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Abstract. When their growth rate becomes too small, the E-1 Introduction
region Farley-Buneman and gradient-drift instabilities switch
from absolute to convective. The neutral density gradientUnderstanding the properties of large amplitude Farley-
is what gives the instabilities their convective character. AtBuneman and gradient-drift waves at high latitudes has re-
high latitudes, the orientation of the neutral density gradientmained a challenge in spite of several decades of studies.
is close to the geomagnetic field direction. We show that thisIn large part this is because the large amplitude waves are
causes the wave-vector component along the geomagnetiesually strongly nonlinear by the time they reach the ampli-
field to increase with time. This in turn leads to wave sta- tudes that dominate the radar or rocket observations. In the
bilization, since the increase goes hand-in-hand with an in-usual Fourier treatment of the instability, this means that one
crease in parallel electric fields that ultimately short-circuits should, in principle, include coupling between all possible
the irregularities. We show that from an equivalent point of modes of the system, even linearly stable ones.
view, the increase in the parallel wave vector is accompanied Some success has nevertheless emerged from analytical
by a large upward group velocity that limits the time during work dealing with the waves under turbulent conditions. For
which the perturbations are allowed to grow before escapingnstance, in work that was originally meant for equatorial ap-
the unstable region. The goal of the present work is to deyplications, Sudan and Keskinen (1979) and Sudan (1983b)
velop a systematic formalism to account for the propagationhave been able to establish that, under weakly-growing con-
and the growth/decay of high-latitude Farley-Buneman andditions, mode-coupling should lead to cascading towards
gradient-drift waves through vertical convective effects. We smaller wavelengths and should, at lower frequencies, pro-
note that our new formalism shies away from a plane waveduce isotropic turbulence in a plane perpendicular to the ge-
decomposition along the magnetic field direction. A study of omagnetic field.
the solution to the resulting nonlinear aspect angle equation on a more controversial note, Sudan (1983a) also pro-
shows that, for a host of initial conditions, jump conditions posed that the wave fields of faster-growing Farley-Buneman
are often triggered in the parallel wave-vector (defined heremodes might scatter the electrons, thereby producing an
as the vertical derivative of the phase). When these jumpanomalous” amount of diffusion. Robinson (1986) ex-
conditions occur, the waves turn into strongly damped ion-tended this idea to the high latitudes where the growth rates
acoustic modes, and their evolution is quickly terminated.can often be very large, and he used this mechanism to sug-
We have limited this first study to Farley-Buneman modesgest that the large amplitude modes should move at the ion-
and to a flow direction parallel to the electréhx B drift.  acoustic speed of the medium. St.-Maurice (1987) countered
Our initial findings indicate that, irrespective of whether or that there was a problem with the physics used in the anoma-
not a jump in aspect angle is triggered by initial conditions, |oys diffusion theories, in that the diffusion produced by un-
the largest amplitude modes are usually near the ion-acoustigtable waves is perpendicular to their propagation direction
speed of the medium (although Doppler shifted by the ionwhen in fact, one needs to introduce diffusion at right an-
motion), unless the growth rates are small, in which case theyles to that direction if the waves are to saturate in response
waves tend to move at the same drift as the ambient electrongg increased diffusion. As a result, St.-Maurice (1990) tried
to generalize the anomalous diffusion idea by including a

Key words. lonosphere (auroral ionosphere; ionospheric ir- bath of background waves pointing in all directions in the
regularities; plasma waves and instabilities) plane perpendicular to the magnetic field. He concluded
that under anisotropic turbulent conditions, the suggested
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band density levels of the order of 20%, which seemed conhbilities have been limited to two dimensions. Machida and
trary to observations. However, for weakly growing condi- Goertz (1988), as well as Thiemann and Schlegel (1994),
tions with isotropic two-dimensional turbulence, St.-Maurice used two-dimensional particle simulations in the plane made
(1990) found that an equivalent (or “anomalous”) collision by the magnetic field and thé x B directions. This approach
frequency of the order of four times the electron-neutral col-does not allow mode-coupling in the plane perpendicular to
lision frequency was possible. This result seemed to be mosthe magnetic field, which appears to be a substantial sink of
useful in the equatorial regions near the 100 km altitude re-energy for electric fields less than 50 mV/m (Hamza and St.-
gion, by providing an explanation for observed current densi-Maurice, 1993a). Nevertheless, Machida and Goertz (1988)
ties that are systematically smaller than inferred from modelfocused on the electron heating question and concluded that
calculations based on classical conductivity profiles (Gagnethe electrons were heated by perpendicular fluctuation fields
pain et al., 1977). However, the inferred anomalous collisionthrough what they attributed to be anomalous collisions in
frequencies were too small to provide a saturation mechaspite of the geometrical problems associated with this mech-
nism for the faster growing high-latitude waves. anism. Thiemann and Schlegel (1994) focused on proper-

The limited success of the anomalous diffusion conceptties observed by radars, such as the phase velocity and the
led Hamza and St.-Maurice (1993a) to explore the consepower as a function of electric field. They uncovered phase
quences of mode-coupling under strongly growing Farley-velocities of the order of the ion-acoustic speed at saturation.
Buneman conditions. They found that as long as the nonlinMuch like Machida and Goertz (1988) before them, they saw
ear evolution is dominated by coupling between modes thathe simulated electron temperature go up, but they did not
are perpendicular t®, the waves should indeed saturate at comment much on its physical origin aside from noting that
a phase velocity equal to the ion-acoustic speed, while thehis heating phenomenon was not observed with simulations
spectral width would increase to become, in velocity units,made in the plane perpendicular to the magnetic field. Their
comparable to the ion-acoustic speed at right angles to thelectron temperature increased with electric field strength, in
flow. Furthermore, the Doppler shift would not equal the a way reminiscent of observations. This being said, the num-
line-of-sight velocity of the ambient electron drift, even when ber of particles being used was relatively small and the fluc-
that speed is less than the ion-acoustic speed to start with. Atiation levels were accordingly large.
least as far as predictions on the Doppler width were con- In a different kind of numerical study, Janhunen (1992)
cerned, a reasonable agreement seems to be found for obhsed a simplified three-dimensional fluid approach to con-
servations made with radars operating at frequencies exceediude that, for relatively weak electric fields, the high-latitude
ing 30 MHz (Eglitis and Robinson, 1998). Hamza and St.- Farley-Buneman waves reach a limited amplitude because
Maurice (1993b) also estimated that the mode-coupling hythe magnitude of the parallel wave electric field increases
pothesis was consistent with a broad-band density level ofmonotonically with time. In the process, however, Janhunen
the order of 10% or less. This appears to be consistent witt{1992) found no evidence for perpendicular turbulence, prob-
rocket observations. However, just obtaining estimates forably because the electric fields he used were not large (see
the turbulent level proved to be a daunting task, even undebelow). Using a particle simulation, Janhunen (1994) later
the assumption of pure two-dimensional turbulence involv-studied the waves in a plane perpendicular to the magnetic
ing non-dispersive modes. field direction. He found that the largest amplitude waves

In order to work around the complexity associated with were at a flow angle for which the phase velocity was equal
mode-coupling, St.-Maurice and Hamza (2001) have pro-to the ion-acoustic speed of the medium, while lower am-
posed instead to do away with Fourier analysis under two-plitude waves could be found in the plasma flow direction
dimensional conditions associated with negligible wave elec-moving faster than the ion-acoustic speed. In contrast to the
tric field components along the geomagnetic direction. Theyabove quoted two-dimensional simulations that included the
introduced intermittency in lieu of a uniform wave back- magnetic field direction, Janhunen (1994) found little evi-
ground and replaced the mode-coupling description with ardence for electron heating.
equivalent nonlinear diffusion coefficient that depended on More recently, Oppenheim et al. (1995) also used a parti-
the density itself. Associated with this diffusion coefficient cle simulation in which turbulence was limited to the plane
was a total electrostatic field that rotated and decreased inperpendicular to the geomagnetic field. Among other things,
side the blobs and holes, much like in earlier numerical sim-their simulation produced a rotation of the total electrostatic
ulations by Otani and Oppenheim (1998). The evolution offield inside structures. However, the results from the simu-
the field was such as to bring saturation at the ion-acoustidations seem to produce larger rotations than expected from
speed of the medium, but in a direction that was no longerthe intermittency theory of St.-Maurice and Hamza (2001).
associated with the original electron plasma drift direction. Still, Otani and Oppenheim (1998) were able to associate the
This result had been uncovered earlier in a numerical studyotation obtained in the Oppenheim et al. (1995) simulations,
by Janhunen (1992) (see below). with coupling between dominant modes.

