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Abstract. The amplitude and spatial distribution of the cou-
pling currents that flow between Jupiter’s ionosphere and
middle magnetosphere, which enforce partial corotation on
outward-flowing iogenic plasma, depend on the values of the
effective Pedersen conductivity of the jovian ionosphere and
the mass outflow rate of iogenic plasma. The values of these
parameters are, however, very uncertain. Here we deter-
mine how the solutions for the plasma angular velocity and
current components depend on these parameters over wide
ranges. We consider two models of the poloidal magneto-
spheric magnetic field, namely the planetary dipole alone,
and an empirical current sheet field based on Voyager data.
Following work by Hill (2001), we obtain a complete nor-
malized analytic solution for the dipole field, which shows in
compact form how the plasma angular velocity and current
components scale in space and in amplitude with the sys-
tem parameters in this case. We then obtain an approximate
analytic solution in similar form for a current sheet field in
which the equatorial field strength varies with radial distance
as a power law. A key feature of the model is that the cur-
rent sheet field lines map to a narrow latitudinal strip in the
ionosphere, at≈ 15◦ co-latitude. The approximate current
sheet solutions are compared with the results of numerical
integrations using the full field model, for which a power law
applies beyond≈ 20RJ , and are found to agree very well
within their regime of applicability. A major distinction be-
tween the solutions for the dipole field and the current sheet
concerns the behaviour of the field-aligned current. In the
dipole model the direction of the current reverses at moder-
ate equatorial distances, and the current system wholly closes
if the model is extended to infinity in the equatorial plane
and to the pole in the ionosphere. In the approximate cur-
rent sheet model, however, the field-aligned current is uni-
directional, flowing consistently from the ionosphere to the
current sheet for the sense of the jovian magnetic field. Cur-
rent closure must then occur at higher latitudes, on field lines
outside the region described by the model. The amplitudes
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of the currents in the two models are found to scale with the
system parameters in similar ways, though the scaling is with
a somewhat higher power of the conductivity for the current
sheet model than for the dipole, and with a somewhat lower
power of the plasma mass outflow rate. The absolute values
of the currents are also higher for the current sheet model
than for the dipole for given parameters, by factors of≈ 4 for
the field-perpendicular current intensities,≈ 10 for the total
current flowing in the circuit, and≈ 25 for the field-aligned
current densities, factors which do not vary greatly with the
system parameters. These results thus confirm that the con-
clusions drawn previously from a small number of numerical
integrations using spot values of the system parameters are
generally valid over wide ranges of the parameter values.

Key words. Magnetospheric physics (current systems,
magnetosphere-ionosphere interactions, planetary magneto-
spheres)

1 Introduction

The dynamics of Jupiter’s middle magnetosphere are dom-
inated by the processes that couple angular momentum be-
tween the planet’s atmosphere and the equatorial plasma that
flows outwards from the Io source at≈ 6 RJ (Jupiter’s ra-
dius,RJ , is ≈ 71 373 km) (Hill, 1979; Siscoe and Summers,
1981; Hill et al., 1983; Belcher, 1983; Vasyliunas, 1983;
Bagenal, 1994). The field and plasma structures envisaged
are sketched in Fig. 1, where the arrowed solid lines indicate
magnetic field lines, while the dots indicate the region oc-
cupied by dense rotating iogenic plasma. The region of flux
tubes threading this plasma disc constitutes Jupiter’s middle
magnetosphere, where the field lines are characteristically
distended outward by azimuthal plasma currents associated
with radial stress balance. In the inner region, the iogenic
plasma approximately corotates with the planet, but as it
moves outward its angular velocity falls, as the inverse square
of the distance if no torques act. However, when the angular
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Fig. 1. Sketch of a meridian cross section through Jupiter’s inner
and middle magnetosphere, showing the principal physical features
involved. The arrowed solid lines indicate magnetic field lines, the
arrowed dashed lines the magnetosphere-ionosphere coupling cur-
rent system, and the dotted region the rotating disc of out-flowing
iogenic plasma. (From Cowley and Bunce, 2001).

velocity of the plasma and field lines (ω in Fig. 1) falls be-
low that of the planet (�J ), or more specifically, below that
of the neutral upper atmosphere (�∗

J ), a frictional torque is
imposed on the feet of the field lines due to ion-neutral col-
lisions in the Pedersen-conducting layer of the ionosphere.
This torque acts to spin the flux tubes and equatorial plasma
back up towards rigid corotation with the planet, so that in
the steady state the plasma angular velocity falls less quickly
with distance than as the inverse square. At the same time,
the equal and opposite torque on the neutral atmosphere re-
sults in atmospheric sub-corotation (“slippage”) in the Peder-
sen layer, so thatω < �∗

J < �J (Huang and Hill, 1989). The
spin-up torque on the plasma is communicated to the equa-
torial region by the magnetic field, which becomes bent out
of meridian planes into a “lagging” configuration, associated
with the azimuthal fieldsBϕ shown in the figure. The cor-
responding magnetosphere-ionosphere coupling current sys-
tem, of primary interest here, is shown by the arrowed dashed
lines in Fig. 1. The current flows radially outward across
the field in the equatorial plane, such that the torque associ-
ated with thej ×B force accelerates the plasma in the sense
of Jupiter’s rotation. In the ionosphere the Pedersen current
flows equatorward in both hemispheres, producing an equal
and opposite torque which balances the torque due to ion-
neutral collisions. The current circuit is closed by a system
of field-aligned currents which flow from the ionosphere to
the equator in the inner part of the system, and return in the
outer part.

The steady-state angular velocity profile of the out-flowing
equatorial plasma was first calculated on the above basis by
Hill (1979). In this study the poloidal field was taken to be
that of the planetary dipole alone, such that the radial disten-
sion of the middle magnetosphere field lines shown in Fig. 1
was not taken into account. This restriction was later re-
moved by Pontius (1997), who introduced empirical poloidal
field models into the calculations. He found that the solu-
tions for the plasma angular velocity profile are remarkably
insensitive to the field model employed. Although consid-

ered implicitly, the properties of the coupling currents were
not calculated in these studies. Recently, however, attention
has focussed directly on the currents, it being suggested by a
number of authors that the ring of upward field-aligned cur-
rent surrounding each magnetic pole is associated with the
“main oval” observed in Jupiter’s auroras (Bunce and Cow-
ley, 2001; Cowley and Bunce, 2001; Hill, 2001; Southwood
and Kivelson, 2001). Hill (2001) considered the currents in
his original dipole problem, while Cowley and Bunce (2001)
calculated the currents for both a dipole field and an empiri-
cal current sheet field. The latter authors found that the field-
aligned current densities are an order of magnitude larger for
the current sheet model than for the dipole. The physical ori-
gins of this effect have been discussed further by Cowley et
al. (2002, 2003), who show that it relates to the fact that the
field lines on which corotation breaks down, while mapping
to similar distances in the equatorial plane, map in the iono-
sphere to a narrower range of latitudes further from the pole
for a current sheet field than for the dipole.

The solutions for the plasma angular velocity and the cur-
rent depend on two system parameters, the “effective” value
of the height-integrated ionospheric Pedersen conductivity
(possibly reduced from the true value by the atmospheric
“slippage” mentioned above), and the plasma mass outflow
rate from the Io torus. However, neither of these parameters
is well determined at present. Estimates of the conductivity
have ranged from≈ 0.1 to ≈ 10 mho (Strobel and Atreya,
1983; Bunce and Cowley, 2001), while estimates of the
mass outflow rate have ranged from≈ 500 to≈ 2000 kg s−1

(Broadfoot et al., 1981; Hill et al., 1983; Vasyliunas, 1983;
Khurana and Kivelson, 1993; Bagenal, 1997). The purpose
of the present paper is to examine how the solutions for the
plasma angular velocity and coupling currents depend on
these two parameters for both dipole and current sheet field
models. Some general results for the dipole model have been
presented previously by Hill (2001). For the current sheet
field model, however, only a few numerical solutions using
“reasonable” spot values of the system parameters have been
published to date (Cowley and Bunce, 2001; Cowley et al.,
2002, 2003). In this paper we first provide a complete solu-
tion for the dipole field, before going on to examine related
results for a current sheet model in which the equatorial field
is taken to vary with distance as a power law. The parameter
ranges considered are 0.1–10 mho for the “effective” conduc-
tivity, and 100–10 000 kg s−1 for the mass outflow rate. The
work presented here thus shows how the coupling current
system depends on the system parameters over a wide range
of values, here taken as constant quantities in a given solu-
tion. This knowledge should provide valuable background
for more complex future studies in which the system param-
eters are taken to vary in time and/or space, as may more
generally be the case.
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2 Basic equations

In this section we first summarise the basic equations govern-
ing the magnetosphere-ionosphere coupling current system
depicted in Fig. 1, and then discuss the nature of the solutions
at small and large distances. Derivations were given earlier
by Hill (1979), Vasyliunas (1983) and Pontius (1997), and
have most recently been discussed by Hill (2001), Cowley
and Bunce (2001), and Cowley et al. (2003). Only the cen-
tral results will, therefore, be stated here, together with an
outline of the assumptions and approximations which have
been made.

We first assume that the magnetic field is axisymmet-
ric, such that the poloidal components can be specified by
a flux functionF(ρ, z) related to the field components by
B = (1/ρ)∇F × ϕ̂, whereρ is the perpendicular distance
from the magnetic axis,z is the distance along this axis
from the magnetic equator, andϕ is the azimuthal angle.
In this caseF=constant defines a flux shell, such that mag-
netic mapping between the equatorial plane (subscript “e”)
and the ionosphere (subscript “i”), as required here, is sim-
ply achieved by writingFe = Fi . Neglecting non-dipole
planetary fields and the small perturbations due to magneto-
spheric currents, the flux function in the ionosphere is taken
to be

Fi = BJ ρ2
i = BJ R2

J sin2 θi, (1)

whereρi is the perpendicular distance from the magnetic
axis, θi the magnetic co-latitude, andBJ the dipole equa-
torial magnetic field strength (taken to be 4.28 × 105 nT in
conformity with the VIP 4 internal field model of Connerney
et al., 1998). The absolute value ofF has been fixed by tak-
ing F = 0 on the magnetic axis. The flux function in the
equatorial plane is then obtained by integrating

Bze =
1

ρe

dFe

dρe

, (2)

whereBze(ρe) is the north-south field threading the current
sheet.

