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Abstract. When their growth rate becomes too small, the E-
region Farley-Buneman and gradient-drift instabilities switch
from absolute to convective. The neutral density gradient
is what gives the instabilities their convective character. At
high latitudes, the orientation of the neutral density gradient
is close to the geomagnetic field direction. We show that this
causes the wave-vector component along the geomagnetic
field to increase with time. This in turn leads to wave sta-
bilization, since the increase goes hand-in-hand with an in-
crease in parallel electric fields that ultimately short-circuits
the irregularities. We show that from an equivalent point of
view, the increase in the parallel wave vector is accompanied
by a large upward group velocity that limits the time during
which the perturbations are allowed to grow before escaping
the unstable region. The goal of the present work is to de-
velop a systematic formalism to account for the propagation
and the growth/decay of high-latitude Farley-Buneman and
gradient-drift waves through vertical convective effects. We
note that our new formalism shies away from a plane wave
decomposition along the magnetic field direction. A study of
the solution to the resulting nonlinear aspect angle equation
shows that, for a host of initial conditions, jump conditions
are often triggered in the parallel wave-vector (defined here
as the vertical derivative of the phase). When these jump
conditions occur, the waves turn into strongly damped ion-
acoustic modes, and their evolution is quickly terminated.
We have limited this first study to Farley-Buneman modes
and to a flow direction parallel to the electronE × B drift.
Our initial findings indicate that, irrespective of whether or
not a jump in aspect angle is triggered by initial conditions,
the largest amplitude modes are usually near the ion-acoustic
speed of the medium (although Doppler shifted by the ion
motion), unless the growth rates are small, in which case the
waves tend to move at the same drift as the ambient electrons.
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1 Introduction

Understanding the properties of large amplitude Farley-
Buneman and gradient-drift waves at high latitudes has re-
mained a challenge in spite of several decades of studies.
In large part this is because the large amplitude waves are
usually strongly nonlinear by the time they reach the ampli-
tudes that dominate the radar or rocket observations. In the
usual Fourier treatment of the instability, this means that one
should, in principle, include coupling between all possible
modes of the system, even linearly stable ones.

Some success has nevertheless emerged from analytical
work dealing with the waves under turbulent conditions. For
instance, in work that was originally meant for equatorial ap-
plications, Sudan and Keskinen (1979) and Sudan (1983b)
have been able to establish that, under weakly-growing con-
ditions, mode-coupling should lead to cascading towards
smaller wavelengths and should, at lower frequencies, pro-
duce isotropic turbulence in a plane perpendicular to the ge-
omagnetic field.

On a more controversial note, Sudan (1983a) also pro-
posed that the wave fields of faster-growing Farley-Buneman
modes might scatter the electrons, thereby producing an
“anomalous” amount of diffusion. Robinson (1986) ex-
tended this idea to the high latitudes where the growth rates
can often be very large, and he used this mechanism to sug-
gest that the large amplitude modes should move at the ion-
acoustic speed of the medium. St.-Maurice (1987) countered
that there was a problem with the physics used in the anoma-
lous diffusion theories, in that the diffusion produced by un-
stable waves is perpendicular to their propagation direction
when in fact, one needs to introduce diffusion at right an-
gles to that direction if the waves are to saturate in response
to increased diffusion. As a result, St.-Maurice (1990) tried
to generalize the anomalous diffusion idea by including a
bath of background waves pointing in all directions in the
plane perpendicular to the magnetic field. He concluded
that under anisotropic turbulent conditions, the suggested
mechanism could work, but at the expense of having broad-
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band density levels of the order of 20%, which seemed con-
trary to observations. However, for weakly growing condi-
tions with isotropic two-dimensional turbulence, St.-Maurice
(1990) found that an equivalent (or “anomalous”) collision
frequency of the order of four times the electron-neutral col-
lision frequency was possible. This result seemed to be most
useful in the equatorial regions near the 100 km altitude re-
gion, by providing an explanation for observed current densi-
ties that are systematically smaller than inferred from model
calculations based on classical conductivity profiles (Gagne-
pain et al., 1977). However, the inferred anomalous collision
frequencies were too small to provide a saturation mecha-
nism for the faster growing high-latitude waves.

The limited success of the anomalous diffusion concept
led Hamza and St.-Maurice (1993a) to explore the conse-
quences of mode-coupling under strongly growing Farley-
Buneman conditions. They found that as long as the nonlin-
ear evolution is dominated by coupling between modes that
are perpendicular toB, the waves should indeed saturate at
a phase velocity equal to the ion-acoustic speed, while the
spectral width would increase to become, in velocity units,
comparable to the ion-acoustic speed at right angles to the
flow. Furthermore, the Doppler shift would not equal the
line-of-sight velocity of the ambient electron drift, even when
that speed is less than the ion-acoustic speed to start with. At
least as far as predictions on the Doppler width were con-
cerned, a reasonable agreement seems to be found for ob-
servations made with radars operating at frequencies exceed-
ing 30 MHz (Eglitis and Robinson, 1998). Hamza and St.-
Maurice (1993b) also estimated that the mode-coupling hy-
pothesis was consistent with a broad-band density level of
the order of 10% or less. This appears to be consistent with
rocket observations. However, just obtaining estimates for
the turbulent level proved to be a daunting task, even under
the assumption of pure two-dimensional turbulence involv-
ing non-dispersive modes.

In order to work around the complexity associated with
mode-coupling, St.-Maurice and Hamza (2001) have pro-
posed instead to do away with Fourier analysis under two-
dimensional conditions associated with negligible wave elec-
tric field components along the geomagnetic direction. They
introduced intermittency in lieu of a uniform wave back-
ground and replaced the mode-coupling description with an
equivalent nonlinear diffusion coefficient that depended on
the density itself. Associated with this diffusion coefficient
was a total electrostatic field that rotated and decreased in-
side the blobs and holes, much like in earlier numerical sim-
ulations by Otani and Oppenheim (1998). The evolution of
the field was such as to bring saturation at the ion-acoustic
speed of the medium, but in a direction that was no longer
associated with the original electron plasma drift direction.
This result had been uncovered earlier in a numerical study
by Janhunen (1992) (see below).

As indicated in the previous paragraph, numerical tools
have also been useful in improving our understanding of
Farley-Buneman (and gradient-drift) waves. Thus far, how-
ever, the studies associated with the Farley-Buneman insta-

bilities have been limited to two dimensions. Machida and
Goertz (1988), as well as Thiemann and Schlegel (1994),
used two-dimensional particle simulations in the plane made
by the magnetic field and theE×B directions. This approach
does not allow mode-coupling in the plane perpendicular to
the magnetic field, which appears to be a substantial sink of
energy for electric fields less than 50 mV/m (Hamza and St.-
Maurice, 1993a). Nevertheless, Machida and Goertz (1988)
focused on the electron heating question and concluded that
the electrons were heated by perpendicular fluctuation fields
through what they attributed to be anomalous collisions in
spite of the geometrical problems associated with this mech-
anism. Thiemann and Schlegel (1994) focused on proper-
ties observed by radars, such as the phase velocity and the
power as a function of electric field. They uncovered phase
velocities of the order of the ion-acoustic speed at saturation.
Much like Machida and Goertz (1988) before them, they saw
the simulated electron temperature go up, but they did not
comment much on its physical origin aside from noting that
this heating phenomenon was not observed with simulations
made in the plane perpendicular to the magnetic field. Their
electron temperature increased with electric field strength, in
a way reminiscent of observations. This being said, the num-
ber of particles being used was relatively small and the fluc-
tuation levels were accordingly large.

In a different kind of numerical study, Janhunen (1992)
used a simplified three-dimensional fluid approach to con-
clude that, for relatively weak electric fields, the high-latitude
Farley-Buneman waves reach a limited amplitude because
the magnitude of the parallel wave electric field increases
monotonically with time. In the process, however, Janhunen
(1992) found no evidence for perpendicular turbulence, prob-
ably because the electric fields he used were not large (see
below). Using a particle simulation, Janhunen (1994) later
studied the waves in a plane perpendicular to the magnetic
field direction. He found that the largest amplitude waves
were at a flow angle for which the phase velocity was equal
to the ion-acoustic speed of the medium, while lower am-
plitude waves could be found in the plasma flow direction
moving faster than the ion-acoustic speed. In contrast to the
above quoted two-dimensional simulations that included the
magnetic field direction, Janhunen (1994) found little evi-
dence for electron heating.

More recently, Oppenheim et al. (1995) also used a parti-
cle simulation in which turbulence was limited to the plane
perpendicular to the geomagnetic field. Among other things,
their simulation produced a rotation of the total electrostatic
field inside structures. However, the results from the simu-
lations seem to produce larger rotations than expected from
the intermittency theory of St.-Maurice and Hamza (2001).
Still, Otani and Oppenheim (1998) were able to associate the
rotation obtained in the Oppenheim et al. (1995) simulations,
with coupling between dominant modes.

It should be clear from the above that, aside from a couple
of limited numerical studies, most of our progress in the un-
derstanding of large amplitude E-region structures has come
from two-dimensional studies in a plane perpendicular to the
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geomagnetic field. Such studies have, by necessity, had to
neglect the effects of electric fields parallel to the geomag-
netic field. However, there are two contrasting situations for
which the neglect of parallel electric fields cannot so easily
be justified.

The first situation is met at high latitudes when the am-
bient electric field exceeds roughly 50 mV/m. In this case,
much of the coupling between perpendicular modes results in
the production of modes that are themselves linearly unsta-
ble. Perpendicular mode-coupling can, therefore, no longer
be invoked for the saturation of the waves. In addition, ex-
plosive electron heating is seen to be taking place when the
electric field exceeds that same 50 mV/m (e.g. St.-Maurice
et al., 1999, and references therein). This suggests that
for strong electric fields, mode-coupling must be triggering
modes with a large parallel wave vector (i.e. electric field)
components along the geomagnetic field (Hamza and St.-
Maurice, 1993b). These modes must have a large enough
parallel component to be able to decay if they are to elim-
inate the accumulating wave energy. In the process, the
“large” parallel electric fields also heat the electrons. The
word “large” has to be put in quotes here because, on aver-
age, only wave vectors at 2 or 3◦ away from perpendicularity
are needed (St.-Maurice and Laher, 1985).

The second situation for which parallel electric fields
should not be neglected is, somewhat paradoxically, the op-
posite of the first, namely one for which the growth rates
of the waves are so small that the waves become convec-
tively unstable through the inhomogeneity of the medium
(St.-Maurice, 1985). This situation, which will be the focus
of the present work, has been labeled a “nonlocal” problem
in the high-latitude context. The problem becomes nonlocal
because the altitude variations of the collision frequencies of
ions and electrons are forcing the modes to evolve along the
geomagnetic field. This evolution is caused by an altitude
change in the eigenfrequency, as well as in the relative ion-
electron drift. The resulting parallel electric fields have an
important impact on the evolution of the waves because they
can quickly short out the waves, i.e. lead to wave saturation
(St.-Maurice, 1985; Janhunen, 1992). The fact that the unsta-
ble part of the E-region is only 20 km thick and that waves
cannot grow if the aspect angle exceeds approximately 1◦

also means that the structures should not exceed 100 m in the
direction perpendicular to the magnetic field (e.g. Janhunen,
1992; St.-Maurice and Laher, 1985).