As indicated in the previous paragraph, numerical tools It should be clear from the above that, aside from a couple
have also been useful in improving our understanding ofof limited numerical studies, most of our progress in the un-
Farley-Buneman (and gradient-drift) waves. Thus far, how-derstanding of large amplitude E-region structures has come
ever, the studies associated with the Farley-Buneman instdrom two-dimensional studies in a plane perpendicular to the
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geomagnetic field. Such studies have, by necessity, had tevave vector). Nonlocal calculations show that not only is this
neglect the effects of electric fields parallel to the geomag-possible, but in fact nonlinear effects seem to be such as to
netic field. However, there are two contrasting situations formake the km size structures the preferred size of the system.
which the neglect of parallel electric fields cannot so easilyThe bottom line is that the system can sustain a total wave-
be justified. vector pointing essentially in the east-west direction. These
The first situation is met at high latitudes when the am- gradient-drift waves are much larger in size than their high-
bient electric field exceeds roughly 50 mV/m. In this case,latitudes counterpart because there is little at low latitudes in
much of the coupling between perpendicular modes results ithe way of parallel electric fields to damp the waves.
the production of modes that are themselves linearly unsta- A strong observational motivation for the study of non-
ble. Perpendicular mode-coupling can, therefore, no longetocal effects at high latitudes is the HF radar detection of
be invoked for the saturation of the waves. In addition, ex-modes, that in many respects look rather different from
plosive electron heating is seen to be taking place when théheir higher frequency counterpart (Villain et al., 1987, 1990;
electric field exceeds that same 50 mV/m (e.g. St.-MauriceHanuise et al., 1991; Eglitis et al., 1995; Jayachandran et al.,
et al., 1999, and references therein). This suggests tha&2000; Eglitis and Robinson, 1998). Theoretically, we know
for strong electric fields, mode-coupling must be triggering that 10—-15 m modes associated with 10-15 MHz radars (a
modes with a large parallel wave vector (i.e. electric field) typical SuperDARN range of radar frequencies) have rather
components along the geomagnetic field (Hamza and St.small growth rates, of the order of Tsas opposed to 1000
Maurice, 1993b). These modes must have a large enougb? for their higher frequency counterpart. This means, as
parallel component to be able to decay if they are to elim-we show below, that the former is strongly affected by con-
inate the accumulating wave energy. In the process, theective (or nonlocal) effects associated with changing par-
“large” parallel electric fields also heat the electrons. Theallel electric fields. This could have important implications
word “large” has to be put in quotes here because, on averfor the Doppler shift of the waves. It might be at the origin
age, only wave vectors at 2 ot @way from perpendicularity of some important differences between HF observations and
are needed (St.-Maurice and Laher, 1985). higher frequency observations. For instance, there are many
The second situation for which parallel electric fields indications that, under moderate to weak electric field condi-
should not be neglected is, somewhat paradoxically, the options, the Doppler shift of the waves is equal to the line-of-
posite of the first, namely one for which the growth rates sight velocity of the electrons (Villain et al., 1987; Jayachan-
of the waves are so small that the waves become convedran et al., 2000). This being said, there is also a statistically
tively unstable through the inhomogeneity of the mediumclear trend for 10 to 15 m E-region waves to saturate at ap-
(St.-Maurice, 1985). This situation, which will be the focus proximately 450 m/s (Milan et al., 1997; Lacroix and Moor-
of the present work, has been labeled a “nonlocal” problemcroft, 2001) under certain conditions. These conditions may
in the high-latitude context. The problem becomes nonlocalvell have to do with the larger growth rates associated with
because the altitude variations of the collision frequencies oktronger electric fields. In that case, convective/nonlocal ef-
ions and electrons are forcing the modes to evolve along théects might be less important.
geomagnetic field. This evolution is caused by an altitude In the present paper, we primarily seek to establish a sys-
change in the eigenfrequency, as well as in the relative iontematic framework for the study of nonlocal effects in the
electron drift. The resulting parallel electric fields have an high-latitude E-region. Our ultimate goal is a proper descrip-
important impact on the evolution of the waves because theyion of the evolution of slowly growing modes, such as those
can quickly short out the waves, i.e. lead to wave saturatiorthat are often detected by HF radars. For simplicity, our main
(St.-Maurice, 1985; Janhunen, 1992). The fact that the unstafocus in the present work will be Farley-Buneman waves,
ble part of the E-region is only 20 km thick and that waves even though we will indicate how our work can be later gen-
cannot grow if the aspect angle exceeds approximately 1eralized to gradient-drift waves.
also means that the structures should not exceed 100 m in the In Sects. 2 and 3, we use a WKB approach to introduce
direction perpendicular to the magnetic field (e.g. Janhunenthe concept of a “frequency” that is defined in terms of a
1992; St.-Maurice and Laher, 1985). local variation in the phase of the solution to the standard
We should point out that the high-latitude nonlocal prob- Farley-Buneman wave equation. Unlike the frequency met
lem differs in one important respect from nonlocal equatorialin the plane wave decomposition used in standard Farley-
studies (e.g. Riggin and Kadish, 1989; Ronchi et al., 1991;Buneman or gradient-drift theory, the generalized frequency
Hu and Bhattacharjee, 1998). At low latitudes, the back-is viewed as a non-trivial function of position. This proves
ground inhomogeneities are perpendicular to the horizontalrery useful for a description of the evolution of slowly grow-
magnetic field lines. This means that the low-latitude struc-ing modes. Once the generalized frequency and wave num-
tures are not limited as much by an aspect angle constrainbers are introduced, we derive the propagation and ampli-
even in the presence of a 0.8spect angle, they can reach tude equations through the use of a multi-scale expansion
a few km in size in the east-west direction. However, non-in time and space. We show in Sect. 3 that the amplitude
local calculations are still needed for these kinds of sizesequation thus retrieved agrees with the principle of conser-
if the structures are to reach 10 km sizes in the vertical di-vation of wave action as long as allowance for a contribu-
rection (so as to maintain a basic east-west direction for theion from spontaneous growth is made, since the waves are,
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structure (irregularity) would undergo in physical space if it were
Fig. 1. Phase changes with time and space for a frequency tha’pitially perfectly field-aligned.. The v<_artic_al is alon_g the magnetic
increases with altitude. All altitudes are assumed to be in phasdi€!ld and the electro x B drift direction is to the right.
initially.

Instead, its value changes with time in a manner that has to be

after all, linearly unstable. Section 4 describes some unusugionsistent with the variation of the frequency with altitude.
properties of the resulting equations (intersecting character] 0 be precise, this relation is given by the Whitham relation
istics) and how we used physical and mathematical reasonin§hown by Eq. (12) below.

to handle the ensuing shocks. Section 5 describes the results e should add that the temporal evolution of the parallel

of our calculations. We introduce a discussion of the possiblevave vector is not necessarily important for the evolution of
implications and our conclusions in Sect. 6. the waves. For it to be important, in practice, the wave has

to grow so slowly with time that nonlinear amplitude satura-

tion processes (e.g. Sudan, 1983a; Hamza and St.-Maurice,
2 Physical description 1993a) will not take control of the wave evolution before the

parallel wave vector does. To assess what kind of growth
Before delving into the mathematical and numerical intrica- rates are required for the wave vector to matter, we can com-
cies of the problem at hand, it should prove useful to describepare a typical growth time with the time it takes for a wave
the physical processes that drive the equations and their solyacket to travel through the unstable high-latitude E-region.
tions. While we go back to the details of the derivation below, If the travel time is such that the growth is too small for non-
we wish to stress here that in the standard analysis of Farleyinear processes to take place, then convective effects asso-
Buneman (and gradient-drift) waves, the eigenfrequency reciated with the parallel wave-vector evolution will have to
sulting from a plane wave decomposition is actually a func-matter.
tion of position. Specifically, the frequency increases with  This leads us to the fact that the wave vector enters the
altitude through the height dependence of the electron andvave evolution picture mathematically partly through its im-
ion collision frequencies (see Eq. 11). pact on the parallel component of the group velocity. Un-

Once it is recognized that the eigenfrequency is a functiorless the parallel wave vector is strictly zero (in which case

of altitude, one has to accept that the parallel wave numbethe parallel component of the group velocity is also zero),
becomes a function of time. This is illustrated by the sketchthe parallel group velocity is of the order of 10 to 30 km/s
shown in Fig. 1. The figure is made of a series of oscilla- (Moorcroft, 1984). Since the unstable part of the E-region is
tions from various heights. Initially (i.e. = 0 in the figure)  only approximately 25 km thick, this means that waves with
the phase of the oscillations is the same at all heights. Howa growth rate of the order of 1 to 10 5are very likely to
ever, we have introduced a frequency mismatch between vaibe affected by convective effects before nonlinear amplitude
ious altitudes, with the higher frequencies on top, as in thesaturation mechanisms have a chance to come into the pic-
real ionosphere. After enough oscillations (no matter howture. Alternatively, we can link the parallel wave vector to a
many it takes in real situations), a phase change with altitudgoarallel electric field: as the magnitude of the parallel wave
starts to build up in a way similar to that shown in Fig. 1. vector increases, a pointis reached at which the waves can no
Such a phase change is equivalent to the introduction of atonger grow because, physically, the parallel electric field as-
oscillation along; at the later times, where there was none sociated with the parallel wave vector (the waves are electro-
initially. A wave vector component along thedirection is,  static) is short circuiting the instability through the response
therefore, building up with time. This means that, in princi- of the highly mobile electrons along the magnetic field lines.
ple, the wave vector component parallel to the magnetic field A different way to visualize the role played by the parallel
cannot be considered to be a free parameter of the problenwave vector is to imagine the instability process as a positive
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feedback mechanism that enhances an initial density pertur3 Basic derivation
bation in time and space. This approach has been followed
by St.-Maurice and Hamza (2001) for the two-dimensional To derive the differential equation that describes the per-
case for which parallel electric fields and wave vectors wereturbed potential, we follow the standard linearization proce-
neglected. When adding the latter, the picture becomes thredlure that can be found in many papers (e.g. Sudan, 1983b)
dimensional. This situation is illustrated in Fig. 2 through but with allowance for a time-space description that includes
a two-dimensional cut for the case of an initial elongatedthree dimensions, not just two (St.-Maurice, 1985). Briefly
shoebox-like density enhancement along the magnetic fiel§tated: we use the electron and ion continuity equations in the
(zero initial parallel wave-vector situation in Fourier space). a@bsence of chemical production terms, and the electron and
For simplicity, the magnetic field in our illustration is aligned 10N momentum equations with the assumption of isothermal
with the vertical direction. Also notice that the lack of an ini- €lectrons and ions. The electrons are furthermore assumed
tial structure along the magnetic field is arbitrary but itis con- to be fully magnetizedy, <« ., wherev, is the electron-
sistent with the picture drawn in Fig. 1. Finally, as describedneutral collision frequency an@, is the electron cyclotron
in St.-Maurice and Hamza (2001), it is important to realize frequency), while the ions are taken to be weakly magnetized
that the instability starts by having the side of the blob thatis(vi > €2;). Using charge neutrality:{ = n.), linearizing the
in the direction of the electroB x B drift become negatively ~€quations and assuming an e4p_ - x) dependence in the
charged. plane perpendicular to the magnetic field, we then obtain the
following linearized partial differential equation in terms of
the perturbed densityn /no:

As far as the time evolution of the initial shoebox is con- 2 1202
cerned, the fact that the frequency increases with heigh& |:( 0 + wi + k2 2) 5_”:| _KiVe
0

means that the box becomes distorted after some time, dudz? | \ 31”2 arr LS
to a faster motion (i.e. horizontal group velocity; see Ap- 52 P
pendix A) at the top than at the bottom of the shoebox. |:—/2 + v; < + —)
This image seems to be closely analogous to what Janhunen !
(1992) calls a “tilting wave tower”. In any event, as the v on

distortion, or “tilting” becomes measurable, the positively +kicsz + \y—lkJ_ : Vd]_ =0, (1)
charged edge of the box ends up resting on the same mag- 0 "0

netic field line as the other, negatively charged edge. Thisyhere; is along the magnetic field direction and where
means that the size of the box is shrinking, particularly lower

down: as parallel electric fields form, the more mobile elec- ¥y = Vel , (2)
trons from the negative side of the irregularities are moving §2.82%

up, in response to these fields. The shape of the box is, therey 9

fore, changing as the negative bottom moves upwards towar% =5 +iki-Vio ©)
the positively charged top. The motion is faster in regions

with larger tilts, i.e. in regions with larger shears in the phaseVa = V.0 — Vio (4)

velocity w, /k. This motion is reflected in the 15 km/s or . .
greater upward parallel group velocities that can be found™S @ check on the algebra, we note that if we Fourier an-

particularly near the bottom, where the aspect angles tend t8'YZ€ Ed- (1) in time and along the magnetic field in space,
be largest initially, at least for the case evolving from a zeroWe recover the standard local dispersion relation (e.g. Kelley,

aspect angle initial condition. 1989), namely
o (@ +iv) +ig @ —ki- Vo) —k2c =0, (5)

We conclude that parallel electric fields have to be ex-
pected everywhere around the distorted shoebox, albeit with )
smaller values at the top than at the bottom of the structures (ki kj 93)