Assuming for simplicity that the magnetic and planetary
spin axes are co-aligned, the equatorward-directed height-
integrated Pedersen current in the ionosphere is given by

iP = 26∗

P BJ �J ρi

(
1 −

ω

�J

)
= 26∗

P BJ �J

√
Fi

BJ

(
1 −

ω

�J

)
, (3)

where we have taken the polar magnetic field to be near-
vertical and equal to 2BJ in strength (an approximation valid
to within ≈ 5% in our region of interest). In this expression,
6∗

p is the “effective” height-integrated ionospheric Pedersen
conductivity, reduced from the true value6p = 6∗

p / (1-k) by
neutral atmosphere “slippage” as mentioned above, where
parameterk (whose value 0< k < 1 is also uncertain at
present) is related to the angular velocities by(�J − �∗

J ) =

k(�J − ω) (Huang and Hill, 1989). The radial current in-
tensity in the equatorial planeiρ , integrated through the full
thickness of the sheet, then follows from the current continu-
ity requirementρeiρ = 2ρi iP (assuming symmetry between
the two hemispheres)

iρ =
46∗

P �J Fe

ρe

(
1 −

ω

�J

)
, (4a)

so that the total equatorial radial current, integrated in az-
imuth, is

Iρ = 2πρeiρ = 8π6∗

P �J Fe

(
1 −

ω

�J

)
, (4b)

equal, of course, to twice the azimuth-integrated total Ped-
ersen currentIP = 2πρi iP flowing in each conjugate iono-
sphere. The field-aligned current density follows from the di-
vergence of either of these field-perpendicular currents. Dif-
ferentiating the equatorial current gives(j‖

B

)
=

1

4πρe|Bze|

dIρ

dρe

=

−26∗

P �J

(( Fe

ρe|Bze|

) d

dρe

( ω

�J

)
+

(
1 −

ω

�J

))
, (5a)

where we have putBze = −|Bze|, since the jovian field is
negative (points south) at the equator,6∗

P has been taken to
be constant, and the sign ofj‖ is appropriate to the North-
ern Hemisphere (as employed throughout). The quantity
(j‖/B) is constant along field lines between the equator and
the ionosphere in the assumed absence of significant field-
perpendicular currents in the intervening region. The field-
aligned current density just above the ionosphere is then
given by

j‖i = 2BJ

(j‖

B

)
, (5b)

using the same approximation for the polar field as indicated
above.

The analysis is completed by determining the steady state
angular velocity profile of the equatorial plasma. Following
Hill (1979, 2001), Pontius (1997), and Cowley et al. (2002),
Newton’s second law applied to a steady outflow of plasma
from the Io torus gives

d

dρe

(ρ2
e ω(ρe)) =

2πρ2
e iρ |Bze|

Ṁ
, (6a)

whereṀ is the plasma mass outflow rate. Expanding and
substituting Eq. (4a), we find

ρe

2

d

dρe

( ω

�J

)
+

( ω

�J

)
=

4π6∗

P Fe|Bze|

Ṁ

(
1 −

ω

�J

)
, (6b)

an equation we refer to as the Hill-Pontius equation (though
here slightly simplified, as in Hill (2001), by taking the iono-
spheric field strength to be equal to 2BJ ). It is a first order
linear equation forω that can be solved with the use of one
boundary condition. We note with Hill (2001) that if the an-
gular velocity profile obeys this equation, the derivative may
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be substituted directly into Eq. (5a) to yield a form for the
field-aligned current which involves(ω/�J ) only.

It is an important general property of the physically inter-
esting solutions of the above equations that at small radial
distances the currents depend onṀ and not on6∗

P , while
at large radial distances they depend on6∗

P and not onṀ.
The small-ρe approximations follow from a series solution
of Eq. (6b) for the case in which(ω/�J )=1 atρe = 0 (such
that the plasma rigidly corotates at small distances). Taking
(Ṁ/6∗

P ) as the formal expansion parameter, we write

ω

�J

=

∞∑
n=0

an

(
Ṁ

6∗

P

)n

, (7a)

and substituting into Eq. (6b) and equating coefficients of
powers of(Ṁ/6∗

P ) we find thata0 = 1, and that forn ≥ 1
thean are determined by the recurrence relation

an+1 = −
1

8πρeFe|Bze|

d

dρe

(ρ2
e an). (7b)

Thus, the leading term describing the breakdown of rigid
corotation in the inner region which we take as our small-
ρe(‘S’) approximation is(

ω

�J

)
S

= 1 −
Ṁ

4π6∗

P Fe|Bze|
, (8)

as given previously (but not derived in this manner) by Cow-
ley et al. (2003). We note that the departure from rigid coro-
tation is proportional toṀ and inversely proportional to6∗

P .
When substituted into Eqs. (3)–(5) to find the corresponding
approximations for the currents, we then find that the cur-
rents on a given field line depend only oṅM and not on6∗

P

iP S =
Ṁ�J

2πρi |Bze|
, IP S =

Ṁ�J

|Bze|
, (9a, b)

iρ S =
Ṁ�J

πρe|Bze|
, Iρ S =

2Ṁ�J

|Bze|
, (9c, d)

(j‖

B

)
S

= −
Ṁ�J

2πρe|Bze|
3

d|Bze|

dρe

, (9e)

and

j‖i S = −
Ṁ�J BJ

πρe|Bze|
3

d|Bze|

dρe

. (9f)

These expressions can also be derived directly by substitut-
ing ω = �J into the left side of Eq. (6a), i.e. they are just
the currents required to maintain near-rigid corotation in the
inner region.

The large-ρe(‘L’) approximations are simply obtained by
putting(ω/�J )L = 0 into Eqs. (3)–(5) to find

iP L = 26∗

P BJ �J ρi, (10a)

IP L = 4π6∗

P BJ �J ρ2
i , (10b)

iρ L =
46∗

P �J Fe

ρe

(10c)

Iρ L = 8π6∗

P �J Fe, (10d)(j‖

B

)
L

= −26∗

P �J , and (10e)

j‖i L = −46∗

P BJ �J , (10f)

which thus depend only on6∗

P and not onṀ.

3 Plasma angular velocity and coupling current system
for a dipole magnetic field model

Following the earlier work of Hill (1979, 2001) and Cowley
and Bunce (2001, 2003), in this section we provide a com-
plete analytic solution for the case where the poloidal field is
taken to be the planetary dipole alone, showing how the so-
lutions for the angular velocity and current components scale
in space and in amplitude with the system parameters. These
results form a useful introduction to, and point of comparison
with, the results for the current sheet field to be presented in
the Sect. 4. Using Eq. (2), for the dipole field we have

Bze dip = −BJ

(RJ

ρe

)3
and hence (11a)

Fe dip =
BJ R3

J

ρe

. (11b)

Substituting these into Eq. (6b), the Hill-Pontius equation for
the dipole field is

ρe

2

d

dρe

(
ω

�J

)
+

(
ω

�J

)
= 2

(
RDe

ρe

)4(
1 −

ω

�J

)
, (12)

whereRDe is the equatorial “Hill distance” for the dipole
field (subscript ‘D’), given by

RDe

RJ

=

(
2π6∗

P B2
J R2

J

Ṁ

)1/4

. (13)

It can thus be seen that the angular velocity in this case is
a function only of (ρe/RDe), so that the solutions scale with
equatorial distance asRDe and hence with the system param-
eters as (6∗

P /Ṁ)1/4. The general solution of Eq. (12) can be
obtained by the integration factor method (Hill, 1979)(

ω

�J

)
=

√
π

(
RDe

ρe

)2

exp

[(
RDe

ρe

)4]
×

×

[
erfc

[(
RDe

ρe

)2]
+ K

]
, (14)

where erfc(z) is the complementary error function (related to
the error function erf(z) by erfc(z) = 1 - erf(z)), andK is a
constant of integration. All solutions diverge at the origin
except the solution withK = 0. This special solution rigidly
corotates (i.e.(ω/�J ) = 1) when(ρe/RDe) goes to zero,
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and is the solution derived previously by Hill (1979, 2001).
Mapping to the ionosphere is achieved by equating the flux
functions given by Eq. (1) and (11b), such that

sinθi =
ρi

RJ

=

√
RJ

ρe

. (15)

Introducing an ionospheric counterpart of the “Hill distance”
given by

RDi =

√
RJ

RDe

RJ =

(
Ṁ

2π6∗

P B2
J R2

J

)1/8

RJ , (16)

we then find that the angular velocity mapped to the iono-
sphere is a function only of(ρi/RDi), where(

ρi

RDi

)
=

√
RDe

ρe

, (17)

such that the solutions scale with distance from the magnetic
pole as(Ṁ/6∗

P )1/8 . With regard to physical units, introduc-
tion of the constant quantities given above yields the follow-
ing values for the equatorial and ionospheric scale lengths

RDe

RJ

≈ 49.21

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/4

(18a)

and

RDi

RJ

≈ 0.1426

(
Ṁ(103kg s−1)

6∗

P (mho)

)1/8

, (18b)

such that for system parameters at the centre of the ranges
mentioned in the Introduction, i.e.6∗

P = 1 mho andṀ =

1000 kg s−1, we find RDe ≈ 49.2RJ andRDi ≈ 0.14RJ

(corresponding to a co-latitude of 8.2◦). If we fix Ṁ at this
value and allow6∗

P to increase from 0.1 to 10 mho, we find
thatRDe increases from 27.7 to 87.5 RJ, whileRDi decreases
from 0.19 to 0.11 RJ (co-latitudes between 11.0◦ and 6.1◦).
Similarly, if we fix 6∗

P at 1 mho and allowṀ to increase
from 100 to 10 000 kg s−1, we find thatRDe andRDi vary
over the same ranges but in the reversed sense. Thus be-
causeRDe andRDi depend on the system parameters only
as the quarter and eighth powers, respectively, they change
only by modest factors as the system parameters vary widely.
We note that the equatorial scales are comparable to the ra-
dial scale of the jovian middle magnetosphere, which extends
to distances between∼40 and∼100 RJ, depending on local
time and the state of the magnetosphere.

