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Abstract. It is well known that the solar wind plasma con-
sists of primary ions of solar coronal origin and secondary
ions of interstellar origin. Interstellar H-atoms penetrate into
the inner heliosphere and when ionized there are converted
into secondary ions. These are implanted into the magne-
tized solar wind flow and are essentially enforced to co-move
with this flow. By nonlinear interactions with wind-entrained
Alfv én waves the latter are processed in the co-moving veloc-
ity space. This pick-up process, however, also causes actions
back upon the original solar wind flow, leading to a deceler-
ation, as well as a heating of the solar wind plasma. The re-
sulting deceleration is not only due to the loading effect, but
also due to the action of the pressure gradient. To calculate
the latter, it is important to take into account the stochastic
acceleration that suffers at their convection out of the inner
heliosphere by the quasi-linear interactions with MHD tur-
bulences. Only then can thepresently reported VOYAGER
observations of solar wind decelerations and heatings in the
outer heliosphere be understood in terms of the current, most
likely values of interstellar gas parameters. In a consistent
view of the thermodynamics of the solar wind plasma, which
is composed of secondary ions and solar wind protons, we
also derive that the latter are globally heated at their mo-
tion to larger solar distances. The arising heat transfer is
due to the action of suprathermal ions which drive MHD
waves that are partially absorbed by solar wind protons and
thereby establish their observed quasi-polytropy. We obtain
a quantitative expression for the solar wind proton pressure
as a function of solar distance. This expression clearly shows
the change from an adiabatic to a quasi-polytropic behaviour
with a decreasing polytropic index at increasing distances,
as has been observed by the VOYAGERS. This also allows
one to calculate the average percentage of the intitial energy
fed into the thermal proton energy. In a first-order evalua-
tion of this expression we can estimate that under stationary
flow conditions about 10% of the initial injection energy is
eventually transfered to solar wind protons, independent of
the actual injection rate.
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1 Modulation of the solar wind flow by secondary ions

It was determined in recent work on the dynamics of the
modulated solar wind (see Holzer, 1972; Fahr, 1973; Isen-
berg, 1986; Baranov and Malama, 1993, 1995; Pauls et al.,
1995; Zank et al., 1996a; Baranov et al., 1998; Zank, 1999;
Fahr and Rucinski, 1999; Fahr et al., 2000) that ion-loading
of the original solar wind enforces a deceleration and a de-
crease in the effective Mach number of the flow with increas-
ing solar distances. In addition, the deceleration is also deter-
mined by the gradient of the pressure of secondary ions (in
brief: P(2)´s) acting upon the mixed two-fluid plasma flow.
Here, suprathermal P(2)´s behave similar to a hot gas com-
ponent embedded in a cold one, the solar wind protons (in
brief P(1)‘s). Representing the P(2)- pressure in the form
P2 = αρ2v

2
w (quantities related to P(2)´s are indicated with

the suffix “2”, those related to P(1)‘s with the suffix “1”), as
suggested by Fahr and Fichtner (1995), the following differ-
ential equation for the decelerated solar wind can be obtained
(see Fahr and Rucinski, 2001):

d

dr
vw =

−mpβex
1+α

ρ1+ρ2
+

2α
r

ξvw

1 + αξ
. (1)

Here,βex = σexnH n1vw is the local P(2)- injection rate.
The functionξ = ρ2/ (ρ1 + ρ2) denotes the relative abun-
dance of P(2)´s with respect to all protons. Integration of the
above differential equation then yields:

vw = vw0 exp

[∫ r

r0

2α
r

ξ − nH σex (1 − ξ) (1 + α)

1 + αξ
dr

]
. (2)

With the expression forP2 = (1/3)ρ2v
2
w derived by Fahr

and Fichtner (1995), one obtains:

vw = vw0 exp

[∫ r

r0

2

3 + ξ

(
ξ

r
− 2nH σex (1 − ξ)

)
dr

]
. (3)



1510 H. J. Fahr: Solar wind heating

It is evident that an accurate expression forP2 can only
be derived with the knowledge of the P(2)-distribution func-
tion f2. This function has to be obtained as a solution of
the P(2)- transport equation, including the effects of convec-
tion, adiabatic deceleration, and energy diffusion by Fermi-2
acceleration.