=WYo

ere

(6)

since the shears are larger lower down. For the geometry” — K2 kz_vez
and situation depicted in Fig. 2, this means the creation after

some initial time of upward group velocities throughout the and wherev’ = w — k, - V;0. This being stated, it should be
unstable layer, with the faster group velocities at the bottomnoted that while the perturbed potential and perturbed densi-
initially. This means not only that wave energy tends to beties are usually assumed to be proportional to one another, the
advected towards the top of the unstable layer, but also that ikquations for the perturbed potential and the perturbed densi-
becomes enhanced at the top through a compression assoties are not quite the same because the high order derivatives
ated with a convergence in the parallel group velocity. Thisdo not commute. This means that in the first term in Eq. (1),
picture should help us to understand the features that emergée order of the time and space derivatives for the perturbed
from the formal calculations undertaken in the sections thatpotential is the reverse of what we obtain for the perturbed
follow. density field. This might imply, in turn, that the evolution
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. o . 2
of the potential and perturbed densities is not quite the samed” [i (5_n)} ~ (ikfa);A ok 8((;}A)
no Z

along the magnetic field direction. dz2 [t/

As observed in the previous section, the problem with a ok A

TS ; ; Nl ly - k2—> 'S (9e)

plane wave decomposition inandk is that when the colli- "oz [Py
sion frequencies and; are changing in space, the frequency
should be taking a value that changes with altitude. This is )
contrary to the very assumption used in obtaining an eigen-a_ J (5_”> ~ (kza)/ZA 4+ {Zkza)’ %
value plane wave decomposition and constitutes an essentialz? | 9t'2 \ no = 1™
part of the so-called “nonlocal” problem. A decomposition e/ 3(Aw?) "
into a superposition of plane waves was used by St.-Maurice +kﬁ ©r4_ 2 aAawr) _ w;Z_”AD s, (9f)
(1985) to tackle this nonlocal problem, using a Laplace trans- ot 9z 9z

f_orm to solve the problem for impulses given qt various a"where we recall tha/a:' is defined by Eq. (3).
titudes. It was found that the nonlocal/convective character

of the instability was important for waves greater than 10 m3.1  Phase relationships
in size, and that the waves could reach a peak amplitude as
they convected through the unstable region, without requir-Equations for the local phase change, as well as for the am-
ing a nonlinear saturation process. The approach used bylitude, can be obtained from Eq. (1), using Eqg. (9a) to (9f) if
St.-Maurice (1985) was unfortunately subject to numericalwe assume tha¥y « 1. After dividing by the term ex@S),
difficulties in that Laplace transforms are difficult to invert the leading order balance between the remaining imaginary
numerically and the results are difficult to interpret at times. terms then gives the equation for the frequency, whereas the
Therefore, we have used a different approach here, whiclbalance between the real terms produces the amplitude equa-
has the added advantage of shedding some new light on thison. We also neglect temporal and/or spatial derivatives of
physics at work. the kind|dIn A/9¢| when compared t¢w,.|: as a reference
Our method of solution is based on a WKB-style solution point, note that this means that none of the terms in the curly
to the differential equation given by Eq. (1). We simply write brackets in Eq. (9a) to (9f) end up being used in the process.
that the perturbed density (and the perturbed potential for that With the procedure just described, the leading order equa-

matter) has a solution of the form tion for the frequency becomes

(S”l / k : Vd

o A(z, 1) exgiS(z, 1)]. (7 o T (10)

However, in a departure from the standard WKB procedure,i-e-

we prescribe that both andS be real with the key, but rea- k-Vgy Yk Vio (1)
: 10,

sonable assumption, that temporal and spatial derivatives of" T 1 + W

the amplitudeA are much smaller than the temporal and spa-snd we recall that is given by Eq. (6) once we take= k.

tial derivatives of the phasg. Therefore, we model growth While Eq. (11) may look like the standard expression, we
not through an imaginary part of the phase, but rather throughemind the reader that there is an important difference with
a time derivative of the amplitude itself. We also define thehe ysual result from the classical dispersion relation in that
“frequency”w, and the “parallel wave vectok| interms of  he frequency and parallel wave number are not assumed to

local derivatives of the phase, viz. be constant here. These variables are allowed instead to truly
change with altitude. Our equations can be viewed as plane
, 1) = —0S8(z,1)/0t ! . an b
ot «0/ wave solutions only when altitude derivativesunand V,
kj(z,t) = 08(z,1)/0z. (8)

can be neglected, which is not something that can be done at

With these definitions and assumptions and if we keep alloWer frequencies. o
leading order real and imaginary terms (even though real and The above consideration also implies that, contrary to the

imaginary terms are not of the same order), we obtain belief ropted in the standard local theory, the parallel wave
number is not a free parameter of the problem. Rather, there
9 (dn\ (0A is is a simple connection between the parallel wave number and
——)=|——-iwA]e (9a) T . .
at’ \ ng ot the frequency, which is trivially based on their local defini-
tions, as posited in Eq. (8). Namely, we must have
32 (én 24 forgr 24 4 90, 1Y is @) ok S0
— | — )~ |- — 12w, — +i— e r
312 \ ng r FY; ar’ o 2 (12)

ot 0z

d (én 0A is This constitutes what is sometimes called the “Whitham re-
9z <n_o) = <8_z * ’k|A> ¢ (9€) " Jation”. Its use allows us to tackle our nonlocal problem rel-

atively simply by solving the differential Eq. (12), together
9% (on\ _ 2 . 0A Ok is with what in effect amounts to be a standard-looking root to
922 (_> ~ <_k|A + {Z’kl_z + ’_ZAD ¢ O the dispersion relation given by Eq. (11).

no ad
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3.2 Amplitude equation Clearly from Eqg. (17) we could derive an amplitude equa-
tion using the conservation of wave energy rather than wave
A second important difference with the standard procedureaction only if temporal and spatial variations in batl and
is the generalization of the simple growth rate expressiony were to be negligible, as seen from the expression for the
through a term that includes a convective derivative of thefrequency, Eq. (10). However, if nothing else, above 110
wave amplitude and other quantities as well. As describedkm, the ion drift does change rapidly with height as the ions
above the new amplitude balance can be obtained for the casgart to acquire th& x B drift, due to their decreasing col-
at hand by using the balance of the real terms left from usingdision frequencies (see Appendix A for more details). This,
Eq. (9a) to (9f) into Eq. (1) after dividing by ei®). Alter-  according to Eq. (4), rapidly bringg, to zero. The proper
natively, Eq. (1) can be multiplied by the complex conjugate conservation law that we should use must, therefore, be the
of 6n/no, and added to the equation for the complex conju- conservation of wave action and not the conservation of wave
gate ofSn/ng after it has itself been multiplied by /ng. All energy.
quantities involving fast time or spatial changes then cancel |n order to show that Egs. (13) and (17) are equivalent,
out, leaving us with the long time scale, slow spatial scalewe first need an expression for the energy of the waves for

description. the problem at hand. In the ion frame of reference, the wave
Either one of these procedures brings the result energy is given by the sum of the electron and ion kinetic

9A 9A energy _and the electro_st_atic potential energy of the waves.

o1 + Vg”a—Z =yA Due to its small mass, it is easy to show in the present case

that the electron kinetic energy is approximatély smaller
} , (13)  than the ion kinetic energy, i.e. much smaller than the ion

A I:Ma—k” B 2Vq 3_\11 2Ve 0k -Vy

21k 9z 1+W oz k-Vg 0z kinetic energy at most altitudes of interest here. This leaves
where us with
1 : SEx|?
(P — kAW Ui ~ Znom;|8vi |2 + €olOExl®
yV=—m o — (14) 2 2
A+ Ww)y; 2 2
_ ' i L 9F E 18
is the standard classical growth rate. In Eq. (13) we have = 5”0mi| vl”+ E”OmiFT- (18)
used the symbaoV, to represent the expression Pt
2 The second term is normally considerably smaller than the
__ Kk Va 2K 15 first, while we can also write
Vel 0 : (15)
AL+Ww)2 k2 2

eSEy

m;v;

As the symbol suggest¥y is the parallel component of the |80y | ~ (19)

group velocity, as can be seen from using the definition
We can use this expression in the first term of Eq. (18),

Vg = @ (16) keep only that first term, and plug the result in Eq. (17). Us-

ok ing y A for the source tern® after the equation is expressed
in terms of the amplitude of the fluctuations instead of the en-
ergy itself, we then obtain from conservation of wave-action
he equation

The fact that we have a convective derivative on the left
hand side of the amplitude equation and that the first ter
on the right-hand side just describes the local growth rate,
is very suggestive of a conservation principle being at work 3 A A A [ Vg 0k 2Vg 0V
here. This is indeed the case, with the conservation principley, + Vel PP yA— ) [k_ua_z T1rw gz
being the conservation of wave action (e.g. Bretherton and Q4 W)WV, k- V Inn
Garret, 1969), of which conservation of energy is just a par-  + 8ll d Vel 0]
ticular case. Conservation of wave-action states that, if the k-Va dz 9z

local frequency changes slowly enough in space and time, There are two small differences between Egs. (20) and

(20)

we should have (13). First, the last term on the right-hand-side of Eq. (13) is

3 (U V Uk 2/_(2 -|— v) sma!ler than th_e_ same term_ in Eq._ _(20). Howgver,

%\ N—)=F 17) this difference is not significant for an instability calculation,
r r

because the waves only grow whe&nis small and, con-
where Uy is the energy of the waves. We have added aversely, whenl becomes significant, the waves are quickly
source termP to the textbook expressions to account for the damped. The second difference is with the last term on the
sources/sinks of free energy that give/extract energy locallyright-hand side of Eq. (20), which is simply not present in
to/from the waves. For instance, in the classical (local) treat-Eq. (13). The origin of that term is withg in the energy
ment of the Farley-Buneman instability, variationsuifare density expression (18). Itis quite difficult to assess from the
neglected and a balance is assumed between the source tealgebra if this discrepancy between the two results is due to
and the first term on the left-hand-side of Eq. (17). an inconsistency in the assumptions made in the derivation
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of the dispersion relation (terms tinng/dz were explic- 4 Solving for the phase and amplitude of nonlocal
itly dropped from the algebra) or if it is linked to a violation modes

of the “small spatial variations” requirement (Bretherton and

Garret, 1969) in the expression used for the conservation of-1 Aspect angle as a nondimensional parameter
wave-action. Fortunately, the question is a bit academic in o ) o
the present context because, within the current formulationB€fore obtaining solutions for the system at hand, it is im-
it would be inconsistent for the logarithmic derivative of the POrtant to point out that for a fixed flow angle direction (a
background ion density to be able to compete with the othefXed direction ofk ), the evolution equation for the aspect
derivatives in Eq. (20). This suggests that Eq. (13) is actually?"9€¢ = k;/k 1 is independent of both components of the

consistent with the approximations that were used to arrive/Vave Vector. This can be seen by combining Eq. (12) with
(11). We then obtain

at that point.
The main emphasis to draw from this analysis is that the 3¢ alk-vy, .

amplitude equation is indeed an expression of the conservas; = e {1+ o +k- Vi01| ) (21)

tion of wave-action and could be derived on that basis rather

than with brute-force algebraic techniques. This is importantwherei( — k/k andW now takes the form

to note if one were to apply our methodology to other high-

latitude irregularity problems. The connection with conser- Q2

vation of wave-action is also useful in order to recognize the¥ = Yo [1 + v—592:| - (22)
e

physical principles behind an unfamiliar algebraic expression
like Eq. (13). From now on, we will deal with the aspect anglanstead
of the parallel wave vector itself. The main advantage is that

3.3 Impact of the sign ok on the evolution of the wave- the aspect angle equation is the same for all magnitudes of
trains the wave numbet.