The solid lines in Figs. 2a and b show the normalised an-
gular velocity solution withK = 0 plotted versus(ρe/RDe)

in the equatorial plane, and versus(ρi/RDi) in the iono-
sphere, respectively. Near-rigid corotation is maintained to
(ρe/RDe) ≈ 0.5, beyond which(ω/�J ) decreases rapidly,
reaching 0.5 when(ρe/RDe) ≈ 1.52. We also note that so-
lutions started with non-zeroK within (ρe/RDe) ≤ 0.5 con-
verge very rapidly onto this solution at larger distances, such
that the solutions are only weakly dependent on the choice
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Fig. 2. Plots of the steady-state plasma angular velocity profile for a
dipole magnetic field, shown(a) versus normalised radial distance
in the equatorial plane(ρe/RDe), and (b) versus normalised dis-
tance from the magnetic axis in the ionosphere(ρi/RDi) . The
solid line in each case shows the full solution obtained from Eq. (14)
with K = 0, such that the plasma rigidly corotates at small ra-
dial distances. The long-dashed lines show the smallρe form
given by Eq. (19), while the corresponding largeρe form is just
(ω/�J )L = 0. The downward-pointing tick marks indicate the
limits of validity of both these approximations, as defined in the
text. The short-dashed lines show the higher-order largeρe form
given by Eq. (20), whose limit of validity (as also defined in the text)
is indicated by the upward-pointing tick mark. The horizontal dot-
ted lines indicate the condition for rigid corotation,(ω/�J ) = 1.

of boundary condition in this case (Cowley et al., 2003). The
dashed lines in Fig. 2 show some approximate forms, with
the tick marks indicating their regimes of validity. The long-
dashed lines show the small-ρe(‘S’) approximation given by
Eq. (8), which in normalised form becomes(

ω

�J

)
S

= 1 −
1

2

(
ρe

RDe

)4

= 1 −
1

2

(
RDi

ρi

)8

. (19)

(We note that the series generated by Eq. (7) is the same as
that obtained by asymptotic expansion of the error function
in Eq. (14) for large argument.) The approximate form falls
away from rigid corotation more quickly than the full solu-
tion, and reaches zero, equal to the large-ρe(‘L’) approxima-
tion (ω/�J )L = 0 at (ρe/RDe) =

4
√

2 ∼ 1.189. We define
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Table 1. Principal features of the plasma angular velocity and coupling current system for a dipole field in normalised units

Feature

(
ρe

RDe

) (
ρi

RDi

) (
ω

�J

)
Maximum upward field-aligned current density(
(j‖/B)/(j‖/B)D

)
max

=

(
j‖i/j‖iD

)
max

≈ 0.6111 1.0203 0.9900 0.7467

Maximum sheet-integrated equatorial radial current(
iρ/iρD

)
max

≈ 0.9809 1.1034 0.9520 0.7014

Plasma angular velocity falls to

(
ω

�J

)
= 0.5 1.5201 0.8111 0.5

Maximum azimuth-integrated total current(
Iρ/IρD

)
max

= 2
(
IP /IPD

)
max

≈ 8.404 1.7409 0.7579 0.4178

Field-aligned current passes through zero

Maximum height-integrated ionospheric Pedersen

current

(
iP /iPD

)
max

≈ 0.9631 2.5674 0.6241 0.2284

Maximum downward field-aligned current density(
(j‖/B)/(j‖/B)D

)
min

=

(
j‖i/j‖iD

)
min

= –2 ∞ 0 0

the limits of validity of these approximations as being the
points where(1 − (ω/�J )S,L) = 1.1(1 − (ω/�J )), such
that the departure from rigid corotation given by the approx-
imate form exceeds that of the full solution by 10% of the
latter. These limiting positions are shown by the downward-
pointing tick marks in Fig. 2. The short-dashed lines in the
figure also show a higher-order large-ρe form (‘L′’), in which
the plasma angular velocity falls with distance asρ−2

e , due
to negligible ionospheric torque. Noting that both the ex-
ponential and the error functions go to unity in Eq. (14) as
ρe → ∞, we find with Hill (1979) that forK = 0(

ω

�J

)
L′

=
√

π

(
RDe

ρe

)2

. (20)

The limit of validity of this approximation is similarly de-
fined as the point where(1−(ω/�J )L′) = 0.9(1−(ω/�J )),
and is marked by the upward-pointing tick marks in Fig. 2.

The normalised solutions for the current components then
follow from Eqs. (3)–(5), giving

iP

iPD

= 2

(
ρi

RDi

)(
1 −

ω

�J

)
, where

iPD =

(
6∗

P
7Ṁ

2π

)1/8(
BJ RJ

)3/4

�J , (21a)

IP

IPD

= 4π

(
ρi

RDi

)2(
1 −

ω

�J

)
, where

IPD =

(
6∗

P
3Ṁ

2π

)1/4(
BJ R3

J

)1/2

�J , (21b)

iρ

iρD

= 4

(
RDe

ρe

)2(
1 −

ω

�J

)
, where

iρD =

(
6∗

P Ṁ

2π

)1/2

�J , (21c)

Iρ

IρD

= 8π

(
RDe

ρe

)(
1 −

ω

�J

)
, where

IρD =

(
6∗

P
3Ṁ

2π

)1/4(
BJ RJ

3

)1/2

�J , (21d)

(
j‖/B

)(
j‖/B

)
D

= 2

[
2

(
ω

�J

)
−

(
1 + 4

(
RDe

ρe

)4)(
1 −

ω

�J

)]
,

where(
j‖/B

)
D

= 6∗

P �J , (21e)

and

j‖i

j‖iD

= 2

[
2

(
ω

�J

)
−

(
1 + 4

(
ρi

RDi

)8)(
1 −

ω

�J

)]
,

where

j‖iD = 26∗

P BJ �J . (21f)

We note that Eqs. (21b) and (21d) are equivalent to Hill’s
(2001) Eq. (A13), while Eqs. (21e) and (21f) are the same as
Hill’s Eq. (A12). These normalised forms are plotted as solid
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Fig. 3. Plots of normalised steady-state current components for a dipole magnetic field, plotted versus normalised equatorial radial distance
(ρe/RDe), or normalised distance from the magnetic axis(ρi/RDi) in the ionosphere, as appropriate. The plots show(a) the height-
integrated ionospheric Pedersen current intensity,(b) the azimuth- and height-integrated total ionospheric Pedersen current,(c) the current
sheet-integrated equatorial radial current intensity,(d) the azimuth- and current sheet-integrated total equatorial radial current,(e) the equa-
torial field-aligned current density per unit magnetic field strength, and(f) the field-aligned current density just above the ionosphere. The
corresponding normalization constants are given by Eq. (21). The solid lines show the full solutions given by Eqs. (14) and (21), while the
long-dashed lines show the small and largeρe forms (the ‘S’ and ‘L’ approximations), shown to their point of intersection at(ρe/RDe) =

4√2
(or equivalently(ρi/RDi) = 1/

8√2), where(ω/�J )S = (ω/�J )L = 0. The downward-pointing tick marks show the limits of validity of
these approximate forms, as shown in Fig. 2. The short-dashed lines show the higher-order largeρe form (the ‘L′’ approximation) obtained
from Eq. (20), whose limit of validity is indicated by the upward-pointing tick mark, as also shown in Fig. 2.

lines in Fig. 3 versus either(ρe/RDe) or (ρi/RDi) as appro-
priate. The values and positions of principal features are also
tabulated in Table 1 in normalised units, and in Table 2 in
physical units. The dashed lines and tick marks in Fig. 3 then
show approximate forms in the same format as Fig. 2 for the
angular velocity. Specifically, for smallρe the long-dashed
lines show the currents obtained by introducing Eq. (19) (the
‘S’ approximation into Eq. (21)). These currents are the same
as Eq. (9) for a dipole field, when expressed in normalised
form. This ‘S’ approximation is drawn to the point where
(ω / �J )S falls to zero. Beyond this we draw the currents
obtained by introducing(ω/�J )L = 0 into Eq. (21) (the
‘L’ approximation), which are the same as Eq. (10) for the

dipole, when expressed in normalised form. The long-dashed
lines thus represent the current profiles that would be driven
by an angular velocity profile given by the ‘S’ approxima-
tion to the point where falls to zero, with zero being taken
beyond. The short-dashed lines then show the profiles ob-
tained by introducing Eq. (20) (the ‘L′’ approximation) into
Eq. (21).

