
Annales Geophysicae (2002) 20: 585–598c© European Geophysical Society 2002
Annales

Geophysicae

Aeronomy, a 20th Century emergent science: the role of solar
Lyman series

G. Kockarts
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Abstract. Aeronomy is, by definition, a multidisciplinary
science which can be used to study the terrestrial atmosphere,
as well as any planetary atmosphere and even the interplan-
etary space. It was officially recognized in 1954 by the In-
ternational Union of Geodesy and Geophysics. The major
objective of the present paper is to show how aeronomy de-
veloped since its infancy. The subject is so large that a guide-
line has been chosen to see how aeronomy affects our atmo-
spheric knowledge. This guideline is the solar Lyman alpha
radiation which has different effects in the solar system. Af-
ter a short description of the origins of aeronomy the first ob-
servations of this line are summarized since the beginning of
the space age. Then the consequences of these observations
are analyzed for the physics and chemistry of the neutral ter-
restrial atmosphere. New chemical processes had to be in-
troduced, as well as new transport phenomena. Solar Lyman
alpha also influences the structure of the Earth’s ionosphere,
particularly the D-region. In the terrestrial exosphere, solar
Lyman alpha scattered resonantly by atomic hydrogen is at
present the only way to estimate this constituent in an almost
collisionless medium. Since planetary atmospheres also con-
tain atomic hydrogen, the Lyman alpha line has been used to
deduce the abundance of this constituent. The same is true
for the interplanetary space where Lyman alpha observations
can be a good tool to determine the concentration. The last
section of the paper presents a question which is intended to
stimulate further research in aeronomy.

Key words. Atmospheric composition and structure (mid-
dle atmosphere – composition and chemistry; thermosphere
– composition and chemistry) – history of geophysics (atmo-
spheric sciences)

1 Origins

The word “Aeronomy” has been coined by the great geo-
physicist Sidney Chapman. It can be defined as the science
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dealing with atmospheric regions where photodissociation
and ionization processes play a role.

It was officially introduced during the 1954 General As-
sembly of the International Union of Geodesy and Geo-
physics (IUGG) in Rome. During this assembly the Interna-
tional Association of Magnetism and Electricity changed its
name to become the International Association of Geomag-
netism and Aeronomy. This official recognition of the term
does not imply that no researchers were involved in aeron-
omy before that time. There have always been precursors in
any science before the adoption of a specific name. During
the ancient times, a human being observing the sky and try-
ing to understand what he or she noticed was perhaps doing
astronomy, meteorology or even aeronomy without knowing
that she or he was a pioneer in one of these sciences now
recognized by the scientific community.

At the beginning of the 20th Century, several authors made
computations for the atmospheric composition (Hann, 1903;
Humphreys, 1910; Wegener, 1911; Chapman and Milne,
1920; Jeans, 1925), including nitrogen, oxygen, argon, car-
bon dioxide, hydrogen, neon and helium. As noted by Jeans
(1925), all these calculations assume that the terrestrial at-
mosphere is composed of two layers, one with an adiabatic
regime up to approximately 11 km at mid-latitude and one
with a constant temperature above that height. This was
a consequence of observations available at that time. We-
gener (1911) even introduced a hypothetical monoatomic
constituent, called geo-coronium with a mass of 0.4 amu, in
order to explain an unknown line in the auroral spectrum.
This hypothesis was refuted by Chapman and Milne (1920),
since the existence of such super light constituent would im-
ply an escape flux so high that the constituent should disap-
pear from the atmosphere. A historical, vertical distribution
of the atmospheric composition is given in a table by Chap-
man and Milne (1920).

Figure 1 shows a graphical representation of these compu-
tations. It is clearly seen that the atmosphere is divided in two
regions. Up to 20 km constituents are in perfect mixing and
above that height molecular diffusion leads to a separation
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Fig. 1. Vertical distribution of volume mixing ratios computed by
Chapman and Milne (1920).

of the atmospheric constituents according to their molecu-
lar mass. Although the altitude where diffusion begins is
not correct, this figure demonstrates the concept of the dif-
ferent dynamical regimes between two regions now called
the homosphere (perfect mixing) and the heterosphere (dif-
fusive equilibrium). This example shows that Chapman and
Milne (1920) already did excellent aeronomical work before
the name “Aeronomy” was coined by Sidney Chapman.

In the present paper, I take the solar Lyman series as a
guideline to show the multidisciplinary aspects of aeronomy,
since a complete overview of this science would require sev-
eral books. A reminder of the Lyman series is given in Sect. 2
and the first observations, as well as recent refinements, are
described in Sect. 3. Then some implications for the neutral
atmosphere are discussed in Sect. 4, and Sect. 5 indicates that
the Lyman series also plays a significant role in the ionized
part of our atmosphere. Knowledge of the outermost part
of the atmosphere, i.e. the exosphere benefits from observa-
tions of the Lyman series, is shown in Sect. 6. Aeronomy is
not limited to the terrestrial atmosphere, and it can lead to
information for other planets and for the whole solar system.
Aeronomy is still a science where important progress is on-
going. Therefore, a short sketch of its future is given in the
last section. Younger scientists should not believe that every-
thing has been done. There is plenty of work for the future
and I am convinced that with imagination and skill, many
surprises will arise in the 21th Century.
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Fig. 2. Energy level diagram for atomic hydrogen.