In our analysis we will assume that we have positive frequen-A"2 Finding the characteristics of the waves

ci_es. This means fron_1_ Egs. (10) qnd/or (11) that V”_I . While we have already shown that the aspect angle (i.e. the
will be considered positive. According to Eq. (15), this in 51161 wave vector) has to change with time if the altitude
Furn means t_hat the group Ve|0CIty.WI.|| have to_ be neg""t'vedependence of the frequency cannot be neglected, one ad-
if kj is positive. To u.nderstand t'h|s in a physical context, vantage of the WKB approximation is that wave propagation
one could returrj _t(,) Fig. 2 and plctu.re what Would'happenand wave growth/decay can be described as separate pro-
if the top of the initial shoebox was tilted to the left instead .o cag Clearly from the WKB ordering, the amplitude de-
of being aligned with the magnetig field. In that particul_a_r ends on the aspect angle (see Eq. 13), while the aspect angle
case, negative charges would be sitting on_top_ of the pos't'v‘gvolution does not depend on the amplitude (as can be seen
charges (so that an upward parallel electric field would ac; 1 Fos 21 and 13). Therefore, finding the evolution of the
company a p?,s't"’é\l with our sign ponventlon). The Iarger waves is simply a matter of solving the aspect angle equation
electron mobility along the magnetic field at greater aItltudesﬁrst, and then solving for the amplitude in terms of the as-
WOUId_ t_h_en mean that the box would erode from the top, atpect angle. However, the aspect angle evolution equation is
least iniially. This would corre_spond to a negative parallel also clearly nonlinear. Therefore, even though the amplitude
component of the group velocity. The trend would tend to equation itself remains linear, nonlinear effects can affect its

reverse With, time pecause the. shear§ in the phase Vglocngvolution through the aspect angle behavior. As we show be-
would stea_dlly rebuild forward tilts. This would happen first low, the fact that the aspect angle equation is nonlinear has
at lower altitudes where these shears are more pronouncedmore profound implications for the amplitude evolution than
The effect of the shears on the evolution is confirmed in¢could have been guessed at first, because it often leads to the
mathematical terms through Eq. (12), at least if the aspecformation of shocks.
angles are small. Equation (12) predicts that for positive fre-  \we have explored various ways to solve the nonlinear as-
quencies that increase with heighkf, decreases monotoni- pect angle equation. At first we tried finite difference types of
cally with time, sincew, increases monotonically with al- schemes, but found that there was a tendency for very large
titude. This is indeed consistent with the evolution of the S|Opes to evolve in the aspect ang|e‘ The Origin of this Steep_
shoebox that we just presented. ening in the slope was not clear but it required introducing
Finally, it is easy to see that the sign kf has at least artificial diffusion in the solver. In turn, this raised some
the potential to affect the amplitude results. In particular, if questions about the validity of the solution. In order to gain
ky is initially chosen to be positive, it will tend to reverse more insights into what was really going on, we switched to
its sign, andV, will follow. This sign reversal will affect the more analytical method of characteristics. This method
the propagation of waves in potentially interesting ways duehas several advantages, as we now hope to show.
to the influence ofV,; on the amplitude evolution through The method of characteristics can deal efficiently with the
Eq. (13). nonlinearity presentin Eq. (21), through tiifactor. It turns
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out that with this method, we can follow not just the propa- where we have used the definition given by Eq. (16). Along
gation paths of a set of an initial aspect angles, but also (“acthese characteristics, the equation for the aspect angle evolu-
cidentally”) the amplitude propagation paths as well. tion becomes

To start with, we must focus on the evolution of the as- d6; (t)
pect angle and parallel group velocity. The first step is to —
find the characteristic paths of the waves. Fortunately, nei-
ther aspect angle nor the parallel group velocity depend orwhere f (z, 0) is actually the right-hand-side of Eq. (24) and
the amplitude, so that we can actually go through with thisto a good approximation is given by Eqg. (25). In effect, the
approach. Finally, it should be pointed out that for an in- last two equations are turning the original partial differential
homogeneous medium, the ray tracing associated with thequation into a set of two coupled nonlinear ordinary differ-
method of characteristics is associated with lines of constanéntial equations. The resulting set can easily be solved using
frequencies rather than lines of constant wave numbers oan explicit ODE solver, allowing us to find the evolution of
phase velocities, as would be the case for homogeneous méie aspect angle. One added advantage of using this method
dia (e.g. Kundu, 1990, Chapter 7). This is because the raysf solution is that there is no need for boundary conditions, in
are following the group velocity, which is the path of prop- the sense that we only need an initial condit{ei(0), ; (0)}
agation of energy. In the present case, a quick glance at ouor each of the characteristigs(r).
expression for the group velocity shows that it can have di- Interestingly enough, the solution to the amplitude
rections that are anywhere from parallel to the phase velocityEq. (13) is also easy to obtain within the framework that we

= f(zi (). 6: (1)), (27)

to practically perpendicular to the same phase velocity. have just described, because both aspect angle and ampli-
The first step in finding the wave propagation is to expandtude have the same group velocity. Therefore, the amplitude

thez derivative in Eqg. (12) in the form equation can be written in terms of characteristic paths that
are identical to the aspect angle ones. Alorig aharacter-

dor _ (a“’r> n %ﬂ (23)  istic we then have

9z 0z /4 ok 0z

I dlnA; (1)

—— = Yeff. (28)

The notation on the right-hand side means taking the par-  dt

t|a| deri\/-ative Ofa),- W|th respect th, Wh|le keeplndc” con- Where )/ef-f iS the I’ight-hand Side Of Eq (13) d|V|ded by
stant. S_mce_zo,_ depends or both explicitly tthUQh\po'. a5 A. This effective growth rate includes both local Farley-
well as implicitly throughk; (Eqs. 11 and 6), this notation is g0y, growth and convective growth. One important dif-
necessary to distinguish how we take the partla_tl denvatlve,ferem:e between the aspect angle and amplitude equations,
l-€. whether we aIIovl.cH t(? chgnge or not. The plgi?‘wr/az. however, is that while the aspect angle equation is indepen-
W|_Il_mean the fuII_denvatlve, including both explicit and im- dent of frequency or wave number, the amplitude equation is
pI|'(§|t dehpender;‘mgs ;mh - th Eq. (12 not. The latter is due solely to the local classical expressions
. orEt € r2n3et. Ot orc %raCtsr'S“zs’ we ds:r?rt V;'t. qid?( )’for Farley-Buneman growth/decay on the right-hand side of
\(/jvrlt_e a- (23) Il’r: ?rfr?io dan_dwr/f é anlz en ;lng av h Egs. (13) or (20), and not to wave-action conservation per
erivatives to the lefi-hand side of Eq. (12) to end up wit se. In practice, this means that for a given set of ionospheric
Y 90 3wy /k1) o4 conditions, one only needs to solve for the aspect qngle once
=75 ) (24) for all possible wave numbers, whereas the amplitude evo-
0 lution will be different for each wavelength that we wish to
This way, the right-hand side is independené@fdz. For ~ consider.
example, under the assumption that the ratio of the collision . . o .
frequenciesy; /v, can be considered constant with altitude 4.3 The handling of shocks associated with intersecting

in the unstable region, the right-hand-side of Eq. (24) would characteristics
become o .
. We have found that the origin of the large aspect angle deriva-
d(wy/k) k-Vy tives uncovered with other numerical methods was actually
- ( 9z )e - 14+ W linked to the fact that in many cases, characteristics end up
2,2 intersecting one another if we follow the evolution of the sys-
x 1 0o _ v 0In(vi/ <) (25) tem for long enough periods of time. We now discuss this im-
1+W 9z 1+40%/Q7 9z portant issue at length, since it requires taking some action to

i I “fix” the problems this feature entails.
W|th_the derivatives of fully accounted for on the left- We first provide a specific example of what we mean with
hand-side of Eq. (24), we can now use the method of CharacFig. 3. In this case, we calculated the characteristics for an

teristics to solve fof. This means solving along a character- initial aspect angle of zero everywhere, using a 50 mV/m

istic pathi defined by electric field and the modeling parameters described in Ap-
dzi (1) pendix A. Figure 3 shows the characteristic pathg) for
= Vi (zi (1), 6: (1), (26)  various initial positiong; (0) between 90 and 125 km. After

dt
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Fig. 3. Characteristic paths; (r) obtained by solving the coupled Fig. 4. Phase fronts calculated from the crossing characteristics of
system given by Egs. (26) and (27) for a 50 mV/m electric field Fig. 3 at intervals of 0.1 seconds. This figure shows that some char-
under the assumption of an initially perfectly field-aligned structure. acteristics are associated with multiple phase values: for example
S$(117 km 0.8 9 has values of 395 rad, 415 rad and 425 rad all at
the same time and place.
about 0.3 seconds, the paths of several characteristics inter-
sect, for reasons we will explain below. We just note for now ) o ) ) -
that since each of the characteristics propagates informatioR€rpendicular direction, simply due to their larger collision
about the aspect angle and amplitude, the implication is that'eduencies. As a result, however, the aspect angle must in-
from the point of intersection and beyond, the solution hascréase with time at these lower altitudes (see again Fig. 2).
multiple values fod and A, and as a result, multiple solu- According to Egs. (11) and (6), this causes an increase in
tions fore andV, as well. We now show that such crossings @s Well, which implies a decreasean for a given altitude.
have to be discarded, and we describe the precise algorithf@ut since Eq. (30) requires, not to change, the only solu-
that allows us to determine which one of the multiple valuestion is to counter the increase i created by the increase
must be retained. in k; with a decrease ig. This makes it necessary for the
To understand why characteristics often intersect if left tocharacteristic to move to a higher altitude. In other words,
their own devices, we should first go back to Figs. 1 andthe evolution of the aspect angle forces the characteristics to
2. These figures illustrate that even if we started with zeroMove upwards, consistent with the presence of an upward
aspect angles everywhere (null parallel wave-vector compodroup velocity. In the example discussed here, the character-
nents)’ the System would qu|ck|y evolve nonzero aspect anl.SthS |nterS?Ct Slmply because the Ch-ar.a.Cte“SUCS.Orlglnatllng
gles,k;/k, , through the systematic increasedpwith alti- at lower altitudes run into characteristics from higher alti-
tude. tudes that have not themselves been moving appreciably up-
The second element to consider is that the characteristic4/ards due to their much slower aspect evolution.
are actually curves of constant frequency. To show this, first T0 understand what must be done with intersecting charac-
notice that we can write the parallel group velocity in the teristics, we now need to introduce the phase so as to graph-

form ically illustrate how it evolves when characteristics intersect
one another. We can easily calculate the phadeom a
Vg = dor _ aﬁ/ ok _ @/ door (29)  knowledge of the aspect angle evolution using Eq. (8). Along
k| ar [ ot ot 9z a characteristic, we simply have
The second equality in the above equation uses the fact thalS 9§ as

o, only depends on time througf) alone, while forthe final g7 — 37 T Vg“g = —or + Vgiiky. (31)
equality, we have substituted Eq. (12). Using the last expres; ing E 1) w n now connect lin f | oh
sion for V), we then find that along a characteristic, Using Eq. (31) we can now connect lines of equal phases