The normalised solutions given above show how the form
and amplitude of the plasma angular velocity and currents
vary with the system parameters for a dipole field. Specif-
ically, Eqs. (13) and (16) show that the solutions scale
spatially in the equatorial plane and in the ionosphere as
ρe ∝ (6∗

P /Ṁ)1/4 andρi ∝ (Ṁ/6∗

P )1/8, respectively, while
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Table 2. Principal features of the plasma angular velocity and coupling current system for a dipole field in physical units

Feature
(

ρe
RJ

)
sinθi =

(
ρi
RJ

)
Maximum upward field-aligned current density
(j‖/B)

max
≈ 0.10766∗

P
(mho) pA m−2 nT−1

j‖imax ≈ 0.092066∗
P

(mho)µA m−2 50.21

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/4

0.1411

(
Ṁ(103kg s−1)

6∗
P (mho)

)1/8

Maximum sheet-integrated equatorial radial current

iρmax ≈ 2.178
(
6∗

P
(mho)Ṁ(103 kg s−1)

)1/2
mA m−1 54.30

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/4

0.1357

(
Ṁ(103kg s−1)

6∗
P (mho)

)1/8

Plasma angular velocity falls to
(

ω
�J

)
= 0.5 74.80

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/4

0.1156

(
Ṁ(103kg s−1)

6∗
P (mho)

)1/8

Maximum azimuth-integrated total current

Iρ max = 2IP max ≈ 65.54

(
6∗

P
3(mho)Ṁ(103kg s−1)

)1/4
MA

Field-aligned current passes through zero 85.67

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/4

0.1080

(
Ṁ(103kg s−1)

6∗
P (mho)

)1/8

Maximum ionospheric Pedersen current

iP max ≈ 0.7381

(
6∗

P
7(mho)Ṁ(103kg s−1)

)1/8
A m−1 126.34

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/4

0.0890

(
Ṁ(103kg s−1)

6∗
P (mho)

)1/8

Maximum downward field-aligned current density
(j‖/B)

min
≈ −0.3526∗

P
(mho) pA m−2 nT−1

∞ 0
j‖i min ≈ −0.30136∗

P
(mho)µA m−2

Eq. (21) shows that the amplitude of each component of the
current system scales as some power of6∗

P and Ṁ of the
form

i ∝ 6∗

P

(1+γ )
2 Ṁ

(1−γ )
2 , (22)

where γ is equal to zero for the sheet-integrated equato-
rial radial current, 1/2 for the azimuth-integrated total field-
perpendicular current, 3/4 for the height-integrated iono-
spheric Pedersen current, and 1 for the field-aligned current
density. The fact that these spatial and amplitude scales com-
bine to produce a linear dependence of the current onṀ for
small ρe, as given by Eq. (9), and a linear dependence on
6∗

P at largeρe, as given by Eq. (10), implies that the cur-
rents grow with a specific power of the distance in the inner
region, and decline with a specific power of the distance at
large distances. It is easy to show that at small distances the
currents grow as

iS ∝ Ṁρ
2(1+γ )
e ∝

Ṁ

ρ
4(1+γ )

i

, (23a)

while at large distances they decline as

iL ∝
6∗

P

ρ
2(1−γ )
e

∝ 6∗

P ρ
4(1−γ )

i , (23b)

as may be readily verified by substituting the appropriate
form for the angular velocity (i.e. the ‘S’ or ‘ L’ approx-
imations) into Eq. (21). Thus, in summary, the currents
grow in the inner region according to Eq. (23a), and depart
from this behaviour at an equatorial distance proportional to
(6∗

P /Ṁ)1/4 (as shown by the ‘inner’ downward tick marks
in Fig. 3), where the current value depends on6∗

P and Ṁ

according to Eq. (22). Similarly, the currents decline in the
outer region according to Eq. (23b), starting at an equato-
rial distance proportional to(6∗

P /Ṁ)1/4 (as shown by the
‘outer’ downward tick marks in Fig. 3), where the current
value again depends on6∗

P andṀ according to Eq. (22).

4 Plasma angular velocity and coupling current system
for a current sheet magnetic model

The solution for the coupling currents for a dipole field rep-
resents an important paradigm case. Nevertheless, the model
is unrealistic in its application to Jupiter because the mid-
dle magnetosphere field lines are not quasi-dipolar, but are
significantly distorted outward from the planet by azimuthal
currents flowing in the equatorial plasma, as shown in Fig. 1.
Thus field lines at a given radial distance in the equatorial
plane map to a significantly lower latitude in the ionosphere
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Fig. 4. Plots showing parameters of the current sheet field model
employed in Sect. 4 (solid lines), compared with values for the plan-
etary dipole field alone (dashed lines). Plot(a) is a log-linear plot
of the modulus of the north-south equatorial magnetic field|Bze|

threading the equatorial plane, shown versus jovicentric equatorial
radial distanceρe. This field component is actually negative (i.e.
points south) in both cases. The kink in the curve at∼21.78 RJ in
the current sheet model marks the point where we switch from the
‘CAN’ model to the ‘KK’ model, as discussed in the text. Plot(b)
similarly shows the equatorial flux functionFe of the model fields
versus jovicentric equatorial radial distanceρe. Plot (c) shows the
mapping of the field lines between the equatorial plane and the iono-
sphere, determined from Eq. (1). The ionospheric dipole co-latitude
of the field line is plotted versus jovicentric equatorial radial dis-
tanceρe.

than for a dipole, thereby increasing the electric field and cur-
rent for a given departure of the plasma from rigid corotation.
In their previous investigations, Cowley and Bunce (2001)
and Cowley et al. (2002) employed an empirical model of
the equatorial field based on Voyager magnetic data. This
model will also be used here, its properties being illustrated
in Fig. 4. The solid line in Fig. 4a shows a log-linear plot
of the modulus of the equatorial north-south magnetic field

Bze versus equatorial radial distance (the actual values are, of
course, all negative), while the dashed line shows the dipole
field for comparison. The model field departs from the dipole
in the inner part of the middle magnetosphere, and remains
significantly lower in magnitude throughout the region of in-
terest, reflecting the outward distension of the current sheet
field lines. The model employs the “Voyager-1/Pioneer-10
model” of Connerney et al. (1981) (the “CAN” model) out
to a certain radial distance (using the analytic approxima-
tions derived by Edwards et al., 2001), and the empirical
Voyager-1 outbound model of Khurana and Kivelson (1993)
(the “KK” model) beyond. The radial distance at which these
models are joined,ρ∗

e ∼ 21.78 RJ, indicated by the “kink” in
the solid curve in Fig. 4a, is determined from the intersection
of the two model curves, such that there is no discontinuity in
the field magnitude at this point (only in the first derivative).
The expression for the field in the “CAN” region has been
given previously by Cowley and Bunce (2001) and Cowley
et al. (2002), and will not be repeated here. The expression
for the field in the “KK” region, however, is simply a power
law given by

Bze = −B0

(
RJ

ρe

)m

, (24)

whereB0 = 5.4 × 104 nT andm = 2.71. This function was
determined from a fit to outbound Voyager-1 data over the
range from∼20 to ∼100 RJ, corresponding approximately
to the range over which we employ it here.

The equatorial flux functionFe satisfying Eq. (2) is shown
by the solid line in Fig. 4b, where the dashed line again shows
the dipole value (Eq. 11b). The value ofFe atρ∗

e is set by the
CAN model, equal to∼3.70×104 nT R2

J, while beyond this,
in the “KK” region, integration of Eq. (2) using Eq. (24) for
Bze yields

Fe(ρe) = F∞ +
B0R

2
J

(m − 2)

(
RJ

ρe

)m−2

, (25)

where F∞, the model value of Fe at infinity, is
∼2.85×104 nT R2

J . It can be seen in Fig. 4b that the value
of Fe for the current sheet model is much larger than for the
dipole at a given equatorial distance, and varies over only
a narrow range in the outer middle magnetosphere. Since
the value ofFe is directly related to the magnetic co-latitude
where the field lines map to the ionosphere through Eq. (1),
the implication is that the current sheet field lines map to sig-
nificantly larger co-latitudes than for the dipole, and also to
a very narrow co-latitude range. This is shown explicitly in
Fig. 4c, where we plot the co-latitude of the field lines in the
ionosphere versus equatorial radial distance. In the current
sheet model (solid line), the ionospheric mapping varies from
a co-latitude of∼16.7◦ at 30 RJ to ∼15.6◦ at 120 RJ, a range
of only ∼1.1◦. Even the current sheet field line from infinity,
should the model (unrealistically) be taken to extend that far,
only maps to∼15.0◦. Field lines at smaller co-latitudes then
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do not thread the current sheet in this model, but must map
instead to the outer magnetosphere and magnetic tail, regions
which are not described by the present theory. In the dipole
model, by contrast, equatorial field lines in the range 30 to
120 RJ map between∼10.5◦ and∼5.2◦, a range of∼5.3◦,
and go to the pole, of course, at infinity.

Solutions for such a “current sheet” field must generally
be computed numerically for specific values of the system
parameters, and results have been presented to date by Cow-
ley et al. (2002, 2003) for a few spot values. Here we present
an approximate analytic solution which applies to the region
beyondρ∗

e ∼21.78 RJ, where the field varies with distance
as a power law, which previous work has shown to be the
main current-carrying region. However, we must first en-
quire how solutions in the power law region depend on condi-
tions inside the region, where the dipole field is dominant and
the transition to the power law takes place. We commented
previously for the dipole problem that solutions of the Hill-
Pontius equation which are started at an arbitrary angular ve-
locity well within the “Hill distance” converge rapidly onto
the solution which rigidly corotates at small distances, such
that the behaviour at larger distances is very insensitive to the
choice of initial condition. Numerical investigation shows
that the solutions for the current sheet field exhibit the same
property (Cowley and Bunce, 2002). The implication for the
present problem is that, provided the effective “Hill distance”
is larger thanρ∗

e ∼20 RJ (i.e. provided the value of(6∗

P /Ṁ)

is not too low), the solutions in the “power law” region will
be very insensitive to conditions in the interior region. In
this case, we can simply take the power law field to be valid
over all distances, but apply the results only to the region
outside ofρ∗

e . The validity of this statement may be judged
from Fig. 5, where we show solutions for the plasma an-
gular velocity in the inner part of the system spanningρ∗

e ,
for three values of(6∗

P /Ṁ) covering our range of interest,
i.e. 10−4 , 10−3 and 10−2 mho s kg−1. The solid lines show
numerical solutions using the full current sheet field model
shown in Fig. 4, while the dashed lines similarly show nu-
merical solutions using the power law field over the whole
range. (The dot-dashed lines show the analytic approxima-
tion to be derived below.) Both numerical solutions were
initialised by imposing the near-rigid corotation approxima-
tion given by Eq. (8) atρe = 5 RJ. The position ofρ∗

e is
indicated by the tick mark in each plot, such that both mod-
els use the same power law field at larger distances. It can be
seen that the two numerical solutions converge rapidly be-
yond this distance, the convergence becoming increasingly
rapid as(6∗

P /Ṁ) increases. Thus, in the parameter range
of interest, the solutions in the power law field region can
be approximated by taking the power law field to be valid at
all distances. We note that the values of the “Hill distance”
corresponding to the values of(6∗

P /Ṁ) shown in the figure
are 27.7, 49.2, and 87.5 RJ, thus exceedingρ∗

e ∼21.78 RJ in
each case, though only just so at the lower limit. Conver-
gence of the two solutions is found to break down for lower
values of(6∗

P /Ṁ) ∼ 10−5 mho s kg−1, corresponding to a

“Hill distance” of 15.6 RJ, at the limit of the parameter range
considered here.