We should point out that the high-latitude nonlocal prob-
lem differs in one important respect from nonlocal equatorial
studies (e.g. Riggin and Kadish, 1989; Ronchi et al., 1991;
Hu and Bhattacharjee, 1998). At low latitudes, the back-
ground inhomogeneities are perpendicular to the horizontal
magnetic field lines. This means that the low-latitude struc-
tures are not limited as much by an aspect angle constraint:
even in the presence of a 0.5◦ aspect angle, they can reach
a few km in size in the east-west direction. However, non-
local calculations are still needed for these kinds of sizes
if the structures are to reach 10 km sizes in the vertical di-
rection (so as to maintain a basic east-west direction for the

wave vector). Nonlocal calculations show that not only is this
possible, but in fact nonlinear effects seem to be such as to
make the km size structures the preferred size of the system.
The bottom line is that the system can sustain a total wave-
vector pointing essentially in the east-west direction. These
gradient-drift waves are much larger in size than their high-
latitudes counterpart because there is little at low latitudes in
the way of parallel electric fields to damp the waves.

A strong observational motivation for the study of non-
local effects at high latitudes is the HF radar detection of
modes, that in many respects look rather different from
their higher frequency counterpart (Villain et al., 1987, 1990;
Hanuise et al., 1991; Eglitis et al., 1995; Jayachandran et al.,
2000; Eglitis and Robinson, 1998). Theoretically, we know
that 10–15 m modes associated with 10–15 MHz radars (a
typical SuperDARN range of radar frequencies) have rather
small growth rates, of the order of 1 s−1 as opposed to 1000
s−1 for their higher frequency counterpart. This means, as
we show below, that the former is strongly affected by con-
vective (or nonlocal) effects associated with changing par-
allel electric fields. This could have important implications
for the Doppler shift of the waves. It might be at the origin
of some important differences between HF observations and
higher frequency observations. For instance, there are many
indications that, under moderate to weak electric field condi-
tions, the Doppler shift of the waves is equal to the line-of-
sight velocity of the electrons (Villain et al., 1987; Jayachan-
dran et al., 2000). This being said, there is also a statistically
clear trend for 10 to 15 m E-region waves to saturate at ap-
proximately 450 m/s (Milan et al., 1997; Lacroix and Moor-
croft, 2001) under certain conditions. These conditions may
well have to do with the larger growth rates associated with
stronger electric fields. In that case, convective/nonlocal ef-
fects might be less important.

In the present paper, we primarily seek to establish a sys-
tematic framework for the study of nonlocal effects in the
high-latitude E-region. Our ultimate goal is a proper descrip-
tion of the evolution of slowly growing modes, such as those
that are often detected by HF radars. For simplicity, our main
focus in the present work will be Farley-Buneman waves,
even though we will indicate how our work can be later gen-
eralized to gradient-drift waves.

In Sects. 2 and 3, we use a WKB approach to introduce
the concept of a “frequency” that is defined in terms of a
local variation in the phase of the solution to the standard
Farley-Buneman wave equation. Unlike the frequency met
in the plane wave decomposition used in standard Farley-
Buneman or gradient-drift theory, the generalized frequency
is viewed as a non-trivial function of position. This proves
very useful for a description of the evolution of slowly grow-
ing modes. Once the generalized frequency and wave num-
bers are introduced, we derive the propagation and ampli-
tude equations through the use of a multi-scale expansion
in time and space. We show in Sect. 3 that the amplitude
equation thus retrieved agrees with the principle of conser-
vation of wave action as long as allowance for a contribu-
tion from spontaneous growth is made, since the waves are,
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Fig. 1. Phase changes with time and space for a frequency that
increases with altitude. All altitudes are assumed to be in phase
initially.

after all, linearly unstable. Section 4 describes some unusual
properties of the resulting equations (intersecting character-
istics) and how we used physical and mathematical reasoning
to handle the ensuing shocks. Section 5 describes the results
of our calculations. We introduce a discussion of the possible
implications and our conclusions in Sect. 6.

2 Physical description

Before delving into the mathematical and numerical intrica-
cies of the problem at hand, it should prove useful to describe
the physical processes that drive the equations and their solu-
tions. While we go back to the details of the derivation below,
we wish to stress here that in the standard analysis of Farley-
Buneman (and gradient-drift) waves, the eigenfrequency re-
sulting from a plane wave decomposition is actually a func-
tion of position. Specifically, the frequency increases with
altitude through the height dependence of the electron and
ion collision frequencies (see Eq. 11).

Once it is recognized that the eigenfrequency is a function
of altitude, one has to accept that the parallel wave number
becomes a function of time. This is illustrated by the sketch
shown in Fig. 1. The figure is made of a series of oscilla-
tions from various heights. Initially (i.e.t = 0 in the figure)
the phase of the oscillations is the same at all heights. How-
ever, we have introduced a frequency mismatch between var-
ious altitudes, with the higher frequencies on top, as in the
real ionosphere. After enough oscillations (no matter how
many it takes in real situations), a phase change with altitude
starts to build up in a way similar to that shown in Fig. 1.
Such a phase change is equivalent to the introduction of an
oscillation alongz at the later times, where there was none
initially. A wave vector component along thez direction is,
therefore, building up with time. This means that, in princi-
ple, the wave vector component parallel to the magnetic field
cannot be considered to be a free parameter of the problem.
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Fig. 2. A sketch of the kind of evolution that a single evolving
structure (irregularity) would undergo in physical space if it were
initially perfectly field-aligned. The vertical is along the magnetic
field and the electronE × B drift direction is to the right.

Instead, its value changes with time in a manner that has to be
consistent with the variation of the frequency with altitude.
To be precise, this relation is given by the Whitham relation
shown by Eq. (12) below.

We should add that the temporal evolution of the parallel
wave vector is not necessarily important for the evolution of
the waves. For it to be important, in practice, the wave has
to grow so slowly with time that nonlinear amplitude satura-
tion processes (e.g. Sudan, 1983a; Hamza and St.-Maurice,
1993a) will not take control of the wave evolution before the
parallel wave vector does. To assess what kind of growth
rates are required for the wave vector to matter, we can com-
pare a typical growth time with the time it takes for a wave
packet to travel through the unstable high-latitude E-region.
If the travel time is such that the growth is too small for non-
linear processes to take place, then convective effects asso-
ciated with the parallel wave-vector evolution will have to
matter.

This leads us to the fact that the wave vector enters the
wave evolution picture mathematically partly through its im-
pact on the parallel component of the group velocity. Un-
less the parallel wave vector is strictly zero (in which case
the parallel component of the group velocity is also zero),
the parallel group velocity is of the order of 10 to 30 km/s
(Moorcroft, 1984). Since the unstable part of the E-region is
only approximately 25 km thick, this means that waves with
a growth rate of the order of 1 to 10 s−1 are very likely to
be affected by convective effects before nonlinear amplitude
saturation mechanisms have a chance to come into the pic-
ture. Alternatively, we can link the parallel wave vector to a
parallel electric field: as the magnitude of the parallel wave
vector increases, a point is reached at which the waves can no
longer grow because, physically, the parallel electric field as-
sociated with the parallel wave vector (the waves are electro-
static) is short circuiting the instability through the response
of the highly mobile electrons along the magnetic field lines.

A different way to visualize the role played by the parallel
wave vector is to imagine the instability process as a positive
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feedback mechanism that enhances an initial density pertur-
bation in time and space. This approach has been followed
by St.-Maurice and Hamza (2001) for the two-dimensional
case for which parallel electric fields and wave vectors were
neglected. When adding the latter, the picture becomes three-
dimensional. This situation is illustrated in Fig. 2 through
a two-dimensional cut for the case of an initial elongated
shoebox-like density enhancement along the magnetic field
(zero initial parallel wave-vector situation in Fourier space).
For simplicity, the magnetic field in our illustration is aligned
with the vertical direction. Also notice that the lack of an ini-
tial structure along the magnetic field is arbitrary but it is con-
sistent with the picture drawn in Fig. 1. Finally, as described
in St.-Maurice and Hamza (2001), it is important to realize
that the instability starts by having the side of the blob that is
in the direction of the electronE×B drift become negatively
charged.

As far as the time evolution of the initial shoebox is con-
cerned, the fact that the frequency increases with height
means that the box becomes distorted after some time, due
to a faster motion (i.e. horizontal group velocity; see Ap-
pendix A) at the top than at the bottom of the shoebox.
This image seems to be closely analogous to what Janhunen
(1992) calls a “tilting wave tower”. In any event, as the
distortion, or “tilting” becomes measurable, the positively
charged edge of the box ends up resting on the same mag-
netic field line as the other, negatively charged edge. This
means that the size of the box is shrinking, particularly lower
down: as parallel electric fields form, the more mobile elec-
trons from the negative side of the irregularities are moving
up, in response to these fields. The shape of the box is, there-
fore, changing as the negative bottom moves upwards toward
the positively charged top. The motion is faster in regions
with larger tilts, i.e. in regions with larger shears in the phase
velocity ωr/k. This motion is reflected in the 15 km/s or
greater upward parallel group velocities that can be found
particularly near the bottom, where the aspect angles tend to
be largest initially, at least for the case evolving from a zero
aspect angle initial condition.

We conclude that parallel electric fields have to be ex-
pected everywhere around the distorted shoebox, albeit with
smaller values at the top than at the bottom of the structures,
since the shears are larger lower down. For the geometry
and situation depicted in Fig. 2, this means the creation after
some initial time of upward group velocities throughout the
unstable layer, with the faster group velocities at the bottom
initially. This means not only that wave energy tends to be
advected towards the top of the unstable layer, but also that it
becomes enhanced at the top through a compression associ-
ated with a convergence in the parallel group velocity. This
picture should help us to understand the features that emerge
from the formal calculations undertaken in the sections that
follow.

3 Basic derivation

To derive the differential equation that describes the per-
turbed potential, we follow the standard linearization proce-
dure that can be found in many papers (e.g. Sudan, 1983b)
but with allowance for a time-space description that includes
three dimensions, not just two (St.-Maurice, 1985). Briefly
stated: we use the electron and ion continuity equations in the
absence of chemical production terms, and the electron and
ion momentum equations with the assumption of isothermal
electrons and ions. The electrons are furthermore assumed
to be fully magnetized (νe � �e, whereνe is the electron-
neutral collision frequency and�e is the electron cyclotron
frequency), while the ions are taken to be weakly magnetized
(νi > �i). Using charge neutrality (ni = ne), linearizing the
equations and assuming an exp(ik⊥ · x) dependence in the
plane perpendicular to the magnetic field, we then obtain the
following linearized partial differential equation in terms of
the perturbed densityδn/n0:
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As a check on the algebra, we note that if we Fourier an-
alyze Eq. (1) in time and along the magnetic field in space,
we recover the standard local dispersion relation (e.g. Kelley,
1989), namely
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and whereω′
= ω −k⊥ ·V i0. This being stated, it should be

noted that while the perturbed potential and perturbed densi-
ties are usually assumed to be proportional to one another, the
equations for the perturbed potential and the perturbed densi-
ties are not quite the same because the high order derivatives
do not commute. This means that in the first term in Eq. (1),
the order of the time and space derivatives for the perturbed
potential is the reverse of what we obtain for the perturbed
density field. This might imply, in turn, that the evolution
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of the potential and perturbed densities is not quite the same
along the magnetic field direction.

