) were assimilated
in the 1-D ecosystem model. Chlorophyll data at 45, 65 and
115 m layers were used as independent observations to vali-
date the filter. In this experiment, the filter has been initial-
ized by the model state at the time of the first available obser-
vation and the forgotten factor has been taken equal to 0.9.

Figure 5 plots the fields of Chlorophyll at 45, 65 and 115 m
obtained from the data, estimated by the filter and simulated
by the model (without assimilation). At 40 and 65 m assimi-
lation results of the SEEK filter are very satisfactory, leading
to a clear improvement in the model behavior. Moreover, the
filter solution seems to converge toward the data at the end
of the assimilation period. Deeper, at 115 m, both reference
and assimilated results fail to reproduce the field data. This
can also be seen from Fig. 6 which shows the relative misfit
of the filter for chl-a at 40, 65 and 115 m. In all cases, the
assimilation system improves the model analysis, especially
at the top water column layers. However, the relative error of
chl-a at 115 m, although decreasing slowly, may not be con-
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Fig. 6. Evolution in time of the relative error of the SEEK filter for
chl-a from the experiment with real observations.

sidered as satisfactory compared to the other two. A weak
variability is observed in the simulation results that could be
attributed to a number of factors. The particular station is
an offshore deep station and, therefore, it is not affected by
the increased variability of nutrients in coastal areas. Due to
significant depth (1050 m), nutrients released from the ben-
thos can reach the euphotic zone only in rare extreme events.
These extreme events are absent from the small simulation
period in the particular assimilation experiments. In addition,
the area is characterized by mesoscale spatial and temporal
variability with complex hydrological structure (Theocharis
et al., 1999; Triantafyllou et al., 2003a) and by the presence
of water masses rich in nutrients which cannot be reproduced
by the 1-D model. The importance of the hydrology and cir-
culation variability in the ecosystem functioning of the Cre-
tan Sea is presented and discussed in Petihakis et al. (2002).
In an attempt to improve the performance of the filter in the
deep layers, smaller values of the forgotten factor have been
tested to amplify the forecast error modes (assuming that the
model error is large), in order to make the correction of the
filter more efficient. This has led to relatively better assim-
ilation results of chl-a at 115 m. However, the results were
degraded in the upper layers, where the model error is small
(Fig. 5), suggesting that the use of a “matrix of forgetting
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factors” would improve the performances of the SEEK fil-
ter. Chlorophyll is a derived variable and is calculated from
the biomass of the phytoplanktonic groups multiplied by a
constant C:Chl ratio at all depths. Chlorophyll and other
light-harvesting pigments increase as irradiance available for
growth decreases (Estrada, 1985; Estrada et al., 1993; Gasol
et al., 1997). A fairly wide range of C:Chl values is sug-
gested by researchers (Carlson and Ducklow, 1996; Gasol
et al., 1997) for different environments which makes param-
eterization rather difficult, thereby affecting the behavior of
the model in simulating the biological processes at the deep
layers (Petihakis et al., 2002). Thus, the EOF’s computed
from the model simulation were inconsistent with the in situ
observations from the deep layers, which eventually may de-
grade the performance of the filter.

6 Conclusions

The relative sparseness of biological and chemical data of
the water column necessitates the use of data assimilation
for realistic estimates of ecosystem parameters. Thus, an
ecosystem forecasting system should include a tuned dynam-
ical model, an observational network and a data assimilation
scheme. An integrated system combining physical and eco-
logical oceanic models, in situ data and an advanced dynamic
assimilation scheme, was developed for the first time in the
Cretan Sea.

The singular evolutive extended Kalman (SEEK) filter was
applied to a 1-D marine ecosystem model of the Cretan Sea
for the assimilation of real in situ data from the M3A buoy.
In this filter, the concept of order reduction via empirical or-
thogonal functions (EOFs) analysis has been adopted to sim-
plify the time integration of the forecast error. Two major
numerical experiments were performed: first, twin experi-
ments with simulated data and second, with real in situ data.
In the simpler context of twin experiments, the effectiveness
of the filter is quite clear with regard to all variables of the
model. Moreover, it was found that by using such an ap-
proach, oxygen and nitrate could improve the performance
of the model. Applications with real in situ data over the
period 5 March 2000 to 12 May 2000 revealed a signifi-
cant improvement of the model behavior in the upper part
of the water column with respect to the reference simulation
run of the derived chlorophyll variable. The improvement
of the Chlorophyll at 115 m is less evident and several prob-
lems arise compared with the simplistic twin experiment ap-
proach: it is believed that part of this problem comes from
the inconsistency between the data and EOFs, since the latter
was computed from the model which was not very successful
in simulating chlorophyll concentrations at the lower part of
the euphotic zone.

In an attempt to enhance the performance of the assimi-
lation system, a future study will focus on the improvement
of the model behavior of the chlorophyll at the deeper layers
by using a variable C:CHL ratio, as well as a more realistic
(adaptive) model error covariance matrix. In this preliminary

study, the “directions of correction” of the filter were kept
fixed in order to save computational cost. Nevertheless, re-
cent studies have shown that the evolution of the “directions
of correction” and, therefore, the statistics of the estimation
error according to the model dynamics, would improve the
representativeness of these directions and consequently, the
performance of the filter.

The results obtained so far are quite encouraging, suggest-
ing the implementation of more realistic applications. Al-
though the assimilation of biochemical observations with a
three-dimensional complex marine ecosystem model will be
considered in the near future, these preliminary experiments
were necessary to establish a basic assimilation system be-
fore more demanding applications take place.
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