(phase fronts). For the calculations whose results are dis-

do, o, dw, played in Fig. 3 we have plotted in Fig. 4 the phase as a func-
dr ot + 75, tion of altitude for various selected times. Figure 4 shows
de, dw, [ dw,\ o, that., initiaIIy,_ the only effect i; a phase front that moves faster

= (— Y / 9z ) 0z (30) at higher altitudes. At later times, however, if we let the sys-

tem evolve according to our nonlinear characteristic equa-

We can now understand why characteristics have a tentions, we find that the lines of equal phases start to form a
dency to intersect. Consider, for example, an initial condi-triangular sort of loop. The loops begin at intersection points
tion for which the aspect angle is zero everywhere. In thatof lines of equal phase. At these intersection points there is
case, the lower altitudes have smaller phase velocities in tha jump in the derivative of the phase with respect to altitude,
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which actually means a jump iky. Furthermore, beyond No matter what the physical interpretation might be for
that point, that is, once the curves cross, the phase becomatock formation, we had to adopt the following procedure in
multi-valued and can no longer be thought of as a properorder to avoid unphysical results associated with the limita-
function of altitude. This indicates that something is wrong tions of the model near intersecting characteristics singular-
either with the solution or with the equations themselves. ities: at the crossing points, given that all waves are turned
The hint for what went wrong and how to remedy it comes into heavily damped modes, the energy of any structure as-
from noticing that just prior to the crossing, when the paral- sociated with the colliding characteristic paths was removed
lel wave vector (and the associated parallel group velocity) isfom the structures (implicit in this choice is the fact that
about to jump, its altitude derivative (second altitude deriva-the wave energy had to be given back to particles through
tive of the phase) is becoming very large. If we go back some heating of the plasma; however, we did not pursue the
to the very beginning of the theory with the original model plasma heating aspects of this problem). This procedure was
equation, this gives us a clue as to how to proceed. In otheparticularly easy to follow, given that the amplitudes can be
words, consider Eg. (1) again, in the case of very large verdescribed in terms of the same characteristic paths as the as-
tical gradients in the parallel wave vector. When the parallelpect angle itself. A second part of the procedure was that in
wave number is about to jump, the second derivativetins order to be able to follow the characteristics of the part of
to completely overwhelm the rest of the equation, unless thevaves that were unaffected by the shock condition, we also
operator that it acts on is itself zero, or very close to zero.imposed that the phase remain continuous, as well as single-
From this we can see that the balance of the equation is n¥alued, and we joined the lines of unequal slopes without
longer a Farley-Buneman wave, but rather a strongly colli-going through a loop. This choice ensured that we could con-
sionally damped ion-acoustic wave (if we have a wave at all)tinue to describe self-consistently the behavior of the waves
described by the equation on each side of the shocks.
We have also uncovered conditions for which the charac-
52 9 sn teristics jumped ir!stead of crossing over. In such cases, t_he
<—/2 +vi— + kl%) — =0 (32) arguments regarding the fate of the waves and the continuity
ot ot 1o of trajectories over the shocks are similar to those we have
presented here for intersecting characteristics, even though
The implication is that as the characteristics come close t()some details 0bvious|y differ. Since the procedure we used
crossing and?/9z2 becomes large (this is labeled a “shock” in such cases involves, in many ways, more of the same argu-

in the pertinent literature; e.g. Logan, 1994), the waves couments presented in the present section, we have simply out-
ple into strongly damped ion-acoustic waves. The characiined its main features in Appendix B.

teristic damping time is Av;, and has a typical value of a
few milliseconds. For the long wavelengths of concern in4.4 |nitial conditions
the present work, this time could, therefore, be considerably
shorter than Lkc,. Therefore, in effect, as soon as two char- For the method of characteristics, initial conditions are sim-
acteristics are about to collide, we have to terminate the evople to take care of. We must simply specify a starting value
lution of both the fast and slow parts of the wave train, given of the function we are solving for each characteristic we wish
the immediate damping the waves suffer at that point. to study. For a specific starting altitude, this amounts to
In spite of the reasonable mathematical understanding, thepecifying the initial starting aspect angle if we are solving
physical interpretation behind the crossing paths and the sulbEg. (27), and the initial amplitude if we are solving the ampli-
sequent conversion to heavily damped modes is not entireljude equation given by Eq. (28). Of course, the real physical
clear to us. We can focus either on the fact that just neainitial condition is on the initial density perturbatioévi/no)
the moment and place when and where some characteristid®), which must be described in terms of an initial amplitude
intersect, the wave number (altitude derivative of the phaseyio and an initial phasg. In order not to violate the assump-
is about to jump in space, or we can say that there is a veryion that the derivatives of the phase are larger than those of
fast change in the frequency (time derivative of phase) withthe amplitude, we chose to describe all initial perturbations in
time. Using the second viewpoint we can say that near the interms of an initial change of phase with altitude, and selected
tersecting region, low frequency waves arriving from lower a uniformAg as our initial condition.
altitudes ram into higher frequency waves triggered higher Given that the amplitude part of the problem is linear, all
up. With the phase velocity being horizontal (that is, the our amplitude solutions could be expressed in terms of an
phase fronts moving horizontally), one can see that the phasamplitude ratioA; (r)/A;(0). Our solutions will, therefore,
and any wave-like structure it represents have to be destroyeble presented in terms of this ratio, rather than in terms of the
near the characteristics’ intersection points. The fact that unamplitude itself. Since, to start with, we chose an initial am-
der these conditions the only possible wave-like solution isplitude that was uniformly distributed, the initial conditions
represented by heavily damped ion-acoustic waves (if theon the new unknown4; (r)/ A, (0) have, therefore, been de-
ion-collision frequency is too large, there might not even scribed as being equal to unity at all altitudes.
be oscillations) suggests that some form of mandatory mode We studied two types of initial conditions. For the first
coupling may be taking place under these circumstances. type, we modeled the real part of the initial density pertur-
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bation with an impulse described by a Gaussian of a giveriThe maximum aspect angle was, therefore, 0.0310 degrees

width and peak height using the relation initially. In all calculations, thek | direction was held fixed

) and pointing towards th&€ x B drift.
8—’1(0)/140 — c0sS(0) = exp| — (Z - Zo) ) (33) In Fig. 5 we display image plots of the results of our
no H benchmark run calculations through six panels. All panels

have contours superimposed, with the contour levels indi-
cated by the corresponding horizontal lines on the color bar.

Figure 5a shows how the aspect angle evolves as a function
2(z — 20) cosS(0) (34) of altitude (y axis) and time £ axis). Initially, the angle is
H? [1 o2 S(O)]l/z’ almost zero, as prescribed by our choice of initial conditions.
It then grows with time to reach a value of several degrees.

where we picked one sign or the other according to the par- "€ €xception is above 120 km, where the aspect angle does

ticular run being chosen, whiléf described the Gaussian Nt €volve at all. This is because in that ca8e/dr =
width andzg described the altitude of the peak. For many —0wr /92~ 0.

of our calculations, we chosd = 5 km andzg = 95 km, Figure 5b displays the phasg obtained by integrating
which translates into a peak value for the initiglvalues of ~ Ed. (31) in time along the characteristics. In this panel, the
+2.828x 10~“m~L. As we shall see below, this latter choice contours are equivalent to wave fronts, because they indicate

turned out to produce results that are essentially equivalengurves of constant phase. This clearly shows how the wave
to a zero initial aspect angle condition. train curves upward due to the aspect angle becoming more

For the second type of initial phase conditions, we im- negative. In addition, a thin black line indicates the location
posed a fixed “tilt” to the perturbation, i.e. a uniform, where the characteristics would cross, but are instead termi-
nonzero aspect angle. For these latter runs, we did not lookated, as discussed in Sect. 4. This happens in such a way
at the combined effect of pulses and tilts, since the list ofthat the phase remains continuous across that region (the ap-
possibilities can in fact become endless. Our present goal ifearance of steps being solely due to the limitations of the
physical insights, rather than a study of all possible casesplotting package), so that Eq. (12) remains valid.
and the two types of initial conditions seem to be sufficient Figures 5c and 5d show the phase speeds in the neutral and
to meet this goal. ion frames of reference, respectively. In Fig. 5c, we present

Specifying the initial phases was only one part of the pa-the phase speed seen from the ground;k. This speed
rameters making up the initial conditions. Most importantly, increases monotonically with altitude (see Egs. 11, A5 and
we also had to vary the electron drift velocity, i.e. the dc elec-A4), starting with a value of zero below 90 km, wheie
tric fields. It was also necessary to change the wavelengtiexceeds 10, and ending wit#y/ B above 120 km, wher&
since the absolute growth rate of the waves is affected by thés zero for all practical purposes. Similarly, Fig. 5d shows
wave number for a given electric field strength. Therefore,the phase speed, /k, that is, the phase speed seen from
we studied the response of the system to wavelengths in ththe ion frame of reference. This variable also starts at zero,
range of 12 to 50 m. but reaches a maximum at 105 km and then decreases again,

because the ions steadily accelerate toward&he B drift
above 105 km, so that the relative electron-ion spéede-
5 Results creases above that height. We recall thais important for
he wave propagation parameters like the phase and group
elocities, whereas!. determines the local growth or decay
of the wave. Since we expect the largest amplitudes where

We have chosen 12 m waves as our benchmark to explorg‘e growth rate is zero, this_means that .these lwould occur

nonlocal effects. As described in the Introduction, this kind wherew, = ke;. Hoyvever,w; is measured in the ion frame,

of wavelength is now probed by several HF radars at high™° that the speed with respect to the grount_:l would be larger,

latitudes, through the SuperDARN experiment. In order toith the exact amount depending on the height.

have non-negligible growth rates for this case, we have used Next, Fig. 5e shows the effective growth raggy, defined

a fairly strong electric field, of the order of 50 mVv/m (1000 in Eq. (28). In this panel, as well as in panel (f), white areas

m/sE x B drift). For weaker fields, destabilization through are in regions for which the growth rates are too negative to

the gradient-drift mechanism would have to be consideredbother showing them. Notice how there is almost no growth

We are leaving a study of this process for the future, howeverin regions where the aspect angle is either very small or very
Having chosen ai x B drift velocity equal to 1000 m/s, large. The reason is that the growth rate from Eq. (14) is

we then selected, = T;, (electron heating is known to be- a dominant contribution and has a peak between 0.5 and 1

come important only above 50 mV/m). We have also useddegrees. For smaller values the factoin the numerator is

standard ion frictional heating theory to produce a temperatoo small, while for large values the denominator is too large,

ture given byT; = T, + (m,V?)/(3kp). The initial condi-  and, more importantlyy, becomes too small.

tions were those discussed in Sect. 4.4 in relation to Eq. (34). Finally, by integrating the effective growth rate along a