As observed in the previous section, the problem with a
plane wave decomposition inω andk‖ is that when the colli-
sion frequencies andV d are changing in space, the frequency
should be taking a value that changes with altitude. This is
contrary to the very assumption used in obtaining an eigen-
value plane wave decomposition and constitutes an essential
part of the so-called “nonlocal” problem. A decomposition
into a superposition of plane waves was used by St.-Maurice
(1985) to tackle this nonlocal problem, using a Laplace trans-
form to solve the problem for impulses given at various al-
titudes. It was found that the nonlocal/convective character
of the instability was important for waves greater than 10 m
in size, and that the waves could reach a peak amplitude as
they convected through the unstable region, without requir-
ing a nonlinear saturation process. The approach used by
St.-Maurice (1985) was unfortunately subject to numerical
difficulties in that Laplace transforms are difficult to invert
numerically and the results are difficult to interpret at times.
Therefore, we have used a different approach here, which
has the added advantage of shedding some new light on the
physics at work.

Our method of solution is based on a WKB-style solution
to the differential equation given by Eq. (1). We simply write
that the perturbed density (and the perturbed potential for that
matter) has a solution of the form

δn

n0
= A(z, t) exp[iS(z, t)]. (7)

However, in a departure from the standard WKB procedure,
we prescribe that bothA andS be real with the key, but rea-
sonable assumption, that temporal and spatial derivatives of
the amplitudeA are much smaller than the temporal and spa-
tial derivatives of the phaseS. Therefore, we model growth
not through an imaginary part of the phase, but rather through
a time derivative of the amplitude itself. We also define the
“frequency”ωr and the “parallel wave vector”k‖ in terms of
local derivatives of the phase, viz.

ωr(z, t) = −∂S(z, t)/∂t

k‖(z, t) = ∂S(z, t)/∂z. (8)

With these definitions and assumptions and if we keep all
leading order real and imaginary terms (even though real and
imaginary terms are not of the same order), we obtain

∂

∂t ′

(
δn

n0

)
=

(
∂A

∂t
− iω′

rA

)
eiS (9a)

∂2

∂t ′2

(
δn

n0

)
≈

(
−ω′2

r A −

{
2iω′

r

∂A

∂t
+ i

∂ω′
r

∂t ′
A

})
eiS (9b)

∂

∂z

(
δn

n0

)
=

(
∂A

∂z
+ ik‖A

)
eiS (9c)

∂2

∂z2

(
δn

n0

)
≈

(
−k2

‖
A +

{
2ik‖

∂A

∂z
+ i

∂k‖

∂z
A

})
eiS (9d)

∂2

∂z2

[
∂

∂t ′

(
δn

n0

)]
≈

(
ik2

‖
ω′

rA + 2k‖

∂(ω′
rA)

∂z

+ω′
r

∂k‖

∂z
A − k2

‖

∂A

∂t

)
eiS (9e)

∂2

∂z2

[
∂2

∂t ′2

(
δn

n0

)]
≈

(
k2
‖
ω′2

r A + i

{
2k2

‖
ω′

r

∂A

∂t

+k2
‖

∂ω′
r

∂t
A − 2k‖

∂(Aω′2
r )

∂z
− ω′2

r

∂k‖

∂z
A

})
eiS, (9f)

where we recall that∂/∂t ′ is defined by Eq. (3).

3.1 Phase relationships

Equations for the local phase change, as well as for the am-
plitude, can be obtained from Eq. (1), using Eq. (9a) to (9f) if
we assume that90 � 1. After dividing by the term exp(iS),
the leading order balance between the remaining imaginary
terms then gives the equation for the frequency, whereas the
balance between the real terms produces the amplitude equa-
tion. We also neglect temporal and/or spatial derivatives of
the kind |∂ ln A/∂t | when compared to|ω′

r |: as a reference
point, note that this means that none of the terms in the curly
brackets in Eq. (9a) to (9f) end up being used in the process.

With the procedure just described, the leading order equa-
tion for the frequency becomes

ω′
r =

k · V d

1 + 9
(10)

i.e.

ωr =
k · V d

1 + 9
+ k · V i0, (11)

and we recall that9 is given by Eq. (6) once we takek = k⊥.
While Eq. (11) may look like the standard expression, we

remind the reader that there is an important difference with
the usual result from the classical dispersion relation in that
the frequency and parallel wave number are not assumed to
be constant here. These variables are allowed instead to truly
change with altitude. Our equations can be viewed as plane
wave solutions only when altitude derivatives in9 andVd

can be neglected, which is not something that can be done at
lower frequencies.

The above consideration also implies that, contrary to the
belief rooted in the standard local theory, the parallel wave
number is not a free parameter of the problem. Rather, there
is a simple connection between the parallel wave number and
the frequency, which is trivially based on their local defini-
tions, as posited in Eq. (8). Namely, we must have

∂k‖

∂t
= −

∂ωr

∂z
. (12)

This constitutes what is sometimes called the “Whitham re-
lation”. Its use allows us to tackle our nonlocal problem rel-
atively simply by solving the differential Eq. (12), together
with what in effect amounts to be a standard-looking root to
the dispersion relation given by Eq. (11).
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3.2 Amplitude equation

A second important difference with the standard procedure
is the generalization of the simple growth rate expression
through a term that includes a convective derivative of the
wave amplitude and other quantities as well. As described
above the new amplitude balance can be obtained for the case
at hand by using the balance of the real terms left from using
Eq. (9a) to (9f) into Eq. (1) after dividing by exp(iS). Alter-
natively, Eq. (1) can be multiplied by the complex conjugate
of δn/n0, and added to the equation for the complex conju-
gate ofδn/n0 after it has itself been multiplied byδn/n0. All
quantities involving fast time or spatial changes then cancel
out, leaving us with the long time scale, slow spatial scale
description.

Either one of these procedures brings the result

∂A

∂t
+ Vg‖

∂A

∂z
= γA

−
A

2

[
Vg‖

k‖

∂k‖

∂z
−

2Vg‖

1 + 9

∂9

∂z
+

2Vg‖

k · V d

∂k · V d

∂z

]
, (13)

where

γ =
(ω′2

r − k2c2
s )9

(1 + 9)νi

(14)

is the standard classical growth rate. In Eq. (13) we have
used the symbolVg‖ to represent the expression

Vg‖ = −
k · V d

(1 + 9)2
90

2k‖

k2

�2
e

ν2
e

. (15)

As the symbol suggests,Vg‖ is the parallel component of the
group velocity, as can be seen from using the definition

Vg‖ =
∂ωr

∂k‖

. (16)

The fact that we have a convective derivative on the left
hand side of the amplitude equation and that the first term
on the right-hand side just describes the local growth rate,
is very suggestive of a conservation principle being at work
here. This is indeed the case, with the conservation principle
being the conservation of wave action (e.g. Bretherton and
Garret, 1969), of which conservation of energy is just a par-
ticular case. Conservation of wave-action states that, if the
local frequency changes slowly enough in space and time,
we should have

∂

∂t

(
Uk

ω′
r

)
+ ∇ ·

(
V gUk

ω′
r

)
= P, (17)

where Uk is the energy of the waves. We have added a
source termP to the textbook expressions to account for the
sources/sinks of free energy that give/extract energy locally
to/from the waves. For instance, in the classical (local) treat-
ment of the Farley-Buneman instability, variations inω′

r are
neglected and a balance is assumed between the source term
and the first term on the left-hand-side of Eq. (17).

Clearly from Eq. (17) we could derive an amplitude equa-
tion using the conservation of wave energy rather than wave
action only if temporal and spatial variations in bothV d and
9 were to be negligible, as seen from the expression for the
frequency, Eq. (10). However, if nothing else, above 110
km, the ion drift does change rapidly with height as the ions
start to acquire theE × B drift, due to their decreasing col-
lision frequencies (see Appendix A for more details). This,
according to Eq. (4), rapidly bringsV d to zero. The proper
conservation law that we should use must, therefore, be the
conservation of wave action and not the conservation of wave
energy.

In order to show that Eqs. (13) and (17) are equivalent,
we first need an expression for the energy of the waves for
the problem at hand. In the ion frame of reference, the wave
energy is given by the sum of the electron and ion kinetic
energy and the electrostatic potential energy of the waves.
Due to its small mass, it is easy to show in the present case
that the electron kinetic energy is approximately90 smaller
than the ion kinetic energy, i.e. much smaller than the ion
kinetic energy at most altitudes of interest here. This leaves
us with

Uk ≈
1

2
n0mi |δv

i
k|

2
+

ε0|δEk|
2

2

=
1

2
n0mi |δv

i
k|

2
+

1

2
n0mi

�2
i

ω2
pi

|δEk|
2

B2
. (18)

The second term is normally considerably smaller than the
first, while we can also write

|δvi
k| ≈

eδEk

miνi

. (19)

We can use this expression in the first term of Eq. (18),
keep only that first term, and plug the result in Eq. (17). Us-
ing γA for the source termP after the equation is expressed
in terms of the amplitude of the fluctuations instead of the en-
ergy itself, we then obtain from conservation of wave-action
the equation

∂A

∂t
+ Vg‖

∂A

∂z
= γA −

A

2

[
Vg‖

k‖

∂k‖

∂z
−

2Vg‖

1 + 9

∂9

∂z

+
(2 + 9)Vg‖

k · V d

∂k · V d

∂z
+ Vg‖

∂ ln n0

∂z

]
. (20)

There are two small differences between Eqs. (20) and
(13). First, the last term on the right-hand-side of Eq. (13) is
2/(2 + 9) smaller than the same term in Eq. (20). However,
this difference is not significant for an instability calculation,
because the waves only grow when9 is small and, con-
versely, when9 becomes significant, the waves are quickly
damped. The second difference is with the last term on the
right-hand side of Eq. (20), which is simply not present in
Eq. (13). The origin of that term is withn0 in the energy
density expression (18). It is quite difficult to assess from the
algebra if this discrepancy between the two results is due to
an inconsistency in the assumptions made in the derivation
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of the dispersion relation (terms in∂ ln n0/∂z were explic-
itly dropped from the algebra) or if it is linked to a violation
of the “small spatial variations” requirement (Bretherton and
Garret, 1969) in the expression used for the conservation of
wave-action. Fortunately, the question is a bit academic in
the present context because, within the current formulation,
it would be inconsistent for the logarithmic derivative of the
background ion density to be able to compete with the other
derivatives in Eq. (20). This suggests that Eq. (13) is actually
consistent with the approximations that were used to arrive
at that point.

The main emphasis to draw from this analysis is that the
amplitude equation is indeed an expression of the conserva-
tion of wave-action and could be derived on that basis rather
than with brute-force algebraic techniques. This is important
to note if one were to apply our methodology to other high-
latitude irregularity problems. The connection with conser-
vation of wave-action is also useful in order to recognize the
physical principles behind an unfamiliar algebraic expression
like Eq. (13).

3.3 Impact of the sign ofk‖ on the evolution of the wave-
trains

In our analysis we will assume that we have positive frequen-
cies. This means from Eqs. (10) and/or (11) thatk · V d

will be considered positive. According to Eq. (15), this in
turn means that the group velocity will have to be negative
if k‖ is positive. To understand this in a physical context,
one could return to Fig. 2 and picture what would happen
if the top of the initial shoebox was tilted to the left instead
of being aligned with the magnetic field. In that particular
case, negative charges would be sitting on top of the positive
charges (so that an upward parallel electric field would ac-
company a positivek‖ with our sign convention). The larger
electron mobility along the magnetic field at greater altitudes
would then mean that the box would erode from the top, at
least initially. This would correspond to a negative parallel
component of the group velocity. The trend would tend to
reverse with time because the shears in the phase velocity
would steadily rebuild forward tilts. This would happen first
at lower altitudes where these shears are more pronounced.