We thus consider solutions for the case in which the equa-
torial field is taken to be given by Eq. (24) at all distances.
To obtain an analytic result we also make the further approx-
imation that the flux function is taken to be a constant in the
Hill-Pontius equation. Thus, over the region of interest, the
equatorial field is taken to map in the ionosphere to a nar-
row range of distances from the magnetic axis, an approxi-
mation shown to be well satisfied for the empirical current
sheet model discussed above. While this approximation will
generally be valid for “current sheet” fields, it is clearly not
valid for quasi-dipolar fields. We thus note that the solutions
obtained here do not reduce to the dipole case in the limit
that we choosem = 3 in Eq. (24). With this “current sheet”
approximation, then, Eq. (6b) becomes

ρe

2

d

dρe

(
ω

�J

)
+

(
ω

�J

)
= 2

(
RCSe

ρe

)m(
1 −

ω

�J

)
, (26)

whereRCSe is the equatorial “Hill distance” for the power
law current sheet field (subscript ‘CS’)

RCSe

RJ

=

(
2π6∗

P B0F0

Ṁ

)1/m

. (27)

Here we have putFe = F0, a constant, into Eq. (6b),
such that the field lines are taken to map in the iono-
sphere to a fixed distance from the magnetic axis given by

(ρi0/RJ ) =

√
(F0/BJ R2

J ) (Eq. 1). The value ofF0 could
be taken for example, to be equal toF∞ in Eq. (25) (in
which case(ρi0/RJ ) = (ρi∞/RJ ) where (ρi∞/RJ ) =
√

(F∞/BJ RJ )
2

≈0.258, corresponding to a co-latitude of
∼14.95◦), or to some nearby (larger) value representative
of the field lines in the region of interest. Equation (26) is
then of the same form as Eq. (12) for the dipole field (they
are identical whenm = 4), from which it is clear that the
solutions are functions only ofρe/RCSe, and hence scale
with distance asRCSe and with the system parameters as
(6∗

P /Ṁ)1/m. With m = 2.71, therefore, as used through-
out here, the scale length varies somewhat more rapidly with
the system parameters than for the dipole, which varies as
(6∗

P /Ṁ)1/4. The general solution of Eq. (26) can again be
found by the integration factor method(

ω

�J

)
=

(
4

m

) 2
m
(

RCSe

ρe

)2

exp

[
4

m

(
RCSe

ρe

)m
]
×

×

[
0

[
1 −

2

m
,

4

m

(
RCSe

ρe

)m]
+ K

]
, (28a)

where0(a, z) is the incomplete gamma function

0(a, z) =

∫
∞

z

e−t ta−1dt. (28b)

The solutions again diverge at the origin except for the spe-
cial solution withK = 0, which rigidly corotates for small
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Fig. 5. Plots showing plasma angular velocity profiles versus equa-
torial radial distance for(6∗

P
/Ṁ) equal to(a) 10−4, (b) 10−3, and

(c) 10−2 mho s kg−1. The solid lines show the solution obtained by
numerical integration of Eq. (6b) using the full ‘current sheet’ mag-
netic model shown in Fig. 4, starting from the near-rigid corotation
approximation Eq. (8) atρe = 5 RJ. The tick marks show the point
(ρ∗

e ≈21.78 RJ) where the magnetic field switches from the ‘CAN’
model to the power-law ‘KK’ model. The dashed lines then show
the numerical solution obtained by employing the ‘KK’ power law
field (given by Eqs. 24 and 25) over the full distance range, the so-
lutions again being initialised using the appropriate form of Eq. (8)
at ρe = 5 RJ. The dot-dashed lines show the approximate analytic
solution using the ‘KK’ power law field, given by Eq. (28) with
K = 0 andm = 2.71. Note that the vertical scale has been tailored
to the plot in each case.

ρe. To map the solution to the ionosphere we equate Eqs. (1)
and (25), and define an ionospheric scaling distance

RCSi

RJ

=
1

2
(
m − 2

)(B0

BJ

)√
BJ R2

J

F∞

(
Ṁ

2π6∗

P B0F0

)1−
2
m

,(29)

such that the angular velocity mapped to the ionosphere is a

function only of(
1ρi

RCSi

)
=

(
RCSe

ρe

)m−2

, (30)

where1ρi= (ρi − ρi∞), andρi∞ is the distance from the
magnetic axis of the field line from infinity as given above.
In deriving Eq. (30) we have assumed that1ρi is small com-
pared withρi∞, in keeping with the “current sheet” approx-
imation introduced above. Numerically, for the above power
law field we find

RCSe

RJ

≈ 56.38

(
6∗

P (mho)

Ṁ
(
1000kg s−1)

) 1
2.71

and

RCSi

RJ

≈ 0.0197

(
Ṁ
(
1000kg s−1)
6∗

P

(
mho

) ) 0.71
2.71

, (31)

where we have chosen to put
F0 = Fe(70 RJ ) ≈ 3.22× 104 nTR2

J , a representative value
in the middle magnetosphere current sheet. Thus, as
(6∗

P /Ṁ) varies over the range of interest from 10−4 to
10−2 mho s kg−1, we find thatRCSe varies between 24.1 and
131.9RJ (compared with 27.7 to 87.5RJ for RDe for the
dipole), while RCSi varies between 0.046 and 0.0084RJ

(compared with 0.19 to 0.11RJ for RDi for the dipole).
Consequently, since(ρi∞/RJ ) ≈ 0.258, as indicated above,
we will indeed have1ρi small compared withρi∞ for
values1ρi ∼ RCSi .

The solid lines in Figs. 6a and b show the normalised an-
gular velocity solution given by Eq. (28) withK = 0 and
m = 2.71, plotted versus(ρe/RCSe) in the equatorial plane,
and versus(1ρi/RCSi) in the ionosphere, respectively. The
form is similar to that for the dipole, though falling away
from rigid corotation more quickly (in normalised units) in
the inner region, and less quickly in the outer region. This so-
lution is also shown in un-normalised form (with the above
value ofF0) by the dot-dashed lines in Fig. 5, where it is
compared with the results of numerical integration of the full
solution (solid and dashed lines as described above). It can
be seen that the analytic solution forms a very close approx-
imation to the numerical solutions forρe > ρ∗

e under all
conditions of interest here, a result we have confirmed by
a wider comparative study not illustrated here. The dashed
lines and tick marks in Fig. 6 show normalised approximate
forms and their regimes of validity, in the same format as
Fig. 2. Specifically, the long-dashed lines show the small-
ρe(‘S’) approximation given by Eq. (8)(

ω

�J

)
S

= 1 −
1

2

(
ρe

RCSe

)m

= 1 −
1

2

(
RCSi

1ρi

) m
m−2

, (32)

where we again note that the series generated by Eq. (7)
(of which Eq. (32) is the leading term) is the same as that
obtained by asymptotic expansion of the gamma function
in Eq. (28) for large argument. The short-dashed lines
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Fig. 6. Plots of the approximate analytic plasma angular velocity
profile for the current sheet power law magnetic field model, given
by Eq. (24) withm = 2.71, shown(a) versus(ρe/RCse) in the
equatorial plane, and(b) versus(1ρi/RCsi) in the ionosphere. The
solid line in each case shows the full solution obtained from Eq. (28)
with K = 0, such that the plasma rigidly corotates at small radial
distances. The long-dashed lines show the small-ρe(‘S’) form given
by Eq. (32), while the large-ρe(‘L’) form is just (ω/�J )L = 0.
The downward-pointing tick marks indicate the limits of validity of
both these approximations as defined for the dipole case shown in
Fig. 2. The short-dashed lines show the higher-order large-ρe(‘L′’)
form given by Eq. (33), whose limit of validity (defined as for the
dipole case) is indicated by the upward-pointing tick mark. The
horizontal dotted line indicates the condition for rigid corotation,
(ω/�J ) = 1.

then show the higher-order large-ρe(‘L′’) approximation, ob-
tained from Eq. (28) as(

ω

�J

)
L′

=

(
4

m

) 2
m

0

(
1 −

2

m

)(
RCSe

ρe

)2

. (33)

The lower-order large-ρe(‘L’) approximation is again simply
(ω/�J )L = 0.

The normalised approximate solutions for the currents
then follow from Eqs. (3)–(5)

iP

iPCS

= 2

(
1 −

ω

�J

)
, where

iPCS =

√
F0

BJ R2
J

6∗

P BJ RJ �J , (34a)

IP

IPCS

= 4π

(
1 −

ω

�J

)
, where

IPCS =

(
F0

BJ R2
J

)
6∗

P BJ R2
J �J , (34b)

iρ

iρCS

= 4

(
RCSe

ρe

)(
1 −

ω

�J

)
, where

iρCS =

(
F0

BJ R2
J

)(
Ṁ

2π6∗

P B0F0

)1/m

6∗

P BJ RJ �J , (34c)

Iρ

IρCS

= 8π

(
1 −

ω

�J

)
, where

IρCS =

(
F0

BJ R2
J

)
6∗

P BJ R2
J �J , (34d)

(j‖/B)

(j‖/B)CS

= 4

(
ρe

RCSe

)m−2

×

×

[(
ω

�J

)
− 2

(
RCse

ρe

)m(
1 −

ω

�J

)]
, where

(j‖/B)CS =

(
BJ

B0

)(
F0

BJ R2
J

)
×

×

(
2π6∗

P B0F0

Ṁ

)1−
2
m

6∗

P �J , and (34e)

j‖i

j‖i CS

= 4

(
RCSi

1ρi

)
×

×

[(
ω

�J

)
− 2

(
1ρi

RCSi

) m
m−2

(
1 −

ω

�J

)]
, where

j‖ iCS = 2

(
BJ

B0

)(
F0

BJ R2
J

)
×

×

(
2π6∗

P B0F0

Ṁ

)1−
2
m

6∗

P BJ �J . (34f)