Although the reference list at the end of the present pa-
per is far from being exhaustive, I should mention that sev-
eral books contain the word aeronomy in their title, namely
Whitten and Poppoff (1971), Banks and Kockarts (1973a),
Banks and Kockarts (1973b), Brasseur and Solomon (1986),
Tohmatsu (1990), and two books in French, Lilensten and
Blelly (1999) and Kockarts (2000). There are many books
dealing with aeronomy without mentioning this word in their
title. Among those, three excellent books (Chamberlain and
Hunten, 1987; Rees, 1989; Schunk and Nagy, 2000) will pro-
vide their readers with fundamental information. This does
not imply that all other books are useless.

2 What is the Lyman series?

At the beginning of the 20th Century, the development of
quantum mechanics led quickly to the concept of energy lev-
els in atomic spectra. Atomic hydrogen, the most simple ele-
ment of the periodic table, could be treated analytically since
this atom is composed of a single electron and a single pro-
ton. However, laboratory spectroscopy could not be done for
wavelengths shorter than 125 nm since they are absorbed by
fluorite CaF2. Lyman (1914), nevertheless, used a concave
diffraction grating and discovered two lines, respectively, at
121.6 nm and 102.6 nm of a spectral series now called the
Lyman-series. Figure 2 shows a Grotrian energy level dia-
gram of the Lyman series. Wavelengths are taken from Wiese
et al. (1966). It should be noted that a typographical error
occurs in their Table A for the wavelength Lyman-γ , where
79.2537 nm should be read as 97.2537 nm. The Lyman series
is entirely in the far ultraviolet part of the solar spectrum and
this radiation cannot reach the ground level as a consequence
of atmospheric absorption. However, the solar Lyman-β line
can be absorbed by terrestrial hydrogen and through fluores-
cence and scattering can lead to emission of the Hα line,
which is the first line of the Balmer series also shown on
Fig. 2. This line at 656.3 nm is visible and can be observed
from ground level. Herzberg (1927) made a detailed exper-
imental study of the whole Balmer series and photographic
plates XIII to XV can be seen at the end of volume 84 of
Annalen der Physik. One plate is reproduced in Herzberg
(1944).
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Anderson et al. (1987) used a spherical radiative transfer
model to study the intensity and to deduce the hydrogen con-
tent independent of solar flux, as well as high-altitude distri-
butions of atomic hydrogen. They noted a discrepancy of the
order of a factor two between observed intensities and model
results. This problem has been recently analyzed and solved
by Bishop et al. (2001), using a nonisothermal Lyman-β ra-
diative transport code with updated Lyman-β fluxes and cor-
rected atomic hydrogen profiles in the thermosphere.

The fundamental mechanisms are rather simple and can be
summarized as

H(1) + Ly-α → H(2) → H(1) + Ly-α (1)

H(1) + Ly-β → H(3) → H(1) + Ly-β. (2)

These are two resonance mechanisms, since the absorbed
wavelength is identical to the emitted wavelength. The
numbers in parentheses indicate the energy levels shown on
Fig. 2. Lymanβ can also lead to another mechanism

H(1) + Ly-β → H(3) → H(2) + H-α. (3)

This is a fluorescence mechanism, since the emitted wave-
length (H-α) is longer than the absorbed wavelength (Ly-β).
So there must be a branching ratio between process (2) and
process (3). Bishop et al. (2001) used 0.12 for process (3) in
their detailed analysis of the H-α line.

3 First observations and recent refinements

The Lyman series is entirely in the far ultraviolet region of
the solar spectrum. Therefore, it cannot be observed from
ground level since stratospheric, mesospheric and thermo-
spheric constituents are able to absorb it completely. This
fact is illustrated in Fig. 3, which gives the altitude where unit
optical depth is reached for two solar zenith angles as a func-
tion of wavelength. Such a figure is completely independent
of the solar irradiance. It only depends on absorption cross
sections and the abundances of the atmospheric species. One
can see that Lyman-α deeply penetrates into the mesosphere
as a result of the very low absorption cross section of molec-
ular oxygen. Still, aeronomy had to wait for rocket experi-
ments leading to measurements of solar radiation in the far
ultraviolet.

The first solar spectrum below 340 nm was obtained by
Baum et al. (1946) with a spectrograph mounted on a V-2
rocket. The rocket reached an altitude of 160 km, but un-
fortunately, above 88 km the rocket turned the spectrograph
away from the Sun. Although the instrument was capable
of measuring down to 110 nm, the obtained spectra showed
lines between 340 nm and 210 nm. Lyman-α could not be
seen above 100 km. This pioneering observation by the US
Naval Research Laboratory opened the door for many other
flights, which contributed significantly to our knowledge of
the solar far ultraviolet region. Using a grazing-incident
spectrograph mounted on an Aerobee rocket, Rense (1953)
observed the solar Lyman-α line at an altitude of 81 km. This
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Fig. 3. Altitude where optical depthτ = 1 for solar zenith angles
χ = 0◦ and 80◦.

was the first experimental evidence that this radiation can
penetrate in the ionospheric D-layer.