The effect of the shears on the evolution is confirmed in
mathematical terms through Eq. (12), at least if the aspect
angles are small. Equation (12) predicts that for positive fre-
quencies that increase with height,k‖ decreases monotoni-
cally with time, sinceωr increases monotonically with al-
titude. This is indeed consistent with the evolution of the
shoebox that we just presented.

Finally, it is easy to see that the sign ofk‖ has at least
the potential to affect the amplitude results. In particular, if
k‖ is initially chosen to be positive, it will tend to reverse
its sign, andVg‖ will follow. This sign reversal will affect
the propagation of waves in potentially interesting ways due
to the influence ofVg‖ on the amplitude evolution through
Eq. (13).

4 Solving for the phase and amplitude of nonlocal
modes

4.1 Aspect angle as a nondimensional parameter

Before obtaining solutions for the system at hand, it is im-
portant to point out that for a fixed flow angle direction (a
fixed direction ofk⊥), the evolution equation for the aspect
angleθ = k‖/k⊥ is independent of both components of the
wave vector. This can be seen by combining Eq. (12) with
(11). We then obtain

∂θ

∂t
= −

∂

∂z

[
k̂ · V d

1 + 9
+ k̂ · V i0

]
, (21)

wherek̂ = k/k and9 now takes the form

9 = 90

[
1 +

�2
e

ν2
e

θ2

]
. (22)

From now on, we will deal with the aspect angleθ instead
of the parallel wave vector itself. The main advantage is that
the aspect angle equation is the same for all magnitudes of
the wave numberk.

4.2 Finding the characteristics of the waves

While we have already shown that the aspect angle (i.e. the
parallel wave vector) has to change with time if the altitude
dependence of the frequency cannot be neglected, one ad-
vantage of the WKB approximation is that wave propagation
and wave growth/decay can be described as separate pro-
cesses. Clearly from the WKB ordering, the amplitude de-
pends on the aspect angle (see Eq. 13), while the aspect angle
evolution does not depend on the amplitude (as can be seen
from Eqs. 21 and 13). Therefore, finding the evolution of the
waves is simply a matter of solving the aspect angle equation
first, and then solving for the amplitude in terms of the as-
pect angle. However, the aspect angle evolution equation is
also clearly nonlinear. Therefore, even though the amplitude
equation itself remains linear, nonlinear effects can affect its
evolution through the aspect angle behavior. As we show be-
low, the fact that the aspect angle equation is nonlinear has
more profound implications for the amplitude evolution than
could have been guessed at first, because it often leads to the
formation of shocks.

We have explored various ways to solve the nonlinear as-
pect angle equation. At first we tried finite difference types of
schemes, but found that there was a tendency for very large
slopes to evolve in the aspect angle. The origin of this steep-
ening in the slope was not clear but it required introducing
artificial diffusion in the solver. In turn, this raised some
questions about the validity of the solution. In order to gain
more insights into what was really going on, we switched to
the more analytical method of characteristics. This method
has several advantages, as we now hope to show.

The method of characteristics can deal efficiently with the
nonlinearity present in Eq. (21), through the9 factor. It turns
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out that with this method, we can follow not just the propa-
gation paths of a set of an initial aspect angles, but also (“ac-
cidentally”) the amplitude propagation paths as well.

To start with, we must focus on the evolution of the as-
pect angle and parallel group velocity. The first step is to
find the characteristic paths of the waves. Fortunately, nei-
ther aspect angle nor the parallel group velocity depend on
the amplitude, so that we can actually go through with this
approach. Finally, it should be pointed out that for an in-
homogeneous medium, the ray tracing associated with the
method of characteristics is associated with lines of constant
frequencies rather than lines of constant wave numbers or
phase velocities, as would be the case for homogeneous me-
dia (e.g. Kundu, 1990, Chapter 7). This is because the rays
are following the group velocity, which is the path of prop-
agation of energy. In the present case, a quick glance at our
expression for the group velocity shows that it can have di-
rections that are anywhere from parallel to the phase velocity,
to practically perpendicular to the same phase velocity.

The first step in finding the wave propagation is to expand
thez derivative in Eq. (12) in the form

∂ωr

∂z
=

(
∂ωr

∂z

)
k‖

+
∂ωr

∂k‖

∂k‖

∂z
. (23)

The notation on the right-hand side means taking the par-
tial derivative ofωr with respect toz, while keepingk‖ con-
stant. Sinceωr depends onz both explicitly through90, as
well as implicitly throughk‖ (Eqs. 11 and 6), this notation is
necessary to distinguish how we take the partial derivative,
i.e. whether we allowk‖ to change or not. The plain∂ωr/∂z

will mean the full derivative, including both explicit and im-
plicit dependencies onz.

For the method of characteristics, we start with Eq. (12),
write Eq. (23) in terms ofθ andωr/k⊥, and then bring allθ
derivatives to the left-hand side of Eq. (12) to end up with

∂θ

∂t
+ Vg‖

∂θ

∂z
= −

(
∂(ωr/k⊥)

∂z

)
θ

. (24)

This way, the right-hand side is independent of∂θ/∂z. For
example, under the assumption that the ratio of the collision
frequenciesνi/νe can be considered constant with altitude
in the unstable region, the right-hand-side of Eq. (24) would
become

−

(
∂(ωr/k)

∂z

)
θ

=
k̂ · Vd

1 + 9

×

{
1

1 + 9

∂90

∂z
−

9

1 + ν2
i /�2

i

∂ ln(ν2
i /�2

i )

∂z

}
. (25)

With the derivatives ofθ fully accounted for on the left-
hand-side of Eq. (24), we can now use the method of charac-
teristics to solve forθ . This means solving along a character-
istic pathi defined by

dzi(t)

dt
= Vg‖

(
zi(t), θi(t)

)
, (26)

where we have used the definition given by Eq. (16). Along
these characteristics, the equation for the aspect angle evolu-
tion becomes

dθi(t)

dt
= f

(
zi(t), θi(t)

)
, (27)

wheref (z, θ) is actually the right-hand-side of Eq. (24) and
to a good approximation is given by Eq. (25). In effect, the
last two equations are turning the original partial differential
equation into a set of two coupled nonlinear ordinary differ-
ential equations. The resulting set can easily be solved using
an explicit ODE solver, allowing us to find the evolution of
the aspect angle. One added advantage of using this method
of solution is that there is no need for boundary conditions, in
the sense that we only need an initial condition{zi(0), θi(0)}

for each of the characteristicszi(t).
Interestingly enough, the solution to the amplitude

Eq. (13) is also easy to obtain within the framework that we
have just described, because both aspect angle and ampli-
tude have the same group velocity. Therefore, the amplitude
equation can be written in terms of characteristic paths that
are identical to the aspect angle ones. Along ak‖ character-
istic we then have

d ln Ai(t)

dt
= γeff, (28)

where γeff is the right-hand side of Eq. (13) divided by
A. This effective growth rate includes both local Farley-
Buneman growth and convective growth. One important dif-
ference between the aspect angle and amplitude equations,
however, is that while the aspect angle equation is indepen-
dent of frequency or wave number, the amplitude equation is
not. The latter is due solely to the local classical expressions
for Farley-Buneman growth/decay on the right-hand side of
Eqs. (13) or (20), and not to wave-action conservation per
se. In practice, this means that for a given set of ionospheric
conditions, one only needs to solve for the aspect angle once
for all possible wave numbers, whereas the amplitude evo-
lution will be different for each wavelength that we wish to
consider.

4.3 The handling of shocks associated with intersecting
characteristics

We have found that the origin of the large aspect angle deriva-
tives uncovered with other numerical methods was actually
linked to the fact that in many cases, characteristics end up
intersecting one another if we follow the evolution of the sys-
tem for long enough periods of time. We now discuss this im-
portant issue at length, since it requires taking some action to
“fix” the problems this feature entails.

We first provide a specific example of what we mean with
Fig. 3. In this case, we calculated the characteristics for an
initial aspect angle of zero everywhere, using a 50 mV/m
electric field and the modeling parameters described in Ap-
pendix A. Figure 3 shows the characteristic pathszi(t) for
various initial positionszi(0) between 90 and 125 km. After
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Fig. 3. Characteristic pathszi(t) obtained by solving the coupled
system given by Eqs. (26) and (27) for a 50 mV/m electric field
under the assumption of an initially perfectly field-aligned structure.

about 0.3 seconds, the paths of several characteristics inter-
sect, for reasons we will explain below. We just note for now
that since each of the characteristics propagates information
about the aspect angle and amplitude, the implication is that
from the point of intersection and beyond, the solution has
multiple values forθ andA, and as a result, multiple solu-
tions forω andVg‖ as well. We now show that such crossings
have to be discarded, and we describe the precise algorithm
that allows us to determine which one of the multiple values
must be retained.

To understand why characteristics often intersect if left to
their own devices, we should first go back to Figs. 1 and
2. These figures illustrate that even if we started with zero
aspect angles everywhere (null parallel wave-vector compo-
nents), the system would quickly evolve nonzero aspect an-
gles,k‖/k⊥, through the systematic increase inωr with alti-
tude.

The second element to consider is that the characteristics
are actually curves of constant frequency. To show this, first
notice that we can write the parallel group velocity in the
form

Vg‖ =
∂ωr

∂k‖

=
∂ωr

∂t

/
∂k‖

∂t
= −

∂ωr

∂t

/
∂ωr

∂z
. (29)

The second equality in the above equation uses the fact that
ωr only depends on time throughk‖ alone, while for the final
equality, we have substituted Eq. (12). Using the last expres-
sion forVg‖, we then find that along a characteristic,

dωr

dt
=

∂ωr

∂t
+ Vg‖

∂ωr

∂z

=
∂ωr

∂t
+

(
−

∂ωr

∂t

/
∂ωr

∂z

)
∂ωr

∂z
= 0. (30)

We can now understand why characteristics have a ten-
dency to intersect. Consider, for example, an initial condi-
tion for which the aspect angle is zero everywhere. In that
case, the lower altitudes have smaller phase velocities in the
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Fig. 4. Phase fronts calculated from the crossing characteristics of
Fig. 3 at intervals of 0.1 seconds. This figure shows that some char-
acteristics are associated with multiple phase values: for example
S(117 km, 0.8 s) has values of 395 rad, 415 rad and 425 rad all at
the same time and place.

perpendicular direction, simply due to their larger collision
frequencies. As a result, however, the aspect angle must in-
crease with time at these lower altitudes (see again Fig. 2).
According to Eqs. (11) and (6), this causes an increase in9

as well, which implies a decrease inωr for a given altitude.
But since Eq. (30) requiresωr not to change, the only solu-
tion is to counter the increase in9 created by the increase
in k‖ with a decrease in90. This makes it necessary for the
characteristic to move to a higher altitude. In other words,
the evolution of the aspect angle forces the characteristics to
move upwards, consistent with the presence of an upward
group velocity. In the example discussed here, the character-
istics intersect simply because the characteristics originating
at lower altitudes run into characteristics from higher alti-
tudes that have not themselves been moving appreciably up-
wards due to their much slower aspect evolution.