These forms are shown by the solid lines in Fig. 7, plotted
versus either(ρe/RCsi) or (ρi/RCsi) as appropriate. The
dashed lines show approximate forms based on the ‘S’, ‘ L’,
and ‘L′’ approximations for the angular velocity, in the same
format as Fig. 3 for the dipole. Comparison with Fig. 3
shows similarities, but also major differences with the cur-
rents for the dipole field. The differences arise from the fact
that the current sheet field lines reach the ionosphere in a nar-
row band at a finite co-latitude, rather than continuously ap-
proaching the pole with increasing radial distance, as for the
dipole. The ionospheric Pedersen current (Eq. 34a), while
being proportional to the displacement of the band from the

magnetic axis
√

F0/BJ R2
J , then varies with co-latitude only

through the variation of the plasma angular velocity. As seen
in Fig. 7a, the Pedersen current, therefore, peaks at the pole-
ward edge of the band, where the angular velocity is zero,
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Fig. 7. Plots of normalised steady-state current components for a power law equatorial magnetic field (Eq. (24) withm = 2.71) and ‘current
sheet’ approximate mapping to the ionosphere, plotted versus(ρe/RCSe) or (1ρi/RCSi) as appropriate. As in Fig. 3 for the dipole, the
plots show(a) the height-integrated ionospheric Pedersen current intensity,(b) the azimuth- and height-integrated total ionospheric Pedersen
current,(c) the current sheet-integrated equatorial radial current intensity,(d) the azimuth- and current sheet-integrated total equatorial radial
current,(e) the equatorial field- aligned current density per unit magnetic field strength, and(f) the field-aligned current density just above the
ionosphere. The normalization constants are given by Eq. (34). The solid lines show the full approximate solutions given by Eqs. (28) and
(34), while the long-dashed lines show the small and large-ρe forms derived from(ω/�J )S given by Eq. (32) and(ω/�J )L = 0, drawn to
their point of intersection at(ρe/RCSe) =

m
√

2 . The downward-pointing tic-marks show the limits of validity of these approximate forms as
defined for the dipole case. The short-dashed lines show the higher-order large-ρe form given by Eq. (33), whose limit of validity is indicated
by the upward-pointing tick mark, again defined as for the dipole case.

and falls monotonically with distance from the boundary as
the angular velocity approaches rigid corotation (Fig. 6b).
This implies that the azimuth-integrated total current also
varies monotonically with distance, the total equatorial cur-
rent (Eq. 34d) thus rising with increasing equatorial distance
towards 8πF06

∗

P �J (strictly, 8πF∞6∗

P �J ) at infinity, as
seen in Fig. 7d. This behaviour also implies that the radial
current intensity (Eq. 34c) rises to a peak value with increas-

ing distance, and then falls asρ−1
e at large distances, as seen

in Fig. 7c. The further implication of a monotonically in-
creasing total current is that the field-aligned current is uni-
directional, flowing consistently from the ionosphere to the
equatorial current sheet, as shown in Figs. 7e and f. Clo-
sure of the current system must then occur outside the region
described by the model, on field lines mapping between the
ionosphere at higher latitudes and the outer magnetosphere



1432 J. D. Nichols and S. W. H. Cowley: Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere

Table 3. Principal features of the plasma angular velocity and coupling current system for the power law current sheet field in normalised
units, obtained (withm = 2.71) from the approximate analytic solution of Sect. 4

Feature
(

ρe
RCse

) (
1ρi
RCsi

) (
ω

�J

)
Maximum sheet-integrated equatorial radial current
(iρ/iρCS)max ≈ 1.2109 1.6142 0.7118 0.5113

Plasma angular velocity falls to
(

ω
�J

)
=0.5 1.6521 0.7002 0.5

Maximum upward field-aligned current density(
(j‖/B)/(j‖/B)CS

)
max

=

(
j‖i/j‖iCS

)
max

≈ 1.5274 2.3777 0.5407 0.3339

Maximum height-integrated ionospheric Pedersen
current(iP /iPCS)max = 2
Maximum azimuth-integrated total current ∞ 0 0(
Iρ/IρCS

)
max

= 2
(
IP /IPCS

)
max

= 8π ≈ 25.133

Field-aligned current goes to zero

Table 4. Principal features of the plasma angular velocity and coupling current system for the power law current sheet field in physical units,
obtained (usingB0 = 5.4× 104 nT,m = 2.71,F∞ ≈ 2.85× 104 nT R2

j andF0 ≈ 3.22× 104 nT R2
j ) from the approximate analytic solution

of Sect. 4

Feature
(

ρe
RJ

) (
1ρi
RJ

)
Maximum sheet-integrated equatorial radial current

iρ max ≈ 8.690

(
6∗

P
(mho)1.71Ṁ(103 kg s−1)

) 1
2.71

mA m−1 91.02

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/2.71
0.01400

(
Ṁ(103kg s−1)

6∗
P (mho)

) 0.71
2.71

Plasma angular velocity falls to

(
ω

�J

)
= 0.5 93.15

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/2.71

0.01377

(
Ṁ(103kg s−1)

6∗
P (mho)

) 0.71
2.71

Maximum upward field-aligned current density
(j‖/B)max ≈

2.808

(
6∗

P
(mho)3.42Ṁ(103kg s−1)−0.71

) 1
2.71

pA m−2nT−1 134.06

(
6∗

P (mho)

Ṁ(103kg s−1)

)1/4
0.01063

(
Ṁ(103kg s−1)

6∗
P (mho)

) 0.71
2.71

j‖ i max ≈ 2.404(6∗
P

(mho)3.42Ṁ(103kg s−1)−0.71µA m−2

Maximum height-integrated ionospheric Pedersen current
iP max ≈ 2.9506∗

P
(mho) A m−1

Maximum azimuth-integrated total current ∞ 0
Iρ max = 2IP max ≈ 725.86∗

P
(mho) MA

Field-aligned current goes to zero

and magnetic tail. The values and positions of principal fea-
tures of the solution are again tabulated in Table 3 in nor-
malised units, and in Table 4 in physical units.

The behaviour of these approximate solutions thus reflects
the results presented previously by Cowley and Bunce (2001)
and Cowley et al. (2002, 2003), using the full current sheet
field model shown in Fig. 4. One minor difference is that in
the numerical solutions the total equatorial (and ionospheric)
current rises with increasing distance to a maximum value
slightly above 8πF∞6∗

P �J before falling with decreasingF

to the latter value at infinity, rather than following the strictly
monotonically rising behaviour of the approximation. Cor-
respondingly, the field-aligned current in the numerical so-
lutions reverses to small negative values (given by Eqs. 10e
and f) at large radial distances (and hence, close to the pole-
ward boundary in the ionosphere), rather than going to zero
as in the approximation (Fig. 7f), though the net current clo-
sure is small. However, for the range of system parameters
considered here, the maximum in the total current and the
concurrent reversal of the field-aligned current typically take
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place at equatorial distances of several hundred to several
thousand RJ, far beyond the limit of physical applicability
of the model. Within the region of applicability, the agree-
ment between the numerical and approximate analytic results
is found to be very good.

In like manner to the dipole results, the normalised so-
lutions given above show how the form and amplitude of
the plasma angular velocity and currents vary with the sys-
tem parameters in the case of a power law current sheet
field. Equations (27) and (29) show that the solutions scale
spatially in the equatorial plane and in the ionosphere as
ρe ∝ (6∗

P /Ṁ)1/m and1ρi ∝ (6∗

P /Ṁ)1−2/m, respectively,
while Eq. (34) shows that the amplitude of each compo-
nent of the current system scales as some power of6∗

P

and Ṁ of the same form as Eq. (22), but withγ equal to
1–2/m for the equatorial radial current, 1 for the Pedersen
current and azimuth-integrated total field-perpendicular cur-
rent (such that these currents scale linearly with6∗

P and are
independent ofṀ), and 3–4/m for the field-aligned current
density. Since these values ofγ are consistently higher for
a given current component for the current sheet model than
for the dipole (at least form > 2, as investigated here), the
implication is that the currents scale as a somewhat higher
power of the conductivity for the current sheet model than for
the dipole, and as a somewhat lower power of the mass out-
flow rate. The corresponding behaviours at small and large
distances, such that the solutions obey Eqs. (9) and (10), are

iS ∝ Ṁρ
m
2 (1+γ )

e ∝
Ṁ

1ρ
(m(1+γ )/2(m−2))

i

(35a)

and

iL ∝
6∗

P

ρ
m(1−γ )/2
e

∝ 6∗

P 1ρ
(m(1−γ )/2(m−2))

i , (35b)

as can be verified by substituting the appropriate approxi-
mations (‘S’ and ‘L’) for the angular velocity into Eq. (34).
Thus, for example, withγ = 1–2/m, the equatorial radial
current increases asρm−1

e in the inner region and falls as
ρ−1

e at large distances, while the field-aligned current with

γ = 3–4/m grows asρ2(m−1)
e in the equatorial plane in the in-

ner region and approaches zero in this approximation at large
distances, as indicated above (Figs. 7e, f). The spatial vari-
ation of the field-aligned current in the large-distance limit
may then be obtained from the higher-order large-distance
approximation (Eq. 33), from which it is found that the
current varies asρ−(4−m)

e in the equatorial plane, and as
1ρ

(4−m)/(m−2)
i in the ionosphere.

5 Comparison of system behaviour for the dipole and
current sheet field models

In this section we finally provide a summary and comparison
of how the major features of the plasma flow and coupling
current system vary with6∗

P andṀ for the dipole and cur-
rent sheet field models. Specifically, we consider the loca-
tion of corotation breakdown, the magnitudes and locations

of the peak values of the various current components, and the
latitudinal width in the ionosphere of the region of upward-
directed field-aligned current. With the exception of the latter
parameter, in effect we here provide plots showing how the
quantities in Tables 2 (for the dipole) and 4 (for the power
law field approximation) vary with6∗

P andṀ. We also com-
pare the approximate results for the current sheet field with
spot values obtained by numerical integration using the full
current sheet field.