Tousey et al. (1964) observed the solar spectrum with two
spectrographs on an Aerobee-Hi rocket launched on 22 Au-
gust 1962. One spectrograph covered the wavelength range
200 to 120 nm and the other one observed between 125 and
80 nm. This flight led Tousey et al. (1965) to identify many
lines in the spectrum. It is remarkable that 30 years later,
Meier (1995) could use these photographic plates to recon-
struct solar line profiles and line widths.

The experimental methods, based on film detection, were
affected essentially by the high sensitivity to stray light, by
the absence of time resolution and by the necessity for film
recovery. These limitations were overcome by the use of
photo-electric spectrometers (Hinteregger, 1960) for which
data are telemetered to the ground level. This technique has
been implemented on many satellites. As an example, Fig. 4
gives the irradiance measured by the Upper Atmosphere Re-
search Satellite (UARS) on 28 February 1992 (London et al.,
1993; Rottman, 1999). Several features can be seen in this
figure. First, the solar Lyman-α line at 121.6 nm is by far
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Fig. 4. Solar irradiance as a function of wavelength.

the most intense line in the EUV spectral range. Second, the
magnesium doublet line Mg II, as absorption self-reversed
lines around 280 nm, is clearly seen. This doublet line is
used to construct the Mg II index for modeling solar activity
effects on the irradiance (Viereck and Puga, 1999) and Thuil-
lier and Bruinsma (2001) showed that this index can also be
used for semi-empirical atmospheric models instead of the
usual 10.7 cm solar decimetric flux. Third, the dashed curves
correspond to the irradiance computed for solar black body
temperatures indicated on each curve. It is obvious that a sin-
gle black body temperature cannot be used for wavelengths
smaller than 400 nm. Continuous space-borne measurements
are, therefore, required to comprehend solar activity varia-
tions. While such an ideal situation cannot be obtained, sev-
eral efforts have been made to model such effects. A huge
project called SOLAR2000 is under development (Tobiska
et al., 2000) to compute solar irradiance from 1 nm to 106 nm
for any level of solar activity. In their presentation, Tobiska
et al. (2000) give all references for past, present and future
data and models included in this semi-empirical model for
solar irradiance. This ambitious program should extend to
the year 2030. Figure 5 is computed with the model of To-
biska et al. (2000). It gives presently the daily solar irradi-
ance from 1947 to 2000. Although it extends over periods
where no measurements are available, it provides an efficient
tool for studying solar activity effects. The 11-year solar cy-
cle is clearly visible. Furthermore, at all solar minima, the
daily solar irradiance is of the order of 3.5×1011 photons
cm−2 s−1. However, at solar maximum, the irradiance can be
very different from one cycle to an other. Although there are
many values for Lyman-α solar irradiance in Tobiska et al.
(2000), only a few accurate profiles of this line are available.
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Fig. 6. Lyman-α profile (Lemaire et al., 1978) and O2 absorption
cross Sect. (Lewis et al., 1983) for 203 K.

Figure 6 shows such a profile measured by Lemaire et al.
(1978), as well as the molecular oxygen absorption cross sec-
tion measured by Lewis et al. (1983). One sees that adopting
a constant cross section over the line width is not appropriate
for aeronomy calculations. This problem has been discussed
by Chabrillat and Kockarts (1997) with a parameterization
of the line profile by three Gaussian functions. The conse-
quences will be summarized in Sect. 4. However, the line
profile in Fig. 6 corresponds to a minimum of solar activity
for which the absolute values of Lemaire et al. (1978) have
been rescaled to a total irradiance of 3×1011 photons cm−2

s−1. Further measurements are still required to analyze the
evolution of this profile with solar activity. Figure 6 indi-
cates that the line profile has two components. One reflects
the solar reversal resulting from atomic hydrogen in the solar
atmosphere, the other corresponds to geocoronal absorption
by terrestrial atomic hydrogen. The position of the deuterium
Lyman-α line falls on the blue wing of the atomic hydrogen
line. This line is, therefore, extremely difficult to detect with
conventional spectrometers.
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4 Implications for atmospheric neutral physics and
chemistry

The presence of the deep minimum in the Lyman-α line pro-
file shown on Fig. 6 is a clear proof that atomic hydrogen
should play a significant role in the terrestrial atmosphere.
The question is to know where that atomic hydrogen comes
from. Figure 1 shows no atomic hydrogen, since Chapman
and Milne (1920) did not consider photochemical reactions
in their model.