To understand what must be done with intersecting charac-
teristics, we now need to introduce the phase so as to graph-
ically illustrate how it evolves when characteristics intersect
one another. We can easily calculate the phaseS from a
knowledge of the aspect angle evolution using Eq. (8). Along
a characteristic, we simply have

dS

dt
=

∂S

∂t
+ Vg‖

∂S

∂z
= −ωr + Vg‖k‖. (31)

Using Eq. (31) we can now connect lines of equal phases
(phase fronts). For the calculations whose results are dis-
played in Fig. 3 we have plotted in Fig. 4 the phase as a func-
tion of altitude for various selected times. Figure 4 shows
that, initially, the only effect is a phase front that moves faster
at higher altitudes. At later times, however, if we let the sys-
tem evolve according to our nonlinear characteristic equa-
tions, we find that the lines of equal phases start to form a
triangular sort of loop. The loops begin at intersection points
of lines of equal phase. At these intersection points there is
a jump in the derivative of the phase with respect to altitude,
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which actually means a jump ink‖. Furthermore, beyond
that point, that is, once the curves cross, the phase becomes
multi-valued and can no longer be thought of as a proper
function of altitude. This indicates that something is wrong
either with the solution or with the equations themselves.

The hint for what went wrong and how to remedy it comes
from noticing that just prior to the crossing, when the paral-
lel wave vector (and the associated parallel group velocity) is
about to jump, its altitude derivative (second altitude deriva-
tive of the phase) is becoming very large. If we go back
to the very beginning of the theory with the original model
equation, this gives us a clue as to how to proceed. In other
words, consider Eq. (1) again, in the case of very large ver-
tical gradients in the parallel wave vector. When the parallel
wave number is about to jump, the second derivative inz has
to completely overwhelm the rest of the equation, unless the
operator that it acts on is itself zero, or very close to zero.
From this we can see that the balance of the equation is no
longer a Farley-Buneman wave, but rather a strongly colli-
sionally damped ion-acoustic wave (if we have a wave at all)
described by the equation(

∂2

∂t ′2
+ νi

∂

∂t ′
+ k2

⊥
c2
s

)
δn

n0
= 0. (32)

The implication is that as the characteristics come close to
crossing and∂2/∂z2 becomes large (this is labeled a “shock”
in the pertinent literature; e.g. Logan, 1994), the waves cou-
ple into strongly damped ion-acoustic waves. The charac-
teristic damping time is 1/νi , and has a typical value of a
few milliseconds. For the long wavelengths of concern in
the present work, this time could, therefore, be considerably
shorter than 1/kcs . Therefore, in effect, as soon as two char-
acteristics are about to collide, we have to terminate the evo-
lution of both the fast and slow parts of the wave train, given
the immediate damping the waves suffer at that point.

In spite of the reasonable mathematical understanding, the
physical interpretation behind the crossing paths and the sub-
sequent conversion to heavily damped modes is not entirely
clear to us. We can focus either on the fact that just near
the moment and place when and where some characteristics
intersect, the wave number (altitude derivative of the phase)
is about to jump in space, or we can say that there is a very
fast change in the frequency (time derivative of phase) with
time. Using the second viewpoint we can say that near the in-
tersecting region, low frequency waves arriving from lower
altitudes ram into higher frequency waves triggered higher
up. With the phase velocity being horizontal (that is, the
phase fronts moving horizontally), one can see that the phase
and any wave-like structure it represents have to be destroyed
near the characteristics’ intersection points. The fact that un-
der these conditions the only possible wave-like solution is
represented by heavily damped ion-acoustic waves (if the
ion-collision frequency is too large, there might not even
be oscillations) suggests that some form of mandatory mode
coupling may be taking place under these circumstances.

No matter what the physical interpretation might be for
shock formation, we had to adopt the following procedure in
order to avoid unphysical results associated with the limita-
tions of the model near intersecting characteristics singular-
ities: at the crossing points, given that all waves are turned
into heavily damped modes, the energy of any structure as-
sociated with the colliding characteristic paths was removed
from the structures (implicit in this choice is the fact that
the wave energy had to be given back to particles through
some heating of the plasma; however, we did not pursue the
plasma heating aspects of this problem). This procedure was
particularly easy to follow, given that the amplitudes can be
described in terms of the same characteristic paths as the as-
pect angle itself. A second part of the procedure was that in
order to be able to follow the characteristics of the part of
waves that were unaffected by the shock condition, we also
imposed that the phase remain continuous, as well as single-
valued, and we joined the lines of unequal slopes without
going through a loop. This choice ensured that we could con-
tinue to describe self-consistently the behavior of the waves
on each side of the shocks.

We have also uncovered conditions for which the charac-
teristics jumped instead of crossing over. In such cases, the
arguments regarding the fate of the waves and the continuity
of trajectories over the shocks are similar to those we have
presented here for intersecting characteristics, even though
some details obviously differ. Since the procedure we used
in such cases involves, in many ways, more of the same argu-
ments presented in the present section, we have simply out-
lined its main features in Appendix B.

4.4 Initial conditions

For the method of characteristics, initial conditions are sim-
ple to take care of. We must simply specify a starting value
of the function we are solving for each characteristic we wish
to study. For a specific starting altitude, this amounts to
specifying the initial starting aspect angle if we are solving
Eq. (27), and the initial amplitude if we are solving the ampli-
tude equation given by Eq. (28). Of course, the real physical
initial condition is on the initial density perturbation (δn/n0)
(0), which must be described in terms of an initial amplitude
A0 and an initial phaseS0. In order not to violate the assump-
tion that the derivatives of the phase are larger than those of
the amplitude, we chose to describe all initial perturbations in
terms of an initial change of phase with altitude, and selected
a uniformA0 as our initial condition.

Given that the amplitude part of the problem is linear, all
our amplitude solutions could be expressed in terms of an
amplitude ratioAi(t)/Ai(0). Our solutions will, therefore,
be presented in terms of this ratio, rather than in terms of the
amplitude itself. Since, to start with, we chose an initial am-
plitude that was uniformly distributed, the initial conditions
on the new unknown,Ai(t)/Ai(0) have, therefore, been de-
scribed as being equal to unity at all altitudes.

We studied two types of initial conditions. For the first
type, we modeled the real part of the initial density pertur-
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bation with an impulse described by a Gaussian of a given
width and peak height using the relation

δn

n0
(0)/A0 = cosS(0) = exp

[
−

(
z − z0

H

)2
]

. (33)

Solving for the phaseS(0), and takingk‖(z, 0) = ∂S/∂z(0),
this meant having

k‖(z, 0) = ±
2(z − z0)

H 2

cosS(0)[
1 − cos2 S(0)

]1/2
, (34)

where we picked one sign or the other according to the par-
ticular run being chosen, whileH described the Gaussian
width andz0 described the altitude of the peak. For many
of our calculations, we choseH = 5 km andz0 = 95 km,
which translates into a peak value for the initialk‖ values of
±2.828×10−4m−1. As we shall see below, this latter choice
turned out to produce results that are essentially equivalent
to a zero initial aspect angle condition.

For the second type of initial phase conditions, we im-
posed a fixed “tilt” to the perturbation, i.e. a uniform,
nonzero aspect angle. For these latter runs, we did not look
at the combined effect of pulses and tilts, since the list of
possibilities can in fact become endless. Our present goal is
physical insights, rather than a study of all possible cases,
and the two types of initial conditions seem to be sufficient
to meet this goal.

Specifying the initial phases was only one part of the pa-
rameters making up the initial conditions. Most importantly,
we also had to vary the electron drift velocity, i.e. the dc elec-
tric fields. It was also necessary to change the wavelength
since the absolute growth rate of the waves is affected by the
wave number for a given electric field strength. Therefore,
we studied the response of the system to wavelengths in the
range of 12 to 50 m.

5 Results

5.1 Benchmark case: 12 m Farley-Buneman waves with 50
mV/m field

We have chosen 12 m waves as our benchmark to explore
nonlocal effects. As described in the Introduction, this kind
of wavelength is now probed by several HF radars at high
latitudes, through the SuperDARN experiment. In order to
have non-negligible growth rates for this case, we have used
a fairly strong electric field, of the order of 50 mV/m (1000
m/sE × B drift). For weaker fields, destabilization through
the gradient-drift mechanism would have to be considered.
We are leaving a study of this process for the future, however.

Having chosen anE × B drift velocity equal to 1000 m/s,
we then selectedTe = Tn (electron heating is known to be-
come important only above 50 mV/m). We have also used
standard ion frictional heating theory to produce a tempera-
ture given byTi = Tn + (mnV

2
i )/(3kB). The initial condi-

tions were those discussed in Sect. 4.4 in relation to Eq. (34).

The maximum aspect angle was, therefore, 0.0310 degrees
initially. In all calculations, thek⊥ direction was held fixed
and pointing towards theE × B drift.

In Fig. 5 we display image plots of the results of our
benchmark run calculations through six panels. All panels
have contours superimposed, with the contour levels indi-
cated by the corresponding horizontal lines on the color bar.

Figure 5a shows how the aspect angle evolves as a function
of altitude (y axis) and time (x axis). Initially, the angle is
almost zero, as prescribed by our choice of initial conditions.
It then grows with time to reach a value of several degrees.
The exception is above 120 km, where the aspect angle does
not evolve at all. This is because in that case,∂k‖/∂t =

−∂ωr/∂z ≈ 0.
Figure 5b displays the phaseS, obtained by integrating

Eq. (31) in time along the characteristics. In this panel, the
contours are equivalent to wave fronts, because they indicate
curves of constant phase. This clearly shows how the wave
train curves upward due to the aspect angle becoming more
negative. In addition, a thin black line indicates the location
where the characteristics would cross, but are instead termi-
nated, as discussed in Sect. 4. This happens in such a way
that the phase remains continuous across that region (the ap-
pearance of steps being solely due to the limitations of the
plotting package), so that Eq. (12) remains valid.

Figures 5c and 5d show the phase speeds in the neutral and
ion frames of reference, respectively. In Fig. 5c, we present
the phase speed seen from the ground,ωr/k. This speed
increases monotonically with altitude (see Eqs. 11, A5 and
A4), starting with a value of zero below 90 km, where9

exceeds 10, and ending withE/B above 120 km, where9
is zero for all practical purposes. Similarly, Fig. 5d shows
the phase speedω′

r/k, that is, the phase speed seen from
the ion frame of reference. This variable also starts at zero,
but reaches a maximum at 105 km and then decreases again,
because the ions steadily accelerate toward theE × B drift
above 105 km, so that the relative electron-ion speedVd de-
creases above that height. We recall thatωr is important for
the wave propagation parameters like the phase and group
velocities, whereasω′

r determines the local growth or decay
of the wave. Since we expect the largest amplitudes where
the growth rate is zero, this means that these would occur
whereω′

r = kcs . However,ω′
r is measured in the ion frame,

so that the speed with respect to the ground would be larger,
with the exact amount depending on the height.

Next, Fig. 5e shows the effective growth rate,γeff, defined
in Eq. (28). In this panel, as well as in panel (f), white areas
are in regions for which the growth rates are too negative to
bother showing them. Notice how there is almost no growth
in regions where the aspect angle is either very small or very
large. The reason is that the growth rate from Eq. (14) is
a dominant contribution and has a peak between 0.5 and 1
degrees. For smaller values the factor9 in the numerator is
too small, while for large values the denominator is too large,
and, more importantly,ω′

r becomes too small.
Finally, by integrating the effective growth rate along a
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Fig. 5. Results from the benchmark run atλ = 12 m,Vd = 1000 m/s, andTe = Tn. Contour levels are given by the corresponding horizontal
lines on the color bar. The white spaces associated with a step function-like staircase are produced when characteristics are being terminated
to avoid crossing. The limitations of the plotting package are responsible for the dented look. The rest of the white areas associated with
growth rate plots are in regions for which the growth rate is too negative to matter.

characteristic, we have obtained the amplitude, which is
shown in Fig. 5f. In this panel we have used a logarith-
mic scale, with 0 dB representing the initial amplitude of 1.
Figure 5f illustrates that while the wave train travels through
the unstable region and grows initially, it also starts decaying
when it reaches the upper altitudes, where the aspect angles
become so large that local growth is replaced by decay. Ad-
ditionally, the upper fraction of the wave train “crashes” into
parts of the wave that have not evolved at all, and wherek‖

is, therefore, still zero, so that the vertical group velocity is
also zero as well. As explained in Sect. 4.3, when these two
parts of the wave train are about to interact, the oscillations
suddenly decay and disappear from the region.