Figure 8 shows how the spatial scale on which plasma
corotation breaks down depends on6∗

P andṀ for the two
models. Specifically, we show the position where(ω/�J ) =

0.5, as previously given in Tables 1–4. In Fig. 8a the equa-
torial distance is plotted versus6∗

P in log-log format for
Ṁ = 100, 1000 and 10 000 kg s−1, while in Fig. 8b it is
plotted versusṀ in similar format for6∗

P = 0.1, 1 and
10 mho. Solid lines give results for the dipole field ob-
tained from Eqs. (13) and (14), showing that the distance in-
creases with the conductivity as6∗1/4

P , and decreases with
the mass outflow rate aṡM−1/4. The dashed lines show
corresponding results obtained from the power law field ap-
proximate solutions Eqs. (27) and (28) (withm = 2.71 and
F0 ≈3.22×104 nT R2

J as above), which, of course, are not
applicable to the full field model at distances smaller than
ρ∗

e ≈21.78 RJ. These increase more rapidly with6∗

P and

decrease more rapidly witḣM, as6
∗1/2.71
P and Ṁ−1/2.71,

respectively. Overall, however, the equatorial distances of
corotation breakdown are similar for the dipole and current
sheet fields as noted above, but are generally somewhat larger
for the current sheet model than for the dipole, particularly
for larger values of6∗

P and smaller values oḟM. The solid
dots in the figures provide spot values obtained by numerical
integration of the full current sheet solution, their close as-
sociation with the dashed lines clearly indicating the values
of Ṁ (in Fig. 8a) and6∗

P (in Fig. 8b) employed. This close
association also confirms that the analytic solutions provide
good approximations to the numerical results in the power
law regime over essentially the whole parameter range con-
sidered here. The only notable deviations occur at small6∗

P

and largeṀ, where corotation breakdown occurs at equato-
rial distances approaching the radial limit of the power law
field region atρ∗

e ≈21.78 RJ. In this case the numerical re-
sults give somewhat larger distances than the analytic ap-
proximation, as also seen in Fig. 5. Corresponding results
projected to the ionosphere are shown in Figs. 8c and 8d, in
a similar format. The horizontal dotted line atθi ≈14.95◦

shows the co-latitude of the current sheet field line from in-
finity (the corresponding limit for the dipole being, of course,
the pole atθi = 0◦). These plots again emphasise the sig-
nificantly larger distance from the magnetic axis at which
plasma corotation breaks down in the ionosphere for the cur-
rent sheet field than for dipole, despite the similarity of the
equatorial results. They also display the relative lack of re-
sponse of this distance to the system parameters in the current
sheet model, this forming the basis of the “current sheet” ap-
proximationFe ≈ F0 employed to obtain the analytic results
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Fig. 8. Plots showing the location of plasma corotation breakdown, specifically where(ω/�J ) = 0.5, and its dependence on the system
parameters6∗

P
andṀ. Plot (a) shows the equatorial distance at which(ω/�J ) = 0.5 versus6∗

P
in log-log format forṀ = 100, 1000 and

10 000 kg s−1, while (b) shows this distance similarly plotted versusṀ for 6∗
P

= 0.1, 1 and 10 mho. Solid lines give results for the dipole
field obtained from Eqs. (13) and (14), while the dashed lines show corresponding results derived from the power law field approximate
solutions for the current sheet model Eqs. (27) and (28). The solid dots provide spot values obtained from numerical integration of the full
current sheet solution, whosėM (in (a)) and6∗

P
(in (b)) values are obvious from their close association with the corresponding dashed lines.

Corresponding plots of the ionospheric co-latitude at which(ω/�J ) = 0.5 are shown versus6∗
P

andṀ in (c) and(d). The horizontal dotted
line shows the latitude of the field line from infinity in the current sheet field model.

in Sect. 4.

Turning now to the current components, in Fig. 9 we show
the behaviour of the peak Pedersen current, plotted in a
similar format to Fig. 8. The magnitude of the peak cur-
rent, plotted versus6∗

P andṀ in Figs. 9a and 9b, respec-
tively, shows that for the dipole (solid lines) the peak Peder-
sen current increases with the conductivity as6

∗7/8
P , while

also increasing weakly with the mass outflow rate asṀ1/8

(Eq. (21a)), while for the current sheet (dashed line) approx-
imations the peak current varies linearly with6∗

P but is inde-
pendent ofṀ (Eq. (34a)). The modestly lower numerically-
determined spot values in the latter case result from our tak-

ing F0 = Fe(ρe = 70RJ ) in the approximation, as above.
Very close agreement would have been obtained if we had
instead takenF0 = F∞. These plots also show that for given
system parameters the peak Pedersen current for the current
sheet model exceeds that for the dipole by relatively constant
factors of∼3 to ∼5 (typically ∼4). This difference arises
from the different ionospheric mappings of corotation break-
down, as shown in Figs. 8c and 8d. Figures 9c and 9d show
the co-latitude of the peak Pedersen current, which for the
dipole field lies typically at∼5◦ and is such that the distance
from the magnetic axis varies with the system parameters as
6

∗−1/8
P andṀ1/8 (Eq. 16), while for the current sheet ap-
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Fig. 9. Plots showing the magnitude and location of the peak height-integrated Pedersen current intensity in the ionosphere, and their
dependence on6∗

P
andṀ. Plot (a) shows the magnitude of the peak Pedersen current plotted versus6∗

P
in log-log format forṀ = 100,

1000 and 10 000 kg s−1, while plot (c) show the ionospheric location of the peak. Plots(b) and (d) similarly show the magnitude and
location of the peak Pedersen current plotted versusṀ for 6∗

P
= 0.1, 1 and 10 mho. Solid lines give results for the dipole field obtained

from Eq. (21a), while the dashed lines show corresponding results derived from the approximate solutions for the power law current sheet
field given by Eq. (34a). The solid dots show spot values obtained from numerical integration using the full current sheet solution. For the
case of the current sheet approximation the peak current depends only on6∗

P
and not onṀ, so that only one dashed line is shown in plot

(a), valid for allṀ. The peak current in this case always occurs at the poleward boundary of the current sheet field lines, as indicated by the
horizontal dotted lines at∼14.95◦ in plots (c) and (d).

proximation it is located consistently at the poleward bound-
ary of the current sheet field lines at∼14.95◦, (dotted line)
where the plasma angular velocity falls to zero. The numeri-
cally computed positions are located at a slightly higher co-
latitude, typically by∼0.1◦, like the total field-perpendicular
current mentioned above. In practical application the peak
current will thus be limited instead by the radial extent of the
region to which the model is taken to apply, with the peak
value occurring at its outer (poleward) boundary.

Figure 10 similarly provides results for the peak equato-
rial radial current, a parameter which relates directly to the

magnitude of the azimuthal magnetic field outside of the cur-
rent sheet (Fig. 1) (Bϕ(nT) ≈0.63iρ(mA m−1)). Figures 10a
and b show that for the dipole field the peak current varies
as6

∗1/2
P andṀ1/2 (Eq. (21c)), while for the current sheet

approximation it varies more strongly with the conductivity
as6

∗1.71/2.71
P , and less strongly with the mass outflow rate

asṀ1/2.71 (Eq. 34c). The values given by the numerical in-
tegrations are in close agreement with the latter. The current
sheet values are again higher than the dipole values by factors
of ∼3 to ∼5 (typically ∼4), for reasons given above. Fig-
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(d)

Fig. 10. Plots showing the magnitude and location of the peak sheet-integrated equatorial radial current intensity, and their dependence on
6∗

P
andṀ. Plot (a) shows the magnitude of the peak current versus6∗

P
in log-log format forṀ = 100, 1000 and 10 000 kg s−1, while plot

(c) shows the corresponding equatorial location of the peak in a similar format. Plots(b) and(d) similarly show the magnitude and location
of the peak current versuṡM for 6∗

P
= 0.1, 1 and 10 mho. Solid lines give results for the dipole field obtained from Eq. (21c), while the

dashed lines show corresponding results derived from the approximate solutions for the power law current sheet model given by Eq. (34c).
The solid dots show spot values obtained from numerical integration of the full current sheet solution.

ures 10c and d show that the equatorial distance of the peak
is typically located at∼50 RJ for the dipole model, vary-
ing with the system parameters as6

∗1/4
P andṀ−1/4, while

for the current sheet approximation it is generally located at
somewhat larger distances∼90 RJ, and varies more strongly
as6

∗1/2.71
P and Ṁ−1/2.71. The positions given by the nu-

merical integrations are again in close agreement with the
latter, except for small6∗

P and largeṀ, where the position
of the peak approachesρ∗

e ≈ 21.78 RJ. In fact for small6∗

P

and largeṀ, the peak current in the numerical solutions lies
consistently atρ∗

e , where the field models are joined. Such
points are omitted from the plots. At large distances the ra-

dial regime of applicability is again limited, such that the
peak radial currents will actually occur at the outer bound-
ary of the region for sufficiently large6∗

P and/or sufficiently
smallṀ, as can be determined from the position of the peak
in Figs. 10c and d.