4.1 Contribution of aeronomy to atmospheric photochem-
istry

However, Chapman (1930) published his famous mechanism
for the formation of ozone O3 corresponding to the following
processes. First, a photodissociation of molecular oxygen for
wavelengths shorter than 242.4 nm

O2 + hν → O + O coefficient J2
(
s−1

)
(4)

allows for ozone to be formed by the reaction

O2 + O + M → O3 + M k1

(
cm6s−1

)
. (5)

In the lower thermosphere atomic oxygen becomes important
and the three-body reaction

O + O + M → O2 + M k2

(
cm6s−1

)
(6)

is then able to compete with ozone formation.
Ozone can also be photodissociated in the UV, visible and

infrared part of the solar spectrum

O3 + hν → O2 + O coefficient J3
(
s−1

)
(7)

or it can react with atomic oxygen

O3 + O + M → 2O2 + M k3

(
cm3s−1

)
. (8)

The Chapman mechanism is presently included in any atmo-
spheric model dealing with chemistry. Although the rate co-
efficients were not available at the time of the paper by Chap-
man (1930), they can be found in compilations like DeMore
et al. (1997). This critical evaluation of hundreds of reac-
tions is a clear indication of the impact given by aeronomy to
laboratory studies.

Photodissociation absorption cross sections are also re-
quired to implement Chapman’s mechanism in an atmo-
spheric model. As an example, Fig. 7 shows absorption cross
sections for the principal constituents attenuating the incom-
ing solar radiation. One should note that ozone can be pho-
todissociated over the whole spectral range, including the
visible and infrared part in the Chappuis bands. Molecular
oxygen can only be photodissociated for wavelengths shorter
than 242.4 nm and it is photoionized for wavelengths shorter
than 102.7 nm. Although it is a major constituent, molecular
nitrogen does not appear in Fig. 7, since it is almost transpar-
ent in the whole spectrum. But it can be ionized for wave-
lengths shorter than 79.6 nm. On the upper part of Fig. 7, two
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Fig. 7. Photodissociation cross section for O2 and O3.

oblique arrows labeled SR show the extent of the Schumann-
Runge bands from 204 nm down to 175 nm. The cross sec-
tion is highly variable as a function of wavelength and tem-
perature, and the values shown in Fig. 7 are only indicative.
Numerical approximations have been developed by Kockarts
(1994), but they should not be used for computing NO pho-
todissociation, since this minor constituent is characterized
by numerous absorption lines in the wavelength region of the
Schumann-Runge bands. Minschwaner and Siskind (1993)
have developed a specific approximation for this case. It
should be noted that their subdivision of the solar spectrum
in small intervals does not correspond to the usually adopted
intervals of 500 cm−1. Another binning of the solar irradi-
ances is, therefore, required.

The position of our guide, the solar Lyman-α line, is also
indicated in Fig. 7 with a constant photodissociation cross
section of 10−20 cm2. As noted earlier, use of such a con-
stant cross section should be definitely abandoned (Chabrillat
and Kockarts, 1997), since it can lead to an underestimation
of the order of 20% for H2O photodissociation in the lower
mesosphere and more than 50% for CH4 photodissociation.

Depending on the value of the cross section and of the
wavelength, the photodissociation products can be in their
ground state or in an excited state. Sometimes quantum
yields, which can even be temperature dependent (DeMore
et al., 1997), play a significant role. In particular, production
of excited O(1D) atoms can lead to chemical reactions which
are negligible with atomic oxygen in its ground state O(3P).
Lacoursìere et al. (1999) measured and calculated the quan-
tum yield for O(1D) when molecular oxygen is photodissoci-
ated by Lyman-α. Their results shows that the quantum yield
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varies over the line profile with a weighted mean quantum
yield of 0.58±0.06. These results are a confirmation of the
necessity to take the line profile into account, as it has been
done by Chabrillat and Kockarts (1997).

Photodissociation computations require a good knowledge
of the absorption cross sections which can be temperature de-
pendendent. As an example, the upper panel of Fig. 8 shows
the absorption cross section for carbon dioxide measured by
Lewis and Carver (1983) for three temperatures. The curve
labelled “average” has been used to compute the CO2 pho-
todissociation coefficient in various spectral ranges indicated
in the lower panel of Fig. 8. One sees that Lyman-α gives the
major contribution in the mesosphere and that the Schumann-
Runge bands (SRB) are the only wavelength region acting for
a dissociation of CO2 in the stratosphere. The Schumann-
Runge continuum (SRC) provides the major contribution in
the thermosphere. These computations are made for an over-
head Sun. The distribution of CO2 in the middle atmosphere
is determined by molecular diffusion (see next subsection),
rather than by its loss through photodissoiation (Chabrillat,
2001). This process, nevertheless, should be accurately com-
puted, taking into account the Lyman-α solar profile and the
temperature dependence of the CO2 cross section, since this
photodissociation is the only source of CO in the middle at-
mosphere.

Bates and Nicolet (1950) introduced the effect of hydroxyl
radicals by considering photodissociation of water vapor

H2O + hν → H + OH. (9)

Although other channels are energetically possible below
200 nm, Slanger and Black (1982) showed that Eq. (9) is the
predominant channel at Lyman-α. Lewis et al. (1983) made
accurate measurements of the O2 and H2O absorption cross
sections, indicating that for molecular oxygen the cross sec-
tion is temperature dependent but not for water vapor. This
dependency is included in the parameterization developed by
Chabrillat and Kockarts (1997).