Solving for the phasé(0), and takingc) (z, 0) = 95/9z(0),
this meant having

ki(z, 0) = +

5.1 Benchmark case: 12 m Farley-Buneman waves with 5
mV/m field
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Fig. 5. Results from the benchmark runjat= 12 m,V,; = 1000 m/s, and, = T;. Contour levels are given by the corresponding horizontal

lines on the color bar. The white spaces associated with a step function-like staircase are produced when characteristics are being terminate
to avoid crossing. The limitations of the plotting package are responsible for the dented look. The rest of the white areas associated with
growth rate plots are in regions for which the growth rate is too negative to matter.

characteristic, we have obtained the amplitude, which isinference that in order for the amplitudes to be themselves
shown in Fig. 5f. In this panel we have used a logarith- involved in nonlinear processes (not the case in the present
mic scale, with O dB representing the initial amplitude of 1. work), the unstable waves must have growth rates well in ex-
Figure 5f illustrates that while the wave train travels through cess of 10 5.

the unstable region and grows initially, it also starts decaying oyr calculations can also be used to infer some of the spec-
when it reaches the upper altitudes, where the aspect anglggy| properties that would be observed with radars or even
become so large that local growth is replaced by decay. Adygckets, since one added benefit of our approach is that we
ditionally, the upper fraction of the wave train “crashes” into know the frequency of the wave train at any point in time and

parts of the wave that have not evolved at all, and wigre  space. This makes it easy to find the amplitude in frequency
is, therefore, still zero, so that the vertical group velocity is space, by plotting, for examplé,(z, o, (z, 1)).

also zero as well. As explained in Sect. 4.3, when these two

parts of the wave train are about to interact, the oscillationsF.
. ; i

suddenly decay and disappear from the region.

Various forms of amplitude computations can be made. In
g. 6a we showA(z, w)/ k), the amplitude as a function of
altitude, and the Doppler-shifted frequengy, in terms of a

A final parameter retrieved from our calculations is the phase speerzg)h. This phase speed in the ion frame of refer-
parallel group velocity. For our benchmark case, it can be agnce determines the growth or decay of the wave, depending
large as 40 km/s (not shown) for our electron drift velocity on whether it is larger or smaller than the local ion-acoustic
of 1000 m/s. Furthermore, the largest group velocities are lospeed:;. From this, one would expect to see the largest am-
cated at lower altitudes, as expected from earlier discussionglitudes right at the threshold condition whesg/k = c;,
Also, as mentioned earlier, our group velocities confirm thatand Fig. 6a does in fact show a maximum near 500 m/s, a
convective processes would lead to a lifetime of, at most, aypical value forc;. However, the ion-acoustic speed is a
few seconds for our 12 m wave train (20 km/s vertical speedgunction of altitude, due to the change in ion and electron
in a region about 20 km thick). This confirms our earlier temperatures. Therefore, a clearer picture is obtained by
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Fig. 6. Frequency and aspect angle dependence of the amplitude (panels a to d) and energy (panel e) for the benchmark run shown in Fig. 5

comparingy, / k andc; directly; this is done in Fig. 6b. Here, amplitude occurs at an angle of about 0.8 degrees. Here, the
the horizontal axis has been replaceddjy kc;, meaning  correlation between aspect angle and phase speed becomes
that a value of 1 is equivalent to the threshold between growthobvious, since an increase in aspect angle leads to a decrease
and decay. This panel also agrees with the notion that thén the phase speed through an increasé@ in

Igrgest amplitude should be found near the threshold condi- Finally, in Fig. 6e we show the energy integrated over all
tions. aspect angles as a function of phase speed. We have ob-
However, from an observational point of view, the value tained this figure by summing2A#6 along each character-

of /. is not meaningful, because it would be quite difficult istic, whereA# is the change i, which varies from one

to attempt measurements in the ion frame of reference. Aime step to the next. The resultis a useful value, because the
more useful number is the frequency in the neutral frame offrequencyw is constant along a characteristic, as proven in
referencew,, which, in our calculations, has been assumedEq. (30). Therefore, the sum ovaP A6 is a measure of the

to be at rest with respect to the ground. Directly related tototal energy for all aspect angles at one frequency, or equiv-
w, is the phase velocity of the wave,, = w,/k, shown  alently, at one phase speed. Essentially, this is equivalent to
in Fig. 6¢. Here, the maximum amplitude is no longer closetaking the integral of Fig. 6d over all aspect angles at a par-
to ¢y, but rather is between 650 and 700 m/s. This is dueticular phase speed, except that the energy is proportional to
to the ion motion, which gradually increases with increasing A2, not A, and is shown here using a linear scale.

height. As a result, a ground-based observer would see the agith the previous plots, the energy reaches a maximum
largest amplitudes not af, but rather at a higher speed of petween 650 and 700 m/s. The energy distribution also ex-
vph = ¢s + k- v;. Obviously, at least for the flow direction hipjts a certain skewness as well, which is not a result of
that we have selected (along the electfogix B direction),  growth or decay as such, but rather of the shock that occurs
the difference between Fig. 6a and Fig. 6¢ shows that th§yhen two parts of a wave train collide with one another. The
change in speed can be substantial. resulting cutoff is visible in all panels as it leaves open con-
Next, we show in Figure 6d how the amplitude varies astour regions. This happens at altitudes above 110 km and
a function of phase speed and aspect angle. The maximuimphase speeds greater than 650 m/s. Since the amplitude im-
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mediately drops to zero at that point, the higher frequencieghis reason, we present for our next case in Fig. 8 the results
are cut off, leading to the skewness seen in Fig. 6e. Thifrom a 100 mV/m field with a 50 m wave train.
result means that the amplitudes are largest for the part of Figure 8a shows that the growth rate is similar to the pre-
the wave that just barely misses the shock. For just slightlyious case for the part right in front of the shock. It also
higher phase speeds, that part of the wave train will hit theshows a much larger Farley-Buneman growth phase below
shock and be removed from the wave train before it can growthe shock region. This leads to a significant amplitude gain
to larger amplitudes. between 0.2 and 0.4 s in Fig. 8b. The gain is, however, still
The benchmark case that we have just described is onkess than in the 12 m waves and 50 mV/m case. Compar-
for which the local Farley-Buneman growth rate was delib- ing Fig. 8c with Fig. 6b also shows a broader distribution
erately chosen to be fairly large, so that local growth af-of amplitudes over a larger range of velocities for the 50 m,
fected the wave train evolution in a measurable way and yef. 00 mV/m case. However, the maximum is still near the ion-
was small enough to allow convection to affect the ampli- acoustic speed. The broadening is a result of a larger range of
tudes. This being said, convective effects must always im-cs values near the shock, because the ion temperature profile
pact the final stages of the evolution, because the advectivis increasing rapidly with altitude due to additional frictional
terms on the right-hand-side of Eq. (13) become highly com-heating induced by the larger electric field.
petitive when the aspect angle reaches a degree or more. Finally, as was found for the benchmark case, Fig. 8d
Quite independently from this, however, the nonlocal treat-shows that even though the amplitude is maximal at the ion-
ment plays an additional important role in our benchmark runacoustic speed in the ion frame of reference, moving to the
because the wave trains do not grow enough while they propreutral frame of reference shifts the peak significantly, as it
agate through the E-region as a result of the convective ternis now found at roughly 1200 m/s. The peak is also much
Vg dA/dz. This restricts the amplitude gains in the wave broader than in the benchmark case, because there is a larger
train by limiting the time during which growth can occur. range of ion-acoustic speeds at various heights. The skew-
The formation of a shock puts a further limit on the ampli- ness is much more pronounced as well, with a very sharp
tude gain. To assess the interplay between these various preutoff at higher phase speeds, which occurs again at the
cesses, we now examine other cases through which we capoint where part of the wave just misses the shock. Lower

study the relative importance of the various terms. phase speeds can grow for as long as the growth rate permits,
whereas higher phase speeds collide with the shock and dis-
52 Results from other case studies appear instantaneously. The additional bumps at 1800 m/s

and 1900 m/s are from the initial growth in front of the shock.

5.2.1 Longer wavelengths 5.2.2 Variations in initial conditions

Figure 7 shows growth and amplitude results for a wave-So far in our presentation we have used an initial condition
length of 50 m, again for a 50 mV/m field. Since the as- associated with an initial zero aspect angle (no tilt) super-
pect angle, group velocity and phase speeds are independeitposed with a small aspect angle “pulse” excited from an
of the wavelength, the behavior of these parameters are thgititude region 5 km wide and centered at 95 km. As dis-
same as that shown in the first four panels of Fig. 5. Theseussed earlier, this meant very small initial aspect angles ev-
plots are, therefore, not repeated here. The single differencerywhere, even for a 50 m wavelength.
between 12 m and 50 m waves has to do with the growth e have studied the effect of changing the initial phase
rate, which is shown in Fig. 7a and should be compared withpy|se on the evolution of the wave trains by varying the alti-
Fig. 5e (as with other similar figures, the white areas in panekyde, sign and magnitude of the initial impulse. We of course
a are regions for which the growth rates are too small andrestricted the range of aspect angles to values small enough
negative). For 50 m waves, the Farley-Buneman growth ratefor the wave trains to be able to grow in the first place. In all
yrB, is zero or negative almost everywhere, except for a smalgases studied we have found that the end result for the am-
region in front of the shock. Even when positiyeg is much  plitude was very similar to the near-zero aspect angle initial
smaller than in the 12m case. Consequently, the advectiv@ondition runs. The reason for this lack of sensitivity is asso-
terms are now everywhere more important than local Farleyciated with the development of shocks, which is new to this
Buneman growth, and the waves cannot grow by much, evefyork. In general, subsets of wave trains that initially move
with a small aspect angle. A comparison between Fig. 7b angpward develop their own shocks before reaching significant
Fig. 5f makes that point clearly enough. Not even the growthamplitudes. When, by contrast, parts of the wave trains are
seen just before the shock is significant, since it disappearfyade to move downward, they either collide with upward
almost inStantaneOUSly in the shock. We conclude that evelihoving trains or create their own shocks on their way back
a 50 mVv/m field would not be large enough to support theyp after reflection. Even when our initial conditions were
growth of 50 m waves of any significant amplitude without a fine-tuned to avoid early shocks, the change in the final wave
gradient-drift mechanism. amplitudes were not large compared to other pulsed phase
In order for 50 m waves to grow significantly with a runs; the reason for this is that in order to avoid shock condi-
Farley-Buneman mechanism, a larger field is necessary. Faions we had to use initial aspect angles that were too small
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for the waves to have a chance to grow during the initialto avoid the formation of the shocks.

stages. At the later stages of evolution, shocks would still A second consequence of startina-gd. 5 aspect anale
be present with our pulsed initial conditions, which would . q g-&i. P 9

. is that the Farley-Buneman growth rates were larger in the

prematurely terminate the growth process. 110 to 120 km altitude region. When this is coupled to the

We also studied the effects of varying the tilt or phase an-absence of shocks, it allows the waves to grow as long as
gle of the initial object as a whole, using our benchmark casethe aspect angle is not too large (recall that the aspect angle
The tilts produced interesting modifications for the wave- decreases monotonically with time in the absence of pulses,
train solutions, even though figuring out just what would cre- as seen from Panel a). As expected from local growth argu-
ate such initial conditions is not easy to see. Neverthelessments, Fig. 9 shows that the amplitude in this case is a maxi-
more insights into the evolution of the nonlocal behavior canmum when the effective growth rate is zero, that is, when it is
be gained from studying such cases. In Fig. 9 we first presenabout to turn negative due to aspect angles that have become
the results obtained with a positive tilt as our initial condition. too large. Since this is the case, we can also see from the
This was done by selecting an initial aspect angle-6f5 figure that, as expected;,h is equal to the local ion acous-
throughout the entire E-region, and getting rid of any addi-tic speed at peak amplitude. However, because the location
tional phase angle pulse. The most important difference withof the amplitude peak is relatively high, 115 km, the phase
the previous figures is that we found no shocks anywhere invelocity of the large amplitude waves is still of the order of
this case: due to their initially large aspect angles, the char700 m/s, with approximately 250 m/s coming from the drift
acteristics originating at lower altitudes bent quickly enoughof the reference frame, namely the ions themselves.
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Fig. 9. Same case as in Fig. 5 but for an initial condition associated with a uniform aspect argdes0f Panelqa), (b) and(c) are the
same as panels (a), (e) and (f) in Fig. 5, respectively. Pédkl&) and(f) are the same as panels (b), (d) and (e) in Fig. 6.