An expression forf2, taking into account the realistic P(2)
injection and the above-mentioned consecutive P(2)-phase-
space transport, has been obtained by Chalov et al. (1995,
1997), and as seen in Fahr and Lay (2000), can be very nicely
represented by the following analytical formula:

f2 = 5
(
x−0.33

)
wβ exp

[
−C(x) (w − w0)

κ
]
, (4)

where5 is a constant,x = r/rE is the radial solar distance
in units of AU, andw = (v/vw)2 is the squared P(2) velocity
normalized withvw andw0 being a typical injection value.
Furthermore, the quantitiesβ , κ , andC(x) are found from
a best-fit procedure with:β = −

1
6 ; κ =

2
3 ; and: C(x) =

0.442x0.2 . These results are obtained on the basis of some
assumptions on amplitude and spectral slope of the Alfvénic
turbulences interacting with P(2)‘s. According to the WKB
theory of dissipationless Alfv́en turbulence, the amplitudes
are assumed to fall off with distance byx−3, and the spectral
power index was taken to beγk = 5/3.

With the above Eq. (4) forf2, one then obtains the P(2)-
density by:

n2 = 2π5x−0.33
[

3

2
C(x)−20(2)

]
, (5)

and the P(2)-pressure by:

P2 =
2π

3
5x−0.33

(
1

2
mpv2

w

)[
3

2
C(x)−

7
2 0(

7

2
)

]
, (6)

where0(y) is the Gamma function for the argumenty. Equa-
tions (5) and (6) then lead to the following expression for
P2 = P2(ρ2):

P2 =
5

16
2
√

πC(x)−
3
2 ρ2v

2
w = α(x)ρ2v

2
w , (7)

showing that with the above expression forP2(x), one ob-
tains a functionα(x) = 1.83 x−0.3 with decreasing values
for α(x) for increasing solar distancesx. This shows that ob-
viously at larger distances the adiabatic deceleration starts to
slowly overcompensate for the effect of wave-driven Fermi-2
accelerations. The above formula in view of the results used
from Fahr and Lay (2000) should be valid at distances of
x ≥ xc = 15, whereα = αc = α(xc) evaluates toαc = 0.44.
In the Appendix, we show on the basis of an approximative
evaluation of Eq. (7) how the pressureP2(x) and the function
C2(x) = P2(x)/ρ2(x) behave with solar distancex, suggest-
ing the approximationC2(x) = C2 = const .

2 Thermodynamics of the P(1)–P(2) two-fluid solar
wind

P(2)´s are produced by ionization of interstellar neutral atoms
in the heliosphere and are convected outwards with the solar
wind flow as a separate suprathermal ion fluid. The thermo-
dynamic behaviour of this “hot” fluid at its motion outwards
to the outer heliosphere, until now, is not completely under-
stood. As one clearly knows P(2)‘s drive waves by virtue
of their distribution function which is unstable with respect
to the excitation of wave power (see, for example, Wu and
Davidson, 1972; Hartle and Wu, 1973; Lee and Ip, 1987;
Freund and Wu, 1989; Fahr and Ziemkiewicz, 1988; Gray et
al., 1996), but they themselves also undergo Fermi-2 ener-
gization (energy diffusion) by nonlinear wave-particle inter-
action with already preexisting, convected wave turbulences
(see, for example, Bogdan et al., 1991; Chalov et al., 1995,
1997; le Roux and Fichtner, 1997).