Once water vapor is photodissociated, Bates and Nicolet
(1950) considered the effect of the hydroxyl radicals. In par-
ticular, the following two reactions are a catalytic mechanism
for ozone destruction

H + O3 → OH(v ≤ 9) + O2 (10)

and

OH + O → O2 + H (11)

with a net result

O3 + O → O2 + O2. (12)

The OH radical produced by reaction (11) can be in a vi-
brationaly excited state up to vibrational levelv = 9. This
excited OH leads to the Meinel bands for which the strongest
bands appear around 1.5µm for 1v = 2. The intensity for
these transitions can reach 105 Rayleigh (Chamberlain and
Hunten, 1987). One Rayleigh corresponds to an omnidirec-
tional emission rate of 106 photons cm−2 s−1 in a column of
unit cross section along the line of sight.

4.2 Contribution of aeronomy to transport phenomena

Once atomic hydrogen is produced by photodissociation of
water vapor and to a lesser extent of methane, the only way
to increase its abundance with height must be due to trans-
port. All atmospheric constituents can be transported by
global phenomena, such as winds, advection and convec-
tion. These global phenomena are usually treated with hy-
drodynamic equations (Holton, 1972, 1975; Houghton, 1977;
Peixoto and Oort, 1992).

When specific movements are considered for each con-
stituent, one has to use conservation equations based on gas
kinetic theory (Chapman and Cowling, 1952; Hirschfelder et
al., 1954). The transport velocitywi for a constituenti can
be split into three terms

wi = viD + viK + v, (13)

whereviD is the molecular diffusion component,viK is the
turbulent diffusion component andv is the global transport
component which can be obtained from hydrodynamic equa-
tions. The first two components result from gas kinetic the-
ory. They are often neglected in climatological models.

In order to compute the concentrationni of a constituent
i, it is necessary to introduce the transport velocitywi in the
continuity equation

∂ni

∂t
+ div(niwi) = Pi − Li, (14)
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where t represents time andPi , Li are, respectively, the
chemical production and loss rates in cm−3 s−1 for con-
stituent i. Eqation (14) is suitable to see how atomic hy-
drogen can become an important constituent in the terrestrial
atmosphere. For reasons of simplicity it will be used in its
scalar, one-dimensional form along the vertical axis.

From gas kinetic theory (Chapman and Cowling, 1952), it
can be shown that the vertical component of the molecular
diffusion velocityviD is given by

viD = −Di × (
1

ni

∂ni

∂z
+

1

Hi

+
1 + αi

T

∂T

∂z
), (15)

whereT is the temperature at altitudez, ni is the concentra-
tion andHi = kT /mig is the scale height associated with
the partial pressure of constituenti, αi is the dimensionless
thermal diffusion factor (−0.38 for atomic hydrogen) andDi

is the molecular diffusion coefficient in cm2 s−1.
The molecular diffusion coefficient is often measured

(Mason and Marrero, 1970) and can be expressed under the
form

Di =
Ai × T s

n
, (16)

whereAi is a constant,s is of the order of 0.7 andn is the
total concentration. When there are no measurements for the
molecular diffusion coefficient, it can be estimated from gas
kinetic theory, assuming that the molecules behave like bil-
liard balls with specular reflection. An expression is given
by Banks and Kockarts (1973b) as

Di = 1.52× 1018
(

1

Mi

+
1

M

)1/2

×
T 1/2

n
, (17)

whereMi and M are, respectively, the mass of the minor
constituenti and the mean molecular mass in atomic mass
units.

Using Eq. (15) and assuming there is a constant escape
flux at the beginning of the exosphere, one obtains vertical
hydrogen distributions of the type shown in Fig. 9 (Kockarts
and Nicolet, 1962, 1963) The dashed lines on Fig. 9 show the
corresponding diffusive equilibrium whenviD is set to zero
in Eq. (15). Two important features can be noted in Fig. 9:
below 200 km the distributions tend towards a mixing distri-
bution and at greater heights the concentrations are smaller
when temperature increases. These are consequences of the
transport equation with a constant escape flux. No chemistry
is introduced in the results of Fig. 9 and at 100 km the con-
centration has been arbitrarily taken equal to 107 cm−3 . Liu
and Donahue (1974) made an important contribution to the
problem by computing the vertical distributions from 50 km
altitude up to the beginning of the exosphere. Their results
considered chemical reactions and showed that molecular hy-
drogen H2 can reach concentrations greater than H around
100 km. Hunten and Strobel (1974) have also addressed the
question in a slightly different manner, but reached similar
conclusions. It should be noted that the major production
mechanism for molecular hydrogen is the reaction

H + HO2 → H2 + O2 + 57 kcal, (18)
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Fig. 9. Atomic hydrogen vertical distributions for three ther-
mopause temperature.

which is a loss for atomic hydrogen. The major chemical loss
mechanism for molecular hydrogen is

H2 + O(1D) → H + OH(v ≤ 4) + 43 kcal. (19)

The turbulent diffusion velocity in Eq. (13) cannot be eval-
uated from gas kinetic theory, but by analogy with Eq. (15),
one can write for each constituenti

viK = −
K

fi

∂fi

∂z
= −K ×

(
1

ni

∂ni

∂z
+

1

H
+

1

T

∂T

∂z

)
, (20)

wherefi = ni/n is the volume mixing ratio of constituent
i and H = kT /mg is the atmospheric scale height asso-
ciated with the total pressure. There exists no analytical
expression derived from turbulent theory for the coefficient
K in cm2 s−1. This quantity must be estimated, either
from measured vertical distributions of chemically inert con-
stituents, or from parameterizations of gravity wave dissipa-
tion (Lindzen, 1981; Hines, 1997, 1999).