In Figure 10 we show the results associated with a negativeontinues for much longer than it does with the negative ini-
initial tilt, that is, an initial aspect angle af0.5° throughout tial aspect angles. The reason is simply that the aspect angle
the entire E-region. This case is quite different in that shocksmonotonically moves toward negative values in both cases.
play a leading role in the evolution of the object. Not only Having an initial positive value ensures a longer period of
that, the shocks are also different from those discussed so faime during which the magnitude of the aspect angle is less
in relation to the zero initial tilts, because both the phase andhan P. The longer growth time is obviously the single most
its slope are now discontinuous. The conditions that havémportant factor controlling the amplitudes in this case, be-
to be applied to such cases are more technical than what weause the shock happens only after a prolonged growth pe-
have discussed thus far and, therefore, have been moved tad. A second point of interest is that the mean phase speed
Appendix B. of the shocked waves (Fig. 10) is actually larger than that of

In spite of the fact that we now have a shock produced bythe unshocked ones (Fig. 9)', in s.pite of.the fact that th_e alti-
the initial tilt itself, Fig. 10 clearly shows that the final am- tude of the shocked waves is quite a bit lower at maximum

plitude of the waves is actually greater than in our previous@mMPplitude than for the unshocked case. The key factor in this
case (Fig. 9), which itself was also considerably larger thanCase is the aspect angle, which is of the order of 0.25 de-
the benchmark case. The reason for the large amplitudes @i"€€s in the shocked case and 0.8 degrees in the unshocked
the two tilted cases is rooted, as usual, in the fact that th&@se. The aspect angle affects the Doppler shift of the waves
Farley-Buneman waves actually grow more in the presencdnore strongly in the unshocked case, since it is actually re-
of a 0.5 aspect angle of either sign than at’aBpect angle. _sp_on5|ble for b_rlng_lng the growth rat_e to zero. By contrast,
However, even though the positively tilted case is suddenly! S the shock in Fig. 10 that determines the maximum am-
interrupted by shocks, it ends up with a larger amplitude tharPlitude, and at that point the aspect angle is nowhere near a
the non-shocked negatively tilted case of Fig. 9. A study of value capable of slowing the waves dowrfo

the growth rate plots shows why: in both cases most of the One point that the different initial tilts brings forth is the
growth takes place well above the shock region of Fig. 10.sensitivity to initial conditions. The sensitivity is relatively
However, for the positive initial aspect angles, the growth easy to understand mathematically, in the sense that the as-
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Fig. 10. Same as in Fig. 10, but with a uniform aspect angle-6f5° initially.

pect angle problem is actually strongly nonlinear. Nonethe-Fig. 11. In Fig. 11a we first show the ratio of the Doppler-
less, the real problem is in just what triggers the Farley-shifted phase speed;h, to the ion-acoustic speed,, for
Buneman waves. If one cannot answer this question, on@ur choice of a relatively weak electric field. The main dif-
cannot know what the initial conditions are and, therefore,ference with the standard run is that the peak amplitude now
what the waves'’ properties will be for the moderate growth occurs when);h is significantly larger tham,. This is hap-
conditions discussed in the present work. We surmise that @ening because there is very little Farley-Buneman growth in
good seed of Farley-Buneman waves should be wave steephe present case. The amplitude evolution is, therefore, dom-
ening (or mode-coupling) associated with large-scale gradiinated by convective effects and conservation of wave action,
ent drift instabilities. These gradient-drift waves tend to grow which allows things to grow even when local growth is weak
at smaller aspect angles than Farley-Buneman waves. Therer even slightly negative.

fore, they should seed Farley-Buneman waves with rather To help visualize the process taking place at small growth
small aspect angle magnitudes. If so, the properties of wavefgtes, we are also showing, in Fig. 11b, how the altitude pro-
with moderate growth conditions should be closer to ourfjle of the amplitude changes with time. For the first 0.3s,
benchmark case than to the last two cases presented in th&ﬁ)n\/ective effects s|mp|y propagate the wave train to h|ghe|‘

section. altitudes. At the same time, the amplitude increases through
the principle of conservation of wave action. At0.4 s, a shock
5.2.3 Smaller electric fields or slower growth rates has formed, resulting in a decrease in amplitude where the

characteristics are absorbed in the shock. After this time, the
When the plasma is just barely above threshold conditionsamplitude is controlled by the lower parts of the wave train.
the growth is taken over by purely convective effects andThese lower parts arrive later at higher altitudes and do not
the amplitude gain becomes quite modest. To illustrate thidsecome involved in a shock because they are associated with
we have chosen to run our standard case with a smaller 3Bharacteristics that evolve slowly enough with time to avoid
mV/m electric field. At this point Farley-Buneman growth crashing. However, this part of the wave train is also one
plays a role, but not a role that is large enough to make a bigor which conservation of wave action plays a lesser role.
difference on the final amplitude. This case is illustrated inThis means that in a relative sense, local Farley-Buneman
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@ the angular frequency from the dispersion relation is respon-
sible for the creation of parallel electric fields that evolve

20 from any initial condition, including perfectly zero aspect

s angle (purely perpendicular wave vector) conditions. This is
another way of saying that the aspect angle cannot, in princi-

- ple, be treated as a free parameter of the problem. We have
5’2 focused on E-region instabilities here and examined the evo-
o lution of high-latitude Farley-Buneman waves initially ex-

cited in the direction of the electrofi x B drift. We have
found that, in addition to the expected increase in the aspect
S angle with time, the nonlinearity of the aspect angle depen-
0 0204 06 0-%/ 1/(: 12 14 16 18 2 dence is responsible for the formation of aspect angle (and
(b) _ pri amplitude) shocks, which we have vaguely referred to as a
" “crashing” mechanism. These shocks further constrain the
evolution of the wave packets that we studied by limiting the
amplitude of growing wave trains sometimes precisely in re-
gions where the local growth should have been expected to
be the largest. At other times, their most important role is
to stop the wave train evolution before the phase speed goes
down to the ion-acoustic speed.

We have compared relatively large local growth rate con-
ditions with locally weakly linearly unstable cases. For rela-
tively large local growth rates we have found that a ground-
based observer would see the structures moving at a speed
between the ion-acoustic speed and the electron drift. This
is because the waves actually tend to move at a speed close
to the ion-acoustic speed of the medium, but in the ion frame
of reference. Since, shocks notwithstanding, the convected
waves still reach their largest amplitudes near the upper por-

Fig. 11. Same as in Fig. 5 but for a 35 mV/m field. Pat@t same  tions of the unstable layer, the ion component of motion in

as in Fig. 6b. Pandb): profile of the amplitude as a function of the E x B drift direction is not negligible and the waves
altitude at various time intervals. are, therefore, moving at a speed that is measurably greater