Results for the magnitude and location of the peak
azimuth-integrated total equatorial radial current, equal, of
course, to twice the peak azimuth-integrated total Pedersen
current in each conjugate ionosphere, are shown in Fig. 11.
Figures 11a and b show that the magnitude of the peak cur-
rent for the dipole field increases with the conductivity as
6

∗3/4
P , and less strongly with the mass outflow rate asṀ1/4
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Fig. 11. Plots showing the magnitude and location of the peak azimuth-integrated total equatorial and ionospheric currents, and their
dependence on6∗

P
andṀ. Plot(a) shows the magnitude of the peak total equatorial radial current (equal to twice the peak total ionospheric

Pedersen current) versus6∗
P

in log-log format forṀ = 100, 1000 and 10 000 kg s−1, while plots (c) and (e) show the corresponding
equatorial and ionospheric locations of the peak in a similar format. Plots(b), (d) and (f) similarly show the magnitude and location of
the azimuth-integrated peak total current versusṀ for 6∗

P
= 0.1, 1 and 10 mho. Solid lines give results for the dipole field obtained from

Eqs. (21b, d), while the dashed lines show corresponding results derived from the approximate solutions for the power law current sheet
model given by Eqs. (34b, d). The peak total current in the latter model is independent ofṀ, so that only one dashed line is shown in (a). It
occurs at infinity in the equatorial plane so that no dashed lines are shown in (c) and (d), or equivalently at the poleward boundary of current
sheet field lines in the ionosphere at∼14.95◦ as shown in (e) and (f) (dotted line). The solid dots show spot values obtained from numerical
integration of the full current sheet solution. In this case the peak values occur at large but finite distances such that only the closest of them
are included in (c) and (d).
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Fig. 12.Plots showing the magnitude, location and half-width of the peak upward-directed field-aligned current density, and their dependence
on 6∗

P
and Ṁ. Plot (a) shows the magnitude of the peak total current density versus6∗

P
in log-log format forṀ = 100, 1000 and

10 000 kg s−1, where the left-hand scale shows the peak current density in the ionosphere, while the right-hand scale shows the peak(j‖/B)

value, simply related to the latter via Eq. (5b). Solid lines give results for the dipole field obtained from Eqs. (21e ,f), while the dashed lines
show corresponding results derived from the approximate solutions for the power law current sheet model given by Eqs. (34e, f). The solid
dots show spot values obtained from numerical integration of the full current sheet solution. Plot(c) shows the corresponding location of the
peak(j‖/B) in the equatorial plane in a similar format, while plot(e) shows the conjugate location of the peak field-aligned current in the
ionosphere. Plots(b), (d), and(f) similarly show the magnitude and equatorial and ionospheric locations of the peak current density versus
Ṁ for 6∗

P
= 0.1, 1 and 10 mho. Plots(g) and(h) show the latitudinal width of the upward field-aligned current region in the ionosphere in

a similar format, defined as the full width at half maximum.
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(Eqs. 21b, d), while for the current sheet approximation it is
linearly proportional to6∗

P and independent oḟM (Eqs. 34b,
d). The numerical values shown by the dots in the latter case
are a little lower than the dashed line approximation for rea-
sons given above for the Pedersen current. The value of the
peak current is a factor of∼5 to ∼20 (typically∼10) larger
for the current sheet than for the dipole. The location of the
peak in the equatorial plane (where the field-aligned current
passes through zero), is shown in Figs. 11c and d. It is located
typically at∼90 RJ for the dipole field, scaling as6∗1/4

P and
Ṁ−1/4, but occurs at infinity for the current sheet approxi-
mation (such that no dashed lines are shown in Figs. 11c and
d), or, in other words, at the outer boundary of the relevant
region in practical application. The peak value in the numer-
ical curves, shown by the dots, occurs at large but finite ra-
dial distance, as mentioned above, typically well beyond the
region of physical applicability (∼500 to∼5000 RJ). Only
the closest of them (for small6∗

P and largeṀ) are included
in Figs. 11c and d. The corresponding location of the peak
azimuth-integrated Pedersen current in the conjugate iono-
sphere is shown in Figs. 11e and f. It is located typically
at ∼6◦ for the dipole field, scaling as6∗−1/8

P andṀ1/8 as
before, but for the current sheet it is located consistently at
(for the approximation) or near (for the numerical values) the
poleward boundary of the current sheet field lines at∼14.95◦

(dotted line).

Figure 12 shows results for the upward-directed field-
aligned current density, a parameter of relevance to the ori-
gins of the jovian auroras. The magnitude of the peak upward
current is shown in Figs. 12a and 12b in a similar format to
the above, where, sincej‖i and (j‖/B) are simply related
through the constant factor 2BJ in the approximation for the
ionospheric magnetic field employed here (Eq. 5b), one plot
serves the purpose of both parameters according to the left-
and right-hand scales. These plots show that for the dipole
field the peak upward current density depends linearly on6∗

P

and is independent oḟM (Eqs. 21e, f), while for the current
sheet approximation it increases somewhat more rapidly with
the conductivity as6∗3.42/2.71

P (i.e. as∼ 6∗1.26
P ), while de-

creasing slowly with the mass outflow rate asṀ−0.71/2.71

(Eqs. 34e, f). The latter values agree well with those ob-
tained from numerical integration, and exceed those obtained
for the dipole field by factors of∼10 to ∼50 (typically by
∼25). The position of the peak value of (j‖/B) in the equa-
torial plane is shown in Figs. 12c and d. It lies typically at
distances of∼50 RJ for the dipole field and varies as6∗1/4

P

and Ṁ−1/4, while lying at larger typical distances beyond
∼100 RJ for the current sheet model and varies as6

∗1/2.71
P

andṀ−1/2.71. The position of the peak field-aligned current
density in the ionosphere is shown in Figs. 12e and f. For the
dipole it lies typically at a co-latitude of∼8◦ and scales in
distance from the magnetic axis as6

∗−1/8
P andṀ1/8, while

for the current sheet model it lies just equatorward of the
boundary of current sheet field lines, with variations which
are in the same sense as for the dipole, but with amplitudes

which are much smaller. In Figs. 12g and h we finally show a
measure of the latitudinal width of the region of upward field-
aligned current, potentially related to the latitudinal width of
associated jovian auroras, plotted versus6∗

P andṀ, respec-
tively. The width of the upward current given here is the full
width at half maximum. The solid and dashed lines show
results for the dipole and power law current sheet approxi-
mation, respectively. The results were derived from the fact
that in the equatorial plane the value of (j‖/B) reaches half
its peak positive value for the dipole field at normalised ra-
dial distances (ρe/RDe) of ∼0.629 and∼1.470 (see Fig. 3e),
while for the power law current sheet approximation the cor-
responding values of (ρe/RCSe) are∼0.940 and∼8.337 (see
Fig. 7e). The dots again show spot values obtained numer-
ically using the full current sheet field. It can be seen that
the width for the dipole field is typically∼3◦–5◦, decreasing
modestly with increasing6∗

P and increasing modestly with

increasingṀ (as6
∗−1/8
P andṀ1/8, respectively). For the

current sheet model the thickness is reduced to∼0.5◦–1.5◦

(less if the system is limited in radial distance), varying in
the above manner more strongly with the system parameters
(as∼ 6∗−0.26

P and∼ Ṁ0.26 ).

6 Summary

In this paper we have considered the steady-state proper-
ties of the magnetosphere-ionosphere coupling current sys-
tem that flows in Jupiter’s middle magnetosphere, associ-
ated with the enforcement of partial corotation on outward-
flowing plasma from the Io torus. The solutions depend on
the values of two parameters, the effective Pedersen con-
ductivity of the jovian ionosphere6∗

P , and the mass out-
flow rate of iogenic plasmȧM, these being taken to be con-
stants. However, their values remain uncertain at present,
thus prompting the study presented here of how the solutions
depend on these parameters over wide ranges of the latter.
We have also focussed on two models of the magnetospheric
poloidal field, taken for simplicity to be axisymmetric. The
first is the planetary dipole alone, which constitutes an in-
structive paradigm. Some general results for this case have
previously been given by Hill (1979, 2001). Here we have
provided a complete analytic solution for this case, show-
ing how the plasma angular velocity and current components
scale in space and in amplitude with6∗

P andṀ. We find that
the plasma angular velocity and current components scale
in equatorial radial distance as(6∗

P /Ṁ)1/4, as found pre-
viously by Hill (and correspondingly as(6∗

P /Ṁ)1/8) in the
ionosphere), while each current component scales in ampli-
tude as(6∗(1+γ )/2

P Ṁ(1−γ )/2, whereγ has a particular value
for each component. The scales in space and amplitude then
combine to produce current values which depend only onṀ

at a fixed position at small radial distances, and only on6∗

P at
a fixed position at large radial distances, these dependencies
then requiring current variations at small and large distances
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with particular powers of the distance, asρ
2(1+γ )
e at small

distances, and asρ−2(1−γ )
e at large distances.

These results provide useful background for the second,
more realistic field model, based on Voyager data, in which
the equatorial field strength is significantly less than for the
dipole field due to the radial distension of the middle mag-
netosphere field lines, and is taken to vary with distance as a
power lawρ−m

e . Solutions for a few spot values of6∗

P and
Ṁ have previously been presented by Cowley et al. (2002,
2003), obtained by numerical integration of the correspond-
ing Hill-Pontius equation. Here we have derived an analytic
approximation, applicable to the power law regime, which
shows how the plasma angular velocity and current compo-
nents scale with6∗

P andṀ in this case. We find that these
solutions provide accurate approximations to the full numeri-
cal results within the power law regime (roughlyρe > 20 RJ)
over very wide ranges of the system parameters, provided
(6∗

P /Ṁ) is not too small (∼10−4 mho s kg−1 or larger). The
results show that the conclusions concerning the nature of the
current sheet solutions, and their relation to the dipole solu-
tions, which were drawn previously on the basis of a lim-
ited number of numerical investigations are generally valid
over wide ranges of the parameters. In particular, it has been
shown that in the current sheet model the field-aligned cur-
rent flows unidirectionally outward from the ionosphere into
the current sheet over the whole current sheet, in all cases
of interest. The closure of this current must then occur on
field lines at higher latitudes which map to the outer mag-
netosphere and tail, which are not described by the present
theory. This situation contrasts with the dipole model, in
which (at least in principle) all the flux in the system is de-
scribed by the theory, such that complete current closure oc-
curs between the equator and the pole. The results for the
power law current sheet show that the plasma angular veloc-

ity and currents now scale in radial distance as(6∗

P /Ṁ)
1/m

,
while each current component again scales in amplitude as
6

∗(1+γ )/2
P Ṁ(1−γ )/2, where the values ofγ for each compo-

nent exceed those of the corresponding component for the
dipole field (at least form > 2 as considered here). The cur-
rent components thus scale as a somewhat higher power of
6∗

P for the current sheet than for the dipole, and as a some-
what lower power ofṀ. These scales in space and amplitude
again combine to produce current values which depend only
on Ṁ at a fixed position at small radial distances, and only
on at a fixed position at large radial distances (both being
general properties of the solutions), these dependencies then
requiring current variations asρm(1+γ )/2

e at small distances,
and asρ−m(1−γ )/2

e at large distances. The absolute values of
the currents are also higher for the current sheet model than
for the dipole, by a factor of∼4 for the Pedersen and equato-
rial currents,∼10 for the total current flowing in the circuit,
and∼25 for the field-aligned current densities. These fac-
tors do not vary greatly over the range of system parameters
considered here.
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