In the absence of photochemical reactions, a constituenti

is either in perfect mixing (viK = 0) or in diffusive equilib-
rium (viD = 0).

If we assume that the vertical distribution of constituent
i is in perfect mixing, i.e. ∂ni/(ni∂z) = −(1/H) −

(1/T )(∂T /∂z), then the maximum molecular diffusion ve-
locity given by Eq. (15) is

viDmax = +
Di

H

[
1 −

H

Hi

−
αiH

T

∂T

∂z

]
. (21)
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Similarly, if constitutentni is in diffusive equilibrium, i.e.
∂ni/(ni∂z) = −(1/Hi) − [(1 + αi)/T )](∂T /∂z), then the
maximum turbulent transport velocity given by Eq. (20) is

viKmax = −
K

H

[
1 −

H

Hi

−
αiH

T

∂T

∂z

]
. (22)

These velocities are of opposite sign and are equal in abso-
lute value whenDi = K. When these velocities are multi-
plied by the concentration, one obtains the maximum trans-
port flux. Hunten (1975) called this quantity “limiting flow”.
Some authors (Yung et al., 1989) even consider this expres-
sion as “Hunten’s limiting flux theorem”. It should be noted
that maximum transport velocities are a permanent physical
characteristic for a given constituent, since only the nature of
the constituent is to be considered. The limiting flow, how-
ever, is a characteristic for a given mixing ratio and it can
change if there are modifications in the abundance of the con-
stituent. Kockarts (1972a) derived from the continuity equa-
tion a general expression for the vertical differential equation
of a minor constituent, subject simultaneously to molecular
and turbulent transport. This equation can be integrated ana-
lytically.

Experimental derivation of atomic hydrogen concentration
is presently possible with two techniques, one based on iono-
spheric observations and the second one from optical Lyman-
α airglow. Although atomic hydrogen is difficult to measure
by mass spectrometers, it is possible to measure H+, O+ and
O. Since H and O have practically the same ionization po-
tential, charge exchange equilibrium is applicable in the F-
region, i.e.

H + O+ 
 H+
+ O. (23)

For equal neutral temperature and ion temperature, the equi-
librium is expressed by

n(H)

n(O)
=

8

9

n(H+)

n(O+)
. (24)

When the two temperatures are not equal, Banks (1968) gives
the appropriate expression. Using mass spectrometric data
obtained by Atmospheric explorer C in 1974, Breig et al.
(1976) determined the neutral concentrations for atomic hy-
drogen.

The interpretation of optical observations requires the cal-
culation of model hydrogen atmospheres, since it is the total
content along the line of sight which is actually observed. A
good review of the state of the art for observations before
1974 is given by Tinsley (1974). Using a spherical geometry
radiative transfer model (Bishop, 1999), observed Lyman-α

disk-to-limb intensities are analyzed by Bishop (2001) to de-
duce hydrogen profiles between 74 km and 470 km. In this
way he could also determine the peak concentration for H in
the mesosphere below 100 km altitude. This approach is very
promising, since semi-empirical atmospheric models (Hedin,
1987, 1991; Berger et al., 1998) use essentially the charge
exchange equilibrium (Eq. (24)) to introduce atomic hydro-
gen in the models. The atomic hydrogen profiles below the
F-region do not contain experimental values.

Table 1. Ionization limits

Species O2 H O N2 He
λ (nm) 102.7 91.1 91 79.6 50.4

The position of the deuterium Lyman-α line at 121.533 nm
indicated in Fig. 6 shows that this line should be extremely
difficult to detect since it is on the blue wing of the hydro-
gen Lyman-α line in a region of steep spectral gradient. Fur-
thermore, the isotopic ration(D)/n(H) is only 1.6 × 10−4

in standard mean ocean water. Breig et al. (1987) deduced
D/H ratios from Atmospheric Explorer C ion measurements
and arrived at an agreement with previous theoretical work
(Kockarts, 1972b). The problem was revisited by Breig and
Hanson (1991). The first optical detection of atomic deu-
terium was obtained by Bertaux et al. (1984a, 1984b). This
detection, looking at the limb at 110 km, was made possible
by using hydrogen and deuterium cells developed at the Ser-
vice d’Aéronomie in France. A similar instrument, but with a
much higher sensitivity, was flown on the ATLAS 1 mission
in 1992 (Bertaux et al., 1993). Using observations of Mars
between 121.2 and 121.8 nm obtained with the Hubble Space
Telescope, Krasnopolsky (1998) constructed a model for ter-
restrial deuterium, since the spectrum showed the deuterium
Lyman-α line both on Mars and on Earth.