than the ion-acoustic speed, but also measurably less than the
E x B drift. These results have to be contrasted with situa-
growth is now influencing the evolution. This does producetions for which local growth rates are modest, in which case
a growth, as illustrated by the fact that following the shock, a ground-based observer would see a phase speed that ap-
the amplitude grows back until about 0.6s. However, thisproaches the electrad x B drift. Growth in this latter case
growth is short-lived because it occurs at a relatively “large” is quite reduced and is due mostly to convective effects.
(greater than 03 aspect angle, and the aspect angle keeps In order to explore the often-neglected physics associated
increasing with time at an increasingly fast rate. In fact, duewith convective effects, we had to neglect nonlinearities as-
to this increasingly fast evolution in the aspect angle, not onlysociated with large gains in amplitude, even though most of
is the growth period short-lived, but it is also followed by a the cases we studied dealt with gains in amplitude that were
steep decay. Indeed, by the time the simulation reaches 0.7several orders of magnitude strong. Such gains may well be
(not shown), there is no appreciable amplitude left. large enough to trigger density fluctuation levels in excess
Inthe end, therefore, the maximum amplitude reached durof 1%, even if the structures were to be generated by ther-
ing the Farley-Buneman-dominated growth phase is less thamal noise background. However, in most of the cases that
the gain reached during the convective-dominated growthwe have explored, the amplitudes were found to be by far
phase, because the wave, after the shock, does not exist ftineir largest in a restricted region of space and for a restricted
long enough in conditions exceeding the Farley-Bunemarrange of phase velocities very near the ion-acoustic speed.
threshold conditions. With this in mind, consider that one could argue that per-
pendicular mode-coupling should control the evolution of the
waves when the amplitude becomes too large. It has been ar-
6 Discussion and conclusion gued (Hamza and St.-Maurice, 1993a) that for the geometry
that we have studied in the present work, the mode-coupling
The central goal of this work has been to develop a tool formechanism would produce waves that would be seen to drift
the nonlocal study of high-latitude field-aligned irregulari- at the ion-acoustic speed of the medium (as seen from the
ties. We have demonstrated that the altitude dependence @fn frame of reference). In the end, therefore, there would be
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no real change with what we have presented, except for théude before decaying on its way out of the unstable layer. The
last case that we have shown through Fig. 10. For that lattewave trains would change shape as they evolved: some of
case the final phase velocities at “saturation” were about 2.%he waves in an initial pulse appeared to move down first be-
times the ion-acoustic speed, and the amplitudes were verfore being reflected, and sometimes catching up with the rest
large over an extended altitude regime, strongly suggestingf the train. St.-Maurice (1985) used an eigenfrequency de-
that convective effects were probably unable to compete withicomposition with a numerical Laplace transform technique
nonlinear amplitude saturation effects. An interesting con-to obtain these results. For the convectively unstable situ-
sequence could be that an asymmetry between positive anations studied in the present work, the amplitudes obtained
negative aspect angles maybe present in cases such as this BsSt.-Maurice (1985) were similar to those we have shown
seen by the contrast between the situations depicted in Fig. Bere for initial impulses from the lower altitudes. However,
and Fig. 10. At any rate, we could state, in general, that ifSt.-Maurice (1985) obtained larger amplitudes for impulses
the growth rates are so large in a particular situation that substarted at higher altitudes. The reason appears to be related
stantial growth occurs while a wave packet moves upward otto the shock conditions met in the present work, which were
downward over a distance of a few km, nonlinear amplitudeoverlooked until now, and allowed the waves to continue
saturation effects should dominate the wave evolution so thatheir growth instead of crashing.
the parallel wave-vector evolution discussed here should not It is more difficult to compare our results with those of
matter so much. Given magnitudes in the parallel group ve-Moorcroft (1984) because Moorcroft (1984) did not attempt
locity that are in excess of 10 km/s, a wave train would existto compute wave amplitudes. He showed instead that down-
for a time scale of the order of 1 or 2s. Therefore, a rule ofward moving rays with small enough initial aspect angles
thumb would be that if the waves grow at a rate that exceedsvould be invariably reflected from the E-region, while ini-
a few tens of 51 over an extended altitude region, convec- tially upward moving rays would continue to move upward
tive effects would not control the amplitude evolution. This and out of the region. On that basis he concluded that waves
is the situation that was in fact met in Fig. 10, which meanswith too small a local growth rate would not be able to gain
that the results could well be strongly modified by nonlinear large amplitudes before exiting the E-region and should not
amplitude saturation effects in that case. be observed with radars. The present calculations quan-
While we have concentrated on Farley-Buneman wavestify these conclusions and agree with the general features of
we could have equally well considered gradient-drift wavesMoorcroft's (1984) calculations.
simply by changing the expression for the local growth rate  We conclude that the approach proposed here for the study
in Eq. (14). The latter would not be very different from the of nonlocal (convective) high-latitude instabilities offers a
former in the sense that the most important consideration repowerful new tool for the study of weakly growing field-
mains the comparison between the value of the inverse ofligned modes at high latitudes. Our WKB approach shies
the largest local growth rate and the time it takes for a waveaway from an eigenfrequency decomposition and its under-
packet to move through the unstable region at the parallelying implicit mode-coupling triggered by coupling with the
group velocity. Two new factors would, nevertheless, haveinhomogeneity of the medium. Instead, it allows the fre-
to be considered. First, there is the fact that gradient-driftquency to depend on position as long as the wave vector is
waves have their largest growth rates at zero aspect angleajlowed to change with time through the Whitham relation
whereas Farley-Buneman waves grow the fastest at aboyEq. 12). For the calculation of amplitudes the method uses
0.5 off perpendicularity. While this may not seem signifi- the conservation of wave-action in the presence of a source
cant, we should recall that the waves undergo most of theiterm. In general, this would amount to finding an expression
evolution while the aspect angle varies between 0 anoffl ~ for the wave energy for the particular system under consider-
perpendicularity. A second factor would need to be added foration.
gradient-drift waves excited by a sharp bottomside E-region. While our work should not be applied to fast growing 3 m
In that case the variation in the background electron densityvaves due to their very fast local growth, the extension of our
with respect to height would have to be considered givenwork to gradient-drift waves should have important impli-
that its gradients would be comparable to the variations incations, particularly for the interpretation of HF radar spec-
the background neutral properties. In that case, furthermoretra obtained from high-latitude E-region echoes. The Super-
the favorable gradient could be limited in height, thus chang-DARN radars operate at a frequency such that the inverse
ing in a significant way the convective growth phase of thegrowth rates are usually small by comparison to the travel
waves. For these reasons, we are leaving a study of gradientime of wave packets through the E-region. Typical fre-
drift waves per se to future work. guencies would match closely the 12-m wavelength situation
Our present results can also be compared with those of Stthat we have studied here, albeit with bottomside E-region
Maurice (1985) and Moorcroft (1984). St.-Maurice (1985) gradient-drift effects needing to be added, particularly for the
had found that a nonlocal eigenfrequency decompositiorevening sector. For the reasons stated earlier in the present
could yield a negative nonlocal growth rate (i.e. an absolutelydiscussion, this problem needs to be studied in more detail
stable plasma), while the amplitude of an initial wave train in future work. Suffice it to say that E-region spectra ob-
could actually grow while propagating upwards at a speed oftained from HF radars have properties that differ from other
several km/s. A wave train would reach its maximum ampli- radars. For instance, the Doppler width in velocity units is
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often smaller than at other frequencies (e.g. Hanuise et alBy the same token, the ion drift velocity is expressed by

1991, Eglitis et al., 1995; Eglitis and Robinson, 1998), indi- 1 wE ExB
cating that the waves are only weakly turbulent, at least byVio = 1202 (ag + T) (A3)
comparison to what is found at higher frequencies. if 0 AT

One aspect of the observations that our ongoing study! e above then yields
might already be able to address is the fact that under weaker 1 vi k-E vl? k-(E x B)
electric field conditions, the Doppler shift of HF waves is k- Va = > 2| "o -2 2

. ) . : : 1+v2/Q2| @ B Q B

suggestive of a line-of-sight velocity matching the electron e !
line-of-sight velocities (Villain et al., 1987; Jayachandran . 1 v_lz oV (Ad)
et al., 2000). This seems to match what we have found for C1402/Q2Q2 <0
our weakly growing cases, particularly the one presented in o

. ) . S and
Fig. 11. In this particular situation, growth turns out to be 1 k-E k-(ExB)
dominated by convective processes in what could be bestder - v;g = > [i 4= 2X }
scribed as an absence of local decay (rather than a presence 1+v7/Qf LSs B B
of local growth). This remains only a tentative result, how- _ 1 v (A5)
ever, because we need to study this issue in more detail by 14 ,)iZ/ le €0
|r:1itsrr(T)]dUC|ng effects due to the gradient-drift growth mecha- The neutral temperaturg, was taken from the MSIS-90

neutral model (Hedin, 1991). For the electrons, we assume
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Appendix A Altitude parameterization used in the ve = 2.33x 107 (Vo) (1 —1.21x 1074Te) T,
calculations

+1.82 % 1071%(0y) (1 +36x10°27Y 2) T2

In order to move to a more quantitative analysis of the solu-

tion, we have introduced a very basic model of the unstable +8.9 x 1071 (0) (1 + 5.7 x 10‘4T6) Tel/2 (A7)

E-region. To begin with, we have assumed a vertical and con-

stant magnetic field. The perpendipular wave vektomwas v = 424 % 107 20(Ny) + 4.18 x 10°1%(0,)

also taken to be parallel t§ g, that is to say, we have only 10

studied here the wave response in the elecffor B drift +2.38 x 107"n(0), (A8)

direction. This means that thecomponent ok, isequalto  where the densities af», O, and O were also taken from

zero sincek is taken to be in the-direction. In such a case, the MSIS-90 neutral model. These two expressionsvfor

the scalar produdk - V.o can be written agV,o. andv; are actually given by Schunk and Nagy (1978) and
The neutrals are furthermore assumed to be at rest. Th8chunk and Walker (1973), respectively.

relative electron-ion drift consequently depends on the neu- For completeness, also note that the perpendicular compo-

tral atmospheric model through the equation (e.g. Schlegehent of the group velocity is given by

and St.-Maurice, 1981, St.-Maurice et al., 1981). dewy
Vo1 =
Vi=Vo—Vio ok L ,
B 1 v E VvExB A _or, KV \DOk_LﬂQ_E
14+ VIZ/QIZ Qi B le B2 k 1+ ‘11)2 k2 k2 Uez
H i =V,—-V /ﬂ (A9)
ere, the electrons have been assumed t& be B drift- p 8l %
ing, due to their large cyclotron frequency. As a result, the comparing the parallel group velocity with the perpendicu-
magnitude ofV’, is given by lar group velocity indicates that the parallel group velocity
2 2 4 o\ 712 is much larger than the perpendicular group velocity in the
Vy = |: 1 <V_1E_ V_zE_):| range of interest, namely fdj # 0. This is consistent with
(14 v2/ 912)2 Q2 B2 Qf B2 the statement made by Moorcroft (1984). By contrast, when
1 . k) = 0, we immediately obtaivy,; = 0 andV,; = V,. In

=— V. (A2) such a case the total group velocity is equal to the (perpen-

e
J14 v Q2 dicular) phase velocity.
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100 - ‘ Then, we apply Leibniz’ rule for differentiating an integral
] o . .
] @ whose integrand and limits depend on a parameter {)ere
991 w and take the limitg; — s(r) andzz — s(z), to find
98 K ds (1)
z / —Wry +wp_ = (kH, — k”+)_dt , (83)
< 974 /
N ] | where the subscript$ and — refer to the values on either
967 / side of the shock. From this we obtain a differential equation
94; ds(t) _ O+ — a),_. (B4)
03 dt k||Jr — k\l,
0 20 40 60 P%gselgo 120 140 160 Not too surprisingly, this equation gives the parallel group

velocity in the absence of a jump while providing a proper
generalization in the case of a shock. To find the shock’s po-
Fig. B1. Evolution of the phas§. Same as Fig. 4 but for a structure  gjtign s(1) with Eq. (B4), we also need an initial condition.
with a uniform initial aspect angle ef0.5 degrees. The wave tears We simply start the shock at the first intersection of char-

apart, as opposed to crashing into itself. The dotted parts of the “negcteristics or at the first point where a jump is encountered

correspond to the multi-valued part of the solution and have to bed di the kind of shock diti f K .
removed according to the algorithm described in Appendix B. epending on the Kind of shock conadition we face. ‘Rnowing

s(t), we then simply remove the parts of the solution that are

multi-valued. We do this for every time step by following one

_ _ solution until we reach the altitude given by), where we

Appendix B Handling of shocks for the general case make the solution jump to the value on the other side of the
shock. In Fig. B1, this means removing the dotted parts of

Finding the location of the shock in the case shown in Fig. 4,the curves. The exact altitude where we remove the multiple

where the lower parts of the wave crash into the upper part, i¥alues is given by (r). Comparing this to the cases where

relatively straightforward: we only need to remove the loopswe had loops in the phase (e.g. Fig. 4), #lw we find using

in the phase. However, this treatment does not work in thethis procedure is at exactly the same place where the loops

case of a wave which has a positive initial tilt. A wave like start, so both procedures, loop removal and findi@ay, give

that has a larger perpendicular group velocity at higher alti-the same result.

tudes than at lower altitudes. As a result, instead of the wave

crashing into itself, it is torn apart, with the upper regions

moving ahead of the lower regions.

In Fig. B1 we show the phase evolution for such a case Bretherton, F. P. and Garret, C. J. R.: Wave trains in inhomogeneous
Here, the difficulty rests with the determination of the al- moving media, Proc. Roy. Soc. A, 302, 529-554, 1969.
titude at which the tear occurs, because there is no way téJglitis, P., Robinson, T. R., McCrea, |. W., Schlegel, K., Nygren,
make the phase continuous. T., and Rodger, A. S.: Doppler spectrum statistics obtained from
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Obviously, Whitham’s relation (12) no longer applies physicae, 13, 56-65, 1995.
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