A final parameter retrieved from our calculations is the
parallel group velocity. For our benchmark case, it can be as
large as 40 km/s (not shown) for our electron drift velocity
of 1000 m/s. Furthermore, the largest group velocities are lo-
cated at lower altitudes, as expected from earlier discussions.
Also, as mentioned earlier, our group velocities confirm that
convective processes would lead to a lifetime of, at most, a
few seconds for our 12 m wave train (20 km/s vertical speeds
in a region about 20 km thick). This confirms our earlier

inference that in order for the amplitudes to be themselves
involved in nonlinear processes (not the case in the present
work), the unstable waves must have growth rates well in ex-
cess of 10 s−1.

Our calculations can also be used to infer some of the spec-
tral properties that would be observed with radars or even
rockets, since one added benefit of our approach is that we
know the frequency of the wave train at any point in time and
space. This makes it easy to find the amplitude in frequency
space, by plotting, for example,A(z, ωr(z, t)).

Various forms of amplitude computations can be made. In
Fig. 6a we showA(z, ω′

r/k), the amplitude as a function of
altitude, and the Doppler-shifted frequencyω′

r , in terms of a
phase speedv′

ph. This phase speed in the ion frame of refer-
ence determines the growth or decay of the wave, depending
on whether it is larger or smaller than the local ion-acoustic
speedcs . From this, one would expect to see the largest am-
plitudes right at the threshold condition whereω′

r/k = cs ,
and Fig. 6a does in fact show a maximum near 500 m/s, a
typical value forcs . However, the ion-acoustic speed is a
function of altitude, due to the change in ion and electron
temperatures. Therefore, a clearer picture is obtained by



2016 J. Drexler et al.: Nonlocal auroral Farley-Buneman waves

–10

0

10

20

30

40

50

A
[d

B
]

(a)

0 200 400 600 800 1000

90

100

110

120

z
[k

m
]

v′
ph [m/s]

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

90

100

110

120

z
[k

m
]

v′
ph/cs

–10

0

10

20

30

40

50

A
[dB

]

–10

0

10

20

30

40

50

A
[d

B
]

(c)

0 200 400 600 800 1000

90

100

110

120

z
[k

m
]

vph [m/s]

(d)

0 200 400 600 800 1000
–2

–1.8

–1.6

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

vph [m/s]

A
sp

ec
tA

ng
le

[d
eg

]

–10

0

10

20

30

40

50

A
[dB

]

(e)

0

100

200

300

400

500

600

700

200 400 600 800 1000
vph [m/s]

E
ne

rg
y

Fig. 6. Frequency and aspect angle dependence of the amplitude (panels a to d) and energy (panel e) for the benchmark run shown in Fig. 5.

comparingω′
r/k andcs directly; this is done in Fig. 6b. Here,

the horizontal axis has been replaced byω′
r/kcs , meaning

that a value of 1 is equivalent to the threshold between growth
and decay. This panel also agrees with the notion that the
largest amplitude should be found near the threshold condi-
tions.

However, from an observational point of view, the value
of ω′

r is not meaningful, because it would be quite difficult
to attempt measurements in the ion frame of reference. A
more useful number is the frequency in the neutral frame of
reference,ωr , which, in our calculations, has been assumed
to be at rest with respect to the ground. Directly related to
ωr is the phase velocity of the wave,vph = ωr/k, shown
in Fig. 6c. Here, the maximum amplitude is no longer close
to cs , but rather is between 650 and 700 m/s. This is due
to the ion motion, which gradually increases with increasing
height. As a result, a ground-based observer would see the
largest amplitudes not atcs , but rather at a higher speed of
vph = cs + k̂ · vi . Obviously, at least for the flow direction
that we have selected (along the electronE0 × B direction),
the difference between Fig. 6a and Fig. 6c shows that the
change in speed can be substantial.

Next, we show in Figure 6d how the amplitude varies as
a function of phase speed and aspect angle. The maximum

amplitude occurs at an angle of about 0.8 degrees. Here, the
correlation between aspect angle and phase speed becomes
obvious, since an increase in aspect angle leads to a decrease
in the phase speed through an increase in9.

Finally, in Fig. 6e we show the energy integrated over all
aspect angles as a function of phase speed. We have ob-
tained this figure by summingA21θ along each character-
istic, where1θ is the change inθ , which varies from one
time step to the next. The result is a useful value, because the
frequencyω is constant along a characteristic, as proven in
Eq. (30). Therefore, the sum overA21θ is a measure of the
total energy for all aspect angles at one frequency, or equiv-
alently, at one phase speed. Essentially, this is equivalent to
taking the integral of Fig. 6d over all aspect angles at a par-
ticular phase speed, except that the energy is proportional to
A2, notA, and is shown here using a linear scale.

As with the previous plots, the energy reaches a maximum
between 650 and 700 m/s. The energy distribution also ex-
hibits a certain skewness as well, which is not a result of
growth or decay as such, but rather of the shock that occurs
when two parts of a wave train collide with one another. The
resulting cutoff is visible in all panels as it leaves open con-
tour regions. This happens at altitudes above 110 km and
phase speeds greater than 650 m/s. Since the amplitude im-
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mediately drops to zero at that point, the higher frequencies
are cut off, leading to the skewness seen in Fig. 6e. This
result means that the amplitudes are largest for the part of
the wave that just barely misses the shock. For just slightly
higher phase speeds, that part of the wave train will hit the
shock and be removed from the wave train before it can grow
to larger amplitudes.

The benchmark case that we have just described is one
for which the local Farley-Buneman growth rate was delib-
erately chosen to be fairly large, so that local growth af-
fected the wave train evolution in a measurable way and yet
was small enough to allow convection to affect the ampli-
tudes. This being said, convective effects must always im-
pact the final stages of the evolution, because the advective
terms on the right-hand-side of Eq. (13) become highly com-
petitive when the aspect angle reaches a degree or more.
Quite independently from this, however, the nonlocal treat-
ment plays an additional important role in our benchmark run
because the wave trains do not grow enough while they prop-
agate through the E-region as a result of the convective term
Vg‖∂A/∂z. This restricts the amplitude gains in the wave
train by limiting the time during which growth can occur.
The formation of a shock puts a further limit on the ampli-
tude gain. To assess the interplay between these various pro-
cesses, we now examine other cases through which we can
study the relative importance of the various terms.

5.2 Results from other case studies

5.2.1 Longer wavelengths

Figure 7 shows growth and amplitude results for a wave-
length of 50 m, again for a 50 mV/m field. Since the as-
pect angle, group velocity and phase speeds are independent
of the wavelength, the behavior of these parameters are the
same as that shown in the first four panels of Fig. 5. These
plots are, therefore, not repeated here. The single difference
between 12 m and 50 m waves has to do with the growth
rate, which is shown in Fig. 7a and should be compared with
Fig. 5e (as with other similar figures, the white areas in panel
a are regions for which the growth rates are too small and
negative). For 50 m waves, the Farley-Buneman growth rate,
γFB, is zero or negative almost everywhere, except for a small
region in front of the shock. Even when positive,γFB is much
smaller than in the 12 m case. Consequently, the advective
terms are now everywhere more important than local Farley-
Buneman growth, and the waves cannot grow by much, even
with a small aspect angle. A comparison between Fig. 7b and
Fig. 5f makes that point clearly enough. Not even the growth
seen just before the shock is significant, since it disappears
almost instantaneously in the shock. We conclude that even
a 50 mV/m field would not be large enough to support the
growth of 50 m waves of any significant amplitude without a
gradient-drift mechanism.

In order for 50 m waves to grow significantly with a
Farley-Buneman mechanism, a larger field is necessary. For

this reason, we present for our next case in Fig. 8 the results
from a 100 mV/m field with a 50 m wave train.

Figure 8a shows that the growth rate is similar to the pre-
vious case for the part right in front of the shock. It also
shows a much larger Farley-Buneman growth phase below
the shock region. This leads to a significant amplitude gain
between 0.2 and 0.4 s in Fig. 8b. The gain is, however, still
less than in the 12 m waves and 50 mV/m case. Compar-
ing Fig. 8c with Fig. 6b also shows a broader distribution
of amplitudes over a larger range of velocities for the 50 m,
100 mV/m case. However, the maximum is still near the ion-
acoustic speed. The broadening is a result of a larger range of
cs values near the shock, because the ion temperature profile
is increasing rapidly with altitude due to additional frictional
heating induced by the larger electric field.

Finally, as was found for the benchmark case, Fig. 8d
shows that even though the amplitude is maximal at the ion-
acoustic speed in the ion frame of reference, moving to the
neutral frame of reference shifts the peak significantly, as it
is now found at roughly 1200 m/s. The peak is also much
broader than in the benchmark case, because there is a larger
range of ion-acoustic speeds at various heights. The skew-
ness is much more pronounced as well, with a very sharp
cutoff at higher phase speeds, which occurs again at the
point where part of the wave just misses the shock. Lower
phase speeds can grow for as long as the growth rate permits,
whereas higher phase speeds collide with the shock and dis-
appear instantaneously. The additional bumps at 1800 m/s
and 1900 m/s are from the initial growth in front of the shock.

5.2.2 Variations in initial conditions

So far in our presentation we have used an initial condition
associated with an initial zero aspect angle (no tilt) super-
imposed with a small aspect angle “pulse” excited from an
altitude region 5 km wide and centered at 95 km. As dis-
cussed earlier, this meant very small initial aspect angles ev-
erywhere, even for a 50 m wavelength.

We have studied the effect of changing the initial phase
pulse on the evolution of the wave trains by varying the alti-
tude, sign and magnitude of the initial impulse. We of course
restricted the range of aspect angles to values small enough
for the wave trains to be able to grow in the first place. In all
cases studied we have found that the end result for the am-
plitude was very similar to the near-zero aspect angle initial
condition runs. The reason for this lack of sensitivity is asso-
ciated with the development of shocks, which is new to this
work. In general, subsets of wave trains that initially move
upward develop their own shocks before reaching significant
amplitudes. When, by contrast, parts of the wave trains are
made to move downward, they either collide with upward
moving trains or create their own shocks on their way back
up after reflection. Even when our initial conditions were
fine-tuned to avoid early shocks, the change in the final wave
amplitudes were not large compared to other pulsed phase
runs; the reason for this is that in order to avoid shock condi-
tions we had to use initial aspect angles that were too small



2018 J. Drexler et al.: Nonlocal auroral Farley-Buneman waves

0

2

4

6

8

10

12

14

γ
ef

f
[s
−

1
]

(a)

0 0.1 0.2 0.3 0.4 0.5

90

100

110

120

z
[k

m
]

t [s]

(b)

0 0.1 0.2 0.3 0.4 0.5

90

100

110

120

z
[k

m
]

t [s]

–8
–6
–4
–2
0
2
4
6
8
10
12

A
[dB

]

Fig. 7. Results for the same parameters as in Fig. 5 but withλ = 50 m instead of 12 m. Panel(a): effective growth rate. Panel(b): logarithm
of amplitude.
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Fig. 8. Same case as in Fig. 7 but for a 100 mV/m field instead of a 50 mV/m field. Panel(a) and(b) same as in Fig. 7. Panels(c) and(d):
same as panels (a) and (e) of Fig. 6, respectively.

for the waves to have a chance to grow during the initial
stages. At the later stages of evolution, shocks would still
be present with our pulsed initial conditions, which would
prematurely terminate the growth process.