In the following we want to study the branching of the rele-
vant energy flows and thereby try to respect the observational
fact that P(1)´s behave non-adiabatic, but polytropic at their
expansion to large solar distances (see Whang, 1998, Whang
et al., 1999). This evidently expresses the fact that solar wind
protons are globally and continuously heated at their motion
to larger solar distances. This global heating cannot be re-
lated to sporadic events, such as the passages of corotating
interaction regions (CIR’s) or solar eruptive events (see also
Fisk et al., 2000). In contrast, it appears highly likely to be
caused by P(2)´s, which drive MHD waves that are partially
re-absorbed by solar wind protons P(1)´s.

Already Parker (1964) and Coleman (1968) expected that
some extended heating due to dissipation of waves might
cause a non-adiabatic expansion of the solar wind beyond its
critical point. This non-adiabatic solar wind temperature be-
haviour, meanwhile, in fact is clearly recognized in the data
taken by the VOYAGER-1/2 spacecraft (see Richardson et
al., 1995; Whang, 1998; Whang et al., 1999). The dissi-
pation of non-Alfv́enic turbulence energy to solar wind pro-
tons was then more quantitatively estimated by Matthaeus et
al. (1994) to take place with a rateqturb ' ρsu

3/l, where
ρs, u, l are the solar wind mass density, the rms turbulent
fluctuation speed, and the turbulent correlation scale.

In order to find out more about the dependence of solar
distancer on these quantitiesu and l, Zank et al. (1996b)
studied the evolution of low-frequency turbulence power in
the solar wind on the basis of a scale-separated equation de-
veloped by Zhou and Matthaeus (1990), describing the evo-
lution of amplitude fluctuationsu andb about the mean ve-
locity Vw and the mean magnetic fieldB. In this equation for
the frequency-averaged fluctuation power, these authors took
into account nonlinear dissipation terms and power sources.
Amongst the latter they discussed terms due to wave-driving
by velocity shears and compressional effects associated with
solar wind interaction regions due to pick-up ions injected
into unstable distribution functions. In the solutions foru2(r)

andl(r), they could demonstrate that the usual WKB approx-
imations are far from what can realistically be expected in



H. J. Fahr: Solar wind heating 1511

the solar wind at large distances. Concerning far-off solar
wind interaction regions at higher heliographic latitudes, one
should not expect to find shear-induced turbulent energy, but
outside of the so-called ionization cavity, nevertheless, one
should find pick-up ion induced turbulent energy and corre-
lation lengthsl(r) which from 5 AU outwards systematically
decrease with distance.

Based on these results, Smith et al. (2001) also analysed
the heating of the distant solar wind due to dissipation of
wave turbulent energy to protons. They solved a system of
coupled differential equations, describing the evolution with
distance of the mean turbulent energyu2, the correlation
length l, and the proton temperature. The nonlinear dissi-
pative loss term in the equation foru2 was at the same time
taken, of course with the opposite sign, as an energy gain
term for the protons. Comparison of the results with VOY-
AGER data seem to show that, though the main tendencies
can be explained by this theoretical approach, nevertheless,
the predicted values for bothu2 and the solar proton tem-
peratureT are fairly on the low side of the VOYAGER-2
data. This may be partly due to the mixing of high- and low-
velocity solar wind, and partly due to the fact that adiabati-
cally cooled pick-up ions copopulate the P(1)-Maxwell tails.

Permanent dissipation of turbulent wave power upon heat-
ing the expanding solar wind should quickly lead to a com-
plete consumption of all convected turbulence power, un-
less some turbulence generating processes are operating. In
this respect, Lee and Ip (1987) and Fahr and Ziemkiewicz
(1988) have already indicated that P(2)´s implanted into the
expanding solar wind, by means of their unstable distribu-
tion functions, generate wave powers which can partially be
reabsorbed by P(1)´s. Using quasi-linear wave-particle in-
teraction theories by Kennel and Engelmann (1966), Gary
and Feldman (1978) and Winske and Leroy (1984), the lat-
ter authors could show that under optimized conditions, up
to 50% of the initial P(2)-energy can be forwarded to P(1)´s
by means of P(2)-driven waves. More recently, Williams et
al. (1995) and Gray et al. (1996) have looked into this prob-
lem again. Williams et al. (1995) have given representations
for the non-adiabatic expansion of the distant solar wind due
to dissipation of P(2)-driven waves within a simplified en-
ergy dissipation concept. Gray et al. (1996), within a hy-
brid plasma simulation code, studied the energy transfer in
a homogeneous plasma background from the original unsta-
ble P(2) ring distribution to the P(1) thermal energy degree
perpendicular to the magnetic field and found that for van-
ishing pitch-angle diffusion - at most favourable conditions
like “low Beta” plasmas - about 20% of the initial P(2) ring
energy can be handed over to P(1)´s.