5 Implications for atmospheric ion chemistry

All planetary ionospheres result essentially from the interac-
tion of the neutral atmosphere and solar radiation. In some
cases, cosmic rays and particle precipitations also play a role.
Each neutral constituent has an ionization potential which
determines the longest ionizing wavelength. For the terres-
trial atmosphere, the ionization limits of the constituents are
given in Table 1. This table indicates that the ionosphere es-
sentially comes from the solar spectrum below 100 nm and
apparently Lyman-α should play no role in the formation of
the terrestrial ionosphere. For those wavelengths, Richards et
al. (1994) established a solar EUV flux model and gave the
absorption and ionization cross sections for O2, N2, O and N
between 100 and 5 nm.

On the other hand, Nicolet and Aikin (1960) showed that
the direct ionization of nitric oxide NO by Lyman-α leads to
an important contribution to the formation of the terrestrial
D-region below 100 km altitude. They also showed that X
rays ofλ ≤ 1 nm significantly ionize molecular nitrogen and
oxygen below 85 km. Wavelengths greater than 180 nm can
also ionize various minor constituent atoms, such as sodium
and calcium. Later, Hunten and McElroy (1968) showed that
the excited state O2(a11g) can be ionized by the wavelength
band 102.7–111.8 nm and in such a way it can produce O+

2
ions below 70 km. Ionization of NO by Lyman-α and of
O2(a

11g) are presently two important processes introduced
in any ionospheric model of the D-region.
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Therefore, it is necessary to evaluate the ionization coef-
ficient of NO as a function of the O2 total content along the
line of sight. The results are shown in Fig. 10. The dashed
curve is computed with a constant absorption cross section
of 10−20 cm2 for O2 at Lyman-α (Brasseur and Solomon,
1986). However, Fig. 6 shows that the O2 absorption cross
section cannot be considered as constant over the profile
of Lyman-α. Therefore, the full curve is computed with
the reduction factors developped by Chabrillat and Kockarts
(1997) for minor constituents. The ionization coefficient
INO can be written as

INO = φ∞Lyα × σi × RM(z), (25)

whereσi = 2×10−18 cm2 is the NO ionization cross section
at Lyman-α. In the present computation, the Lyman-α flux
at the top of the atmosphere isφ∞Lyα = 3.5 × 1011 pho-
tons cm−2 s−1. The reduction factorRM(z) is given by the
following expression

RM(z) =

3∑
i=1

bi × exp
(
−ci × NO2(z)

)
. (26)

In this expression,NO2(z) is the total content of molecular
oxygen. The numerical coefficients in Eq. (26) are given in
Table 2.
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Fig. 11. Error introduced by the use of a constant O2 absorption
cross section.

Table 2. Parameters for the reduction factorRM (z)

i bi ci

1 0.6843100 8.22114× 10−21

2 0.2298441 1.77556× 10−20

3 0.0865412 8.22112× 10−21

One can see that the error introduced by a constant ab-
sorption cross section for O2 increases with the total content.
This error is defined by

Error = 100×
(
Iexact
NO − Iapprox

NO

)
/Iexact

NO , (27)

where the labels “exact” and “approx” correspond, respec-
tively, to computations with the reduction factors and with a
constant O2 absorption cross section.

Figure 11 clearly shows that the technique of the reduction
factors should always be used for the absorption of Lyman-α.

6 Implications for exospheric physics

Since the total concentration decreases exponentially with
height, there must be a region where collisions become neg-
ligible; this is the exosphere. A good way to determine its
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lower boundary is to compute the mean free path as a func-
tion of altitude and for different thermopause temperatures.
Figure 12 shows the results of such a computation. The mean
free path at ground level is of the order of 6×10−6 cm and in
the exosphere, it can reach several hundreds or thousands km.
A common definition of the beginning of the exosphere, of-
ten called “critical level”, is the altitude where the horizontal
mean free path is equal to the atmospheric scale height. The
critical level is, therefore, indicated by the triangle in Fig. 12.

In such a collisionless medium, which types of particles
are possible? Considering an elementary volume above the
critical level, four types of particles, shown in Fig. 13, are
theoretically possible:

– ballistic particles, with a volume abundanceϕ1, which
are launched from a point at the critical level and fall
back at another point;

– satellite particles, with a volume abundanceϕ2, which
flow around the Earth like a satellite;

– hyperbolic particles, with a volume abundanceϕ3,
which leave the critical level with a velocity≥ 11 km
s−1, which come from interplanetary space and are suf-
ficient to overcome gravitational attraction;

– external hyperbolic particles, with a volume abundance
ϕ4, which come from interplanetary space and are devi-
ated by the Earth’s gravitational field.

If the velocity distribution function is Maxwellian in the
exosphere, i.e. a solution of Boltzmann’s equation without
collisions, one has the relation

ϕ1 + ϕ2 + ϕ3 + ϕ4 = 1. (28)

Volume element

Critical level

2

1

3

4

Fig. 13. Exospheric particles.

The vertical distribution of a constituent like atomic hydro-
gen would then be a hydrostatic distribution, implying a non-
zero density at infinity. It is easy to see that this is not the
case.

For the ballistic particlesϕ1, the heterosphere should have
a perfect spherical symmetry. This is not realistic, since there
are diurnal and seasonal variations.