We also studied the effects of varying the tilt or phase an-
gle of the initial object as a whole, using our benchmark case.
The tilts produced interesting modifications for the wave-
train solutions, even though figuring out just what would cre-
ate such initial conditions is not easy to see. Nevertheless,
more insights into the evolution of the nonlocal behavior can
be gained from studying such cases. In Fig. 9 we first present
the results obtained with a positive tilt as our initial condition.
This was done by selecting an initial aspect angle of−0.5◦

throughout the entire E-region, and getting rid of any addi-
tional phase angle pulse. The most important difference with
the previous figures is that we found no shocks anywhere in
this case: due to their initially large aspect angles, the char-
acteristics originating at lower altitudes bent quickly enough

to avoid the formation of the shocks.

A second consequence of starting at−0.5◦ aspect angle
is that the Farley-Buneman growth rates were larger in the
110 to 120 km altitude region. When this is coupled to the
absence of shocks, it allows the waves to grow as long as
the aspect angle is not too large (recall that the aspect angle
decreases monotonically with time in the absence of pulses,
as seen from Panel a). As expected from local growth argu-
ments, Fig. 9 shows that the amplitude in this case is a maxi-
mum when the effective growth rate is zero, that is, when it is
about to turn negative due to aspect angles that have become
too large. Since this is the case, we can also see from the
figure that, as expected,v′

ph is equal to the local ion acous-
tic speed at peak amplitude. However, because the location
of the amplitude peak is relatively high, 115 km, the phase
velocity of the large amplitude waves is still of the order of
700 m/s, with approximately 250 m/s coming from the drift
of the reference frame, namely the ions themselves.
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Fig. 9. Same case as in Fig. 5 but for an initial condition associated with a uniform aspect angle of−0.5◦. Panels(a), (b) and(c) are the
same as panels (a), (e) and (f) in Fig. 5, respectively. Panels(d), (e)and(f) are the same as panels (b), (d) and (e) in Fig. 6.

In Figure 10 we show the results associated with a negative
initial tilt, that is, an initial aspect angle of+0.5◦ throughout
the entire E-region. This case is quite different in that shocks
play a leading role in the evolution of the object. Not only
that, the shocks are also different from those discussed so far
in relation to the zero initial tilts, because both the phase and
its slope are now discontinuous. The conditions that have
to be applied to such cases are more technical than what we
have discussed thus far and, therefore, have been moved to
Appendix B.

In spite of the fact that we now have a shock produced by
the initial tilt itself, Fig. 10 clearly shows that the final am-
plitude of the waves is actually greater than in our previous
case (Fig. 9), which itself was also considerably larger than
the benchmark case. The reason for the large amplitudes of
the two tilted cases is rooted, as usual, in the fact that the
Farley-Buneman waves actually grow more in the presence
of a 0.5◦ aspect angle of either sign than at a 0◦ aspect angle.
However, even though the positively tilted case is suddenly
interrupted by shocks, it ends up with a larger amplitude than
the non-shocked negatively tilted case of Fig. 9. A study of
the growth rate plots shows why: in both cases most of the
growth takes place well above the shock region of Fig. 10.
However, for the positive initial aspect angles, the growth

continues for much longer than it does with the negative ini-
tial aspect angles. The reason is simply that the aspect angle
monotonically moves toward negative values in both cases.
Having an initial positive value ensures a longer period of
time during which the magnitude of the aspect angle is less
than 1◦. The longer growth time is obviously the single most
important factor controlling the amplitudes in this case, be-
cause the shock happens only after a prolonged growth pe-
riod. A second point of interest is that the mean phase speed
of the shocked waves (Fig. 10) is actually larger than that of
the unshocked ones (Fig. 9), in spite of the fact that the alti-
tude of the shocked waves is quite a bit lower at maximum
amplitude than for the unshocked case. The key factor in this
case is the aspect angle, which is of the order of 0.25 de-
grees in the shocked case and 0.8 degrees in the unshocked
case. The aspect angle affects the Doppler shift of the waves
more strongly in the unshocked case, since it is actually re-
sponsible for bringing the growth rate to zero. By contrast,
it is the shock in Fig. 10 that determines the maximum am-
plitude, and at that point the aspect angle is nowhere near a
value capable of slowing the waves down tocs .

One point that the different initial tilts brings forth is the
sensitivity to initial conditions. The sensitivity is relatively
easy to understand mathematically, in the sense that the as-
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Fig. 10. Same as in Fig. 10, but with a uniform aspect angle of+0.5◦ initially.

pect angle problem is actually strongly nonlinear. Nonethe-
less, the real problem is in just what triggers the Farley-
Buneman waves. If one cannot answer this question, one
cannot know what the initial conditions are and, therefore,
what the waves’ properties will be for the moderate growth
conditions discussed in the present work. We surmise that a
good seed of Farley-Buneman waves should be wave steep-
ening (or mode-coupling) associated with large-scale gradi-
ent drift instabilities. These gradient-drift waves tend to grow
at smaller aspect angles than Farley-Buneman waves. There-
fore, they should seed Farley-Buneman waves with rather
small aspect angle magnitudes. If so, the properties of waves
with moderate growth conditions should be closer to our
benchmark case than to the last two cases presented in this
section.

5.2.3 Smaller electric fields or slower growth rates

When the plasma is just barely above threshold conditions,
the growth is taken over by purely convective effects and
the amplitude gain becomes quite modest. To illustrate this
we have chosen to run our standard case with a smaller 35
mV/m electric field. At this point Farley-Buneman growth
plays a role, but not a role that is large enough to make a big
difference on the final amplitude. This case is illustrated in

Fig. 11. In Fig. 11a we first show the ratio of the Doppler-
shifted phase speed,v′

ph, to the ion-acoustic speed,cs , for
our choice of a relatively weak electric field. The main dif-
ference with the standard run is that the peak amplitude now
occurs whenv′

ph is significantly larger thancs . This is hap-
pening because there is very little Farley-Buneman growth in
the present case. The amplitude evolution is, therefore, dom-
inated by convective effects and conservation of wave action,
which allows things to grow even when local growth is weak
or even slightly negative.

To help visualize the process taking place at small growth
rates, we are also showing, in Fig. 11b, how the altitude pro-
file of the amplitude changes with time. For the first 0.3 s,
convective effects simply propagate the wave train to higher
altitudes. At the same time, the amplitude increases through
the principle of conservation of wave action. At 0.4 s, a shock
has formed, resulting in a decrease in amplitude where the
characteristics are absorbed in the shock. After this time, the
amplitude is controlled by the lower parts of the wave train.
These lower parts arrive later at higher altitudes and do not
become involved in a shock because they are associated with
characteristics that evolve slowly enough with time to avoid
crashing. However, this part of the wave train is also one
for which conservation of wave action plays a lesser role.
This means that in a relative sense, local Farley-Buneman
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Fig. 11. Same as in Fig. 5 but for a 35 mV/m field. Panel(a): same
as in Fig. 6b. Panel(b): profile of the amplitude as a function of
altitude at various time intervals.

growth is now influencing the evolution. This does produce
a growth, as illustrated by the fact that following the shock,
the amplitude grows back until about 0.6 s. However, this
growth is short-lived because it occurs at a relatively “large”
(greater than 0.5◦) aspect angle, and the aspect angle keeps
increasing with time at an increasingly fast rate. In fact, due
to this increasingly fast evolution in the aspect angle, not only
is the growth period short-lived, but it is also followed by a
steep decay. Indeed, by the time the simulation reaches 0.7 s
(not shown), there is no appreciable amplitude left.

In the end, therefore, the maximum amplitude reached dur-
ing the Farley-Buneman-dominated growth phase is less than
the gain reached during the convective-dominated growth
phase, because the wave, after the shock, does not exist for
long enough in conditions exceeding the Farley-Buneman
threshold conditions.

6 Discussion and conclusion

The central goal of this work has been to develop a tool for
the nonlocal study of high-latitude field-aligned irregulari-
ties. We have demonstrated that the altitude dependence of

the angular frequency from the dispersion relation is respon-
sible for the creation of parallel electric fields that evolve
from any initial condition, including perfectly zero aspect
angle (purely perpendicular wave vector) conditions. This is
another way of saying that the aspect angle cannot, in princi-
ple, be treated as a free parameter of the problem. We have
focused on E-region instabilities here and examined the evo-
lution of high-latitude Farley-Buneman waves initially ex-
cited in the direction of the electronE × B drift. We have
found that, in addition to the expected increase in the aspect
angle with time, the nonlinearity of the aspect angle depen-
dence is responsible for the formation of aspect angle (and
amplitude) shocks, which we have vaguely referred to as a
“crashing” mechanism. These shocks further constrain the
evolution of the wave packets that we studied by limiting the
amplitude of growing wave trains sometimes precisely in re-
gions where the local growth should have been expected to
be the largest. At other times, their most important role is
to stop the wave train evolution before the phase speed goes
down to the ion-acoustic speed.

We have compared relatively large local growth rate con-
ditions with locally weakly linearly unstable cases. For rela-
tively large local growth rates we have found that a ground-
based observer would see the structures moving at a speed
between the ion-acoustic speed and the electron drift. This
is because the waves actually tend to move at a speed close
to the ion-acoustic speed of the medium, but in the ion frame
of reference. Since, shocks notwithstanding, the convected
waves still reach their largest amplitudes near the upper por-
tions of the unstable layer, the ion component of motion in
the E × B drift direction is not negligible and the waves
are, therefore, moving at a speed that is measurably greater
than the ion-acoustic speed, but also measurably less than the
E × B drift. These results have to be contrasted with situa-
tions for which local growth rates are modest, in which case
a ground-based observer would see a phase speed that ap-
proaches the electronE × B drift. Growth in this latter case
is quite reduced and is due mostly to convective effects.

In order to explore the often-neglected physics associated
with convective effects, we had to neglect nonlinearities as-
sociated with large gains in amplitude, even though most of
the cases we studied dealt with gains in amplitude that were
several orders of magnitude strong. Such gains may well be
large enough to trigger density fluctuation levels in excess
of 1%, even if the structures were to be generated by ther-
mal noise background. However, in most of the cases that
we have explored, the amplitudes were found to be by far
their largest in a restricted region of space and for a restricted
range of phase velocities very near the ion-acoustic speed.
With this in mind, consider that one could argue that per-
pendicular mode-coupling should control the evolution of the
waves when the amplitude becomes too large. It has been ar-
gued (Hamza and St.-Maurice, 1993a) that for the geometry
that we have studied in the present work, the mode-coupling
mechanism would produce waves that would be seen to drift
at the ion-acoustic speed of the medium (as seen from the
ion frame of reference). In the end, therefore, there would be
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no real change with what we have presented, except for the
last case that we have shown through Fig. 10. For that latter
case the final phase velocities at “saturation” were about 2.5
times the ion-acoustic speed, and the amplitudes were very
large over an extended altitude regime, strongly suggesting
that convective effects were probably unable to compete with
nonlinear amplitude saturation effects. An interesting con-
sequence could be that an asymmetry between positive and
negative aspect angles maybe present in cases such as this, as
seen by the contrast between the situations depicted in Fig. 9
and Fig. 10. At any rate, we could state, in general, that if
the growth rates are so large in a particular situation that sub-
stantial growth occurs while a wave packet moves upward or
downward over a distance of a few km, nonlinear amplitude
saturation effects should dominate the wave evolution so that
the parallel wave-vector evolution discussed here should not
matter so much. Given magnitudes in the parallel group ve-
locity that are in excess of 10 km/s, a wave train would exist
for a time scale of the order of 1 or 2 s. Therefore, a rule of
thumb would be that if the waves grow at a rate that exceeds
a few tens of s−1 over an extended altitude region, convec-
tive effects would not control the amplitude evolution. This
is the situation that was in fact met in Fig. 10, which means
that the results could well be strongly modified by nonlinear
amplitude saturation effects in that case.

While we have concentrated on Farley-Buneman waves,
we could have equally well considered gradient-drift waves
simply by changing the expression for the local growth rate
in Eq. (14). The latter would not be very different from the
former in the sense that the most important consideration re-
mains the comparison between the value of the inverse of
the largest local growth rate and the time it takes for a wave
packet to move through the unstable region at the parallel
group velocity. Two new factors would, nevertheless, have
to be considered. First, there is the fact that gradient-drift
waves have their largest growth rates at zero aspect angles,
whereas Farley-Buneman waves grow the fastest at about
0.5◦ off perpendicularity. While this may not seem signifi-
cant, we should recall that the waves undergo most of their
evolution while the aspect angle varies between 0 and 1◦ off
perpendicularity. A second factor would need to be added for
gradient-drift waves excited by a sharp bottomside E-region.
In that case the variation in the background electron density
with respect to height would have to be considered given
that its gradients would be comparable to the variations in
the background neutral properties. In that case, furthermore,
the favorable gradient could be limited in height, thus chang-
ing in a significant way the convective growth phase of the
waves. For these reasons, we are leaving a study of gradient-
drift waves per se to future work.

Our present results can also be compared with those of St.-
Maurice (1985) and Moorcroft (1984). St.-Maurice (1985)
had found that a nonlocal eigenfrequency decomposition
could yield a negative nonlocal growth rate (i.e. an absolutely
stable plasma), while the amplitude of an initial wave train
could actually grow while propagating upwards at a speed of
several km/s. A wave train would reach its maximum ampli-

tude before decaying on its way out of the unstable layer. The
wave trains would change shape as they evolved: some of
the waves in an initial pulse appeared to move down first be-
fore being reflected, and sometimes catching up with the rest
of the train. St.-Maurice (1985) used an eigenfrequency de-
composition with a numerical Laplace transform technique
to obtain these results. For the convectively unstable situ-
ations studied in the present work, the amplitudes obtained
by St.-Maurice (1985) were similar to those we have shown
here for initial impulses from the lower altitudes. However,
St.-Maurice (1985) obtained larger amplitudes for impulses
started at higher altitudes. The reason appears to be related
to the shock conditions met in the present work, which were
overlooked until now, and allowed the waves to continue
their growth instead of crashing.

It is more difficult to compare our results with those of
Moorcroft (1984) because Moorcroft (1984) did not attempt
to compute wave amplitudes. He showed instead that down-
ward moving rays with small enough initial aspect angles
would be invariably reflected from the E-region, while ini-
tially upward moving rays would continue to move upward
and out of the region. On that basis he concluded that waves
with too small a local growth rate would not be able to gain
large amplitudes before exiting the E-region and should not
be observed with radars. The present calculations quan-
tify these conclusions and agree with the general features of
Moorcroft’s (1984) calculations.

We conclude that the approach proposed here for the study
of nonlocal (convective) high-latitude instabilities offers a
powerful new tool for the study of weakly growing field-
aligned modes at high latitudes. Our WKB approach shies
away from an eigenfrequency decomposition and its under-
lying implicit mode-coupling triggered by coupling with the
inhomogeneity of the medium. Instead, it allows the fre-
quency to depend on position as long as the wave vector is
allowed to change with time through the Whitham relation
(Eq. 12). For the calculation of amplitudes the method uses
the conservation of wave-action in the presence of a source
term. In general, this would amount to finding an expression
for the wave energy for the particular system under consider-
ation.

While our work should not be applied to fast growing 3 m
waves due to their very fast local growth, the extension of our
work to gradient-drift waves should have important impli-
cations, particularly for the interpretation of HF radar spec-
tra obtained from high-latitude E-region echoes. The Super-
DARN radars operate at a frequency such that the inverse
growth rates are usually small by comparison to the travel
time of wave packets through the E-region. Typical fre-
quencies would match closely the 12-m wavelength situation
that we have studied here, albeit with bottomside E-region
gradient-drift effects needing to be added, particularly for the
evening sector. For the reasons stated earlier in the present
discussion, this problem needs to be studied in more detail
in future work. Suffice it to say that E-region spectra ob-
tained from HF radars have properties that differ from other
radars. For instance, the Doppler width in velocity units is
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often smaller than at other frequencies (e.g. Hanuise et al.,
1991; Eglitis et al., 1995; Eglitis and Robinson, 1998), indi-
cating that the waves are only weakly turbulent, at least by
comparison to what is found at higher frequencies.

One aspect of the observations that our ongoing study
might already be able to address is the fact that under weaker
electric field conditions, the Doppler shift of HF waves is
suggestive of a line-of-sight velocity matching the electron
line-of-sight velocities (Villain et al., 1987; Jayachandran
et al., 2000). This seems to match what we have found for
our weakly growing cases, particularly the one presented in
Fig. 11. In this particular situation, growth turns out to be
dominated by convective processes in what could be best de-
scribed as an absence of local decay (rather than a presence
of local growth). This remains only a tentative result, how-
ever, because we need to study this issue in more detail by
introducing effects due to the gradient-drift growth mecha-
nism.
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Appendix A Altitude parameterization used in the
calculations

In order to move to a more quantitative analysis of the solu-
tion, we have introduced a very basic model of the unstable
E-region. To begin with, we have assumed a vertical and con-
stant magnetic field. The perpendicular wave vectork⊥ was
also taken to be parallel toV e0, that is to say, we have only
studied here the wave response in the electronE × B drift
direction. This means that thex-component ofk⊥ is equal to
zero sinceE is taken to be in thex-direction. In such a case,
the scalar productk · V e0 can be written askVe0.

The neutrals are furthermore assumed to be at rest. The
relative electron-ion drift consequently depends on the neu-
tral atmospheric model through the equation (e.g. Schlegel
and St.-Maurice, 1981; St.-Maurice et al., 1981).

V d = V e0 − V i0
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Here, the electrons have been assumed to beE × B drift-
ing, due to their large cyclotron frequency. As a result, the
magnitude ofV d is given by
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By the same token, the ion drift velocity is expressed by
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The above then yields
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The neutral temperatureTn was taken from the MSIS-90
neutral model (Hedin, 1991). For the electrons, we assume
that the temperature is equal to the neutral temperature. Ion
temperatures, on the other hand, are affected by frictional
heating (e.g. Schunk, 1975; Schlegel and St.-Maurice, 1981),
and we obtain

Ti = Tn +
mn

3kB

V 2
i0. (A6)

Finally, the collision frequencies were chosen to be the same
as those used by Schlegel (1983), namely

νe = 2.33× 10−11n(N2)
(
1 − 1.21× 10−4Te

)
Te
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νi = 4.24× 10−12n(N2) + 4.18× 10−10n(O2)

+2.38× 10−10n(O), (A8)

where the densities ofN2, O2 andO were also taken from
the MSIS-90 neutral model. These two expressions forνe

andνi are actually given by Schunk and Nagy (1978) and
Schunk and Walker (1973), respectively.

For completeness, also note that the perpendicular compo-
nent of the group velocity is given by

Vg⊥ =
∂ωr

∂k⊥

=
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Comparing the parallel group velocity with the perpendicu-
lar group velocity indicates that the parallel group velocity
is much larger than the perpendicular group velocity in the
range of interest, namely fork‖ 6= 0. This is consistent with
the statement made by Moorcroft (1984). By contrast, when
k‖ = 0, we immediately obtainVg‖ = 0 andVg⊥ = Vp. In
such a case the total group velocity is equal to the (perpen-
dicular) phase velocity.
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Fig. B1. Evolution of the phaseS. Same as Fig. 4 but for a structure
with a uniform initial aspect angle of+0.5 degrees. The wave tears
apart, as opposed to crashing into itself. The dotted parts of the lines
correspond to the multi-valued part of the solution and have to be
removed according to the algorithm described in Appendix B.

Appendix B Handling of shocks for the general case

Finding the location of the shock in the case shown in Fig. 4,
where the lower parts of the wave crash into the upper part, is
relatively straightforward: we only need to remove the loops
in the phase. However, this treatment does not work in the
case of a wave which has a positive initial tilt. A wave like
that has a larger perpendicular group velocity at higher alti-
tudes than at lower altitudes. As a result, instead of the wave
crashing into itself, it is torn apart, with the upper regions
moving ahead of the lower regions.

In Fig. B1 we show the phase evolution for such a case.
Here, the difficulty rests with the determination of the al-
titude at which the tear occurs, because there is no way to
make the phase continuous.

Obviously, Whitham’s relation (12) no longer applies
across the shock because the derivatives are undefined. How-
ever, we can write it in integral form, which is valid even
across the shock. To do this, we determine the phase differ-
ence between two altitudesz1 andz2 on opposite sides of the
shock, following the formalism presented by Logan (1994,
ch. 3). Even with a jump ink‖, it is valid to write

S(z2, t) − S(z1, t) =

∫ z2

z1

k‖(z, t) dz (B1)

which follows trivially from the definition ofk‖. Taking the
time derivative of this, and splitting the integral into the two
branches above and below the shocks(t), we obtain, using
the definition ofωr ,

−ωr(z2, t) + ωr(z1, t) =
d

dt

∫ s(t)

z1

k‖dz +
d

dt

∫ z2

s(t)

k‖dz. (B2)

Then, we apply Leibniz’ rule for differentiating an integral
whose integrand and limits depend on a parameter (heret),
and take the limitsz1 → s(t) andz2 → s(t), to find

−ωr+ + ωr− = (k‖−
− k‖+

)
ds(t)

dt
, (B3)

where the subscripts+ and− refer to the values on either
side of the shock. From this we obtain a differential equation
for s(t):

ds(t)

dt
=

ωr+ − ωr−

k‖+
− k‖−

. (B4)

Not too surprisingly, this equation gives the parallel group
velocity in the absence of a jump while providing a proper
generalization in the case of a shock. To find the shock’s po-
sition s(t) with Eq. (B4), we also need an initial condition.
We simply start the shock at the first intersection of char-
acteristics or at the first point where a jump is encountered,
depending on the kind of shock condition we face. Knowing
s(t), we then simply remove the parts of the solution that are
multi-valued. We do this for every time step by following one
solution until we reach the altitude given bys(t), where we
make the solution jump to the value on the other side of the
shock. In Fig. B1, this means removing the dotted parts of
the curves. The exact altitude where we remove the multiple
values is given bys(t). Comparing this to the cases where
we had loops in the phase (e.g. Fig. 4), thes(t) we find using
this procedure is at exactly the same place where the loops
start, so both procedures, loop removal and findings(t), give
the same result.
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