For the satellite particlesϕ2, no external action should be
present. This is not the case, since they can be photoionized
and then deflected by the geomagnetic field. Furthermore,
solar radiation pressure, although small, can distort the orbit.

For the hyperbolic particlesϕ3, one can compute an escape
flux (Jeans, 1925) for upward particles with velocities≥ 11
km s−1. This escape flux is proportional to(1/2)ϕ3. If there
was an incoming flux of the same amount, there would be no
net escape; this is not the case.

The external hyperbolic particlesϕ4 are not of terrestrial
origin. Even if some exist, there is no reason that they com-
plete a Maxwellian velocity distribution.

Chamberlain (1963) established a theory to compute the
various types of particles. Applications of this theory re-
quire use of numerical tables or recomputations of integrals.
Chamberlain and Hunten (1987) reproduce these tables and
made a correction in one of them.

Banks and Kockarts (1973b) showed that all types of par-
ticles can be obtained, either from Boltzmann’s equation or
from Liouville’s theorem. Their results are analytical func-
tions which can be summarized as follows.

If the error function9(x) is defined by

9(x) =
(
2/

√
π

) ∫ x

0
exp

(
− t2) dx, (29)

five quantitiesA, B, C, D, F can easily be computed:

A = 9(Ey) (30)

B =
(
1 − y2)1/2 (31)
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C = 9
[
Ey/(1 + y)

]
(32)

D = exp
[
− Ey2/(1 + y)

]
(33)

and

F = 1 − C. (34)

In these equations,y = rc/r is the ratio between the geocen-
tric critical levelrc and the geocentric distancer. The quan-
tity E is the ratio between the geocentric critical level and the
scale height at this level for the considered constituent. The
analytical expressions of the four types of particles can now
be written

ϕ1 = A − B × C × D (35)

ϕ2 = B × C × D (36)

ϕ3 = 1 − A − B × D × F (37)

and

ϕ4 = B × D × F. (38)

Using Eqs. (35) to (38), it is straightforward to see that
Eq. (28) is satisfied. These analytical results have seldom
been used, except by Bertaux and Kockarts (1983) in their
study of molecular hydrogen in the atmosphere of Titan.

As an example, Fig. 14 shows the four types of particles
computed with Eqs. (35) to (38) for atomic hydrogen with
an exospheric temperature of 1500 K and a critical level at
550 km altitude. As discussed above ,all types of particles
are not present, otherwise the vertical distribution would be
hydrostatic.

Returning to our guide, i.e. Lyman-α, it should be men-
tioned that observations of the scattered radiation are practi-
cally the only way to deduce atomic hydrogen abundance in
the exosphere. This method requires, however, the solution
of a radiative transfer problem.

Using measurements of the total equivalent width, Meier
and Prinz (1970) deduced the atomic hydrogen concentration
in the thermosphere. Bertaux (1978) measured the velocity
distribution of hydrogen up to 7 Earth radii with the help of
a Lyman-α absorption cell.

In their analysis, Vidal–Madjar and Thomas (1978) clearly
showed that other escape mechanims must exist for atomic
hydrogen. This important question has been discussed by
Hunten (1990) from a historical viewpoint.

Lyman-α observations are still the most important tool for
atomic hydrogen distributions (Bishop, 1999).

7 Is there a future?

The answer is definitely yes, provided two conditions are sat-
isfied. First, younger scientists must have sufficient enthusi-
asm and skill to enter into the field of aeronomy. Second,
reasonable funding must be made available.
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The limited sketch that I have developed for this 20th Cen-
tury emergent science can be extended to other planets of our
solar system. Even for the terrestrial atmosphere, new mea-
surements are still necessary to understand, in detail, all phe-
nomena. For example, the polar mesospheric clouds, known
for a long time, are still waiting for a complete explanation
of their origin and structure. The increase of carbon dioxide
can also have an effect on the middle atmosphere through
radiative cooling (Akmaev and Fomichev, 2000). The corre-
sponding decrease of lower thermospheric densities (Keating
et al., 2000) has practical consequences on the lifetime of ar-
tificial satellites.

A better knowledge of solar irradiance is required over the
whole spectral region, since this is a major driving mecha-
nism for many atmospheric phenomena. As a consequence,
the current effort to measure absorption and ionization cross
sections, as well as reaction rates, should be continued. This
would improve the accuracy of aeronomical modelling and
measurements analysis. It is even possible that new pro-
cesses will be discovered.

Although planetary atmospheres have been studied to
some extent, many unknown phenomena will probably be
discovered in the near future. This is an expanding field
which will bring us many surprises.

One of the most exciting feature at the end of the 20th
Century is the discovery of approximately 80 planets orbit-
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ing around nearby stars. These observations have essentially
been made with ground-based telescopes. But the composi-
tion and structure of possible atmospheres are still subject to
speculation, as a consequence of the lack of measurements.

Since life depends on the presence of oxygen, Akasofu
(1999) suggested the development of a technique to mea-
sure the eventual auroral spectra or airglow, in order to detect
spectroscopic characteristics of oxygen. If this challenge can
be accomplished, it would be a great step towards the proof
of the existence of extraterrestrial life.

These limited number of points in the present section
clearly show that aeronomy can have a wonderful future.
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