In all concepts mentioned so far, however, a quantitative
number for the average fraction of initial P(2)- energy trans-
fered under general conditions to P(1)´s while moving to-
wards the heliospheric termination shock, including pitch-
angle diffusion and general forms of nonlinear wave-particle
couplings, could not be given. Here we may gain insight
from the observational result presented by Whang (1998) or
Whang et al. (1999), showing that the distant P(1)´s behave

polytropic with a best-fitting polytropic index ofγ ∗
= 1.28.

Sinceγ ∗ turns out to be substantially smaller than the adia-
batic indexγ = 5/3 ' 1.667, it is evident that some con-
tinuous, i.e. non-CIR-correlated heating of P(1)´s takes place
which outside of the ionization cavity, may be ascribed to the
action of P(2)´s. This P(1)-heating, since global in its nature
and independent on latitude, most certainly must be due to
wave energy that is continuously coupled from the P(2)´s via
feeding of wave turbulences to the P(1)´s, due to nonlinear
or quasi-linear wave-particle couplings (see Williams et al.,
1995; Zanket al., 1996). Thus, represents an energy sink for
the P(2)´s as they pump energy into wave turbulent power,
but at the same time it may again also partially represent an
energy source for P(1)´s, which reabsorb parts of these tur-
bulences undergoing energy diffusion.

Here, on the one hand, we would like to respect the fact
that P(2)´s undergo a type of Fermi-2 acceleration or transit-
time damping process, which is clearly manifest as an ubiq-
uitous heliospheric phenomenon, both in view of theory and
observations (e.g. see Fisk et al., 2000). But on the other
hand, we have to take into account that these P(2)´s that ini-
tially drive wave turbulences also experience genuine energy
losses. This needs to be taken into account by a complete
P(2) thermodynamics. These P(2) energy losses are primar-
ily due to the generation of wave power which eventually is
absorbed by protons, as discussed by Huddleston and John-
stone (1992) or Zanket al. (1996b). In addition, some loss of
P(2) energy in a more hydrodynamic view is also connected
with the work done by P(2)´s through their pressure at driv-
ing the effective solar wind with an effective bulk velocity
vw, jointly shared by P(2)´s and P(1)´s (see e.g. Fahr and
Rucinski, 1999).

Here we start out our considerations of the P(1)-P(2)- two
fluid thermodynamics from the earlier kinetic result obtained
from Chalov and Fahr (1995) leading to a distribution func-
tion f2, which yields the P(2)-pressure as its third moment
by the expression (see Eq. 7):

P2(r) = αc(rs/r)0.3
· ρ2v

2
w = ρ2C2(r). (8)

Taking this result derived from kinetic P(2)- studies carried
out by Chalov et al. (1995, 1997) and supported by the results
of le Roux and Fichtner (1997) as a serious physical hint, it
then demonstrates that the P(2)´s, in view of a nearly constant
asymptotic solar wind velocityvw ' vw0, essentially behave
like an isothermal fluid, since withC2(r) = C2 = const.,
according to the relationP2/ρ

γ2
2 ' C2 with γ2 ' 1, one then

simply derives from Eq. (8) that:

∂P2

∂ρ2
'

P2

ρ2
' C2 = KT2/mp. (9)

In the appendix we shall investigate in more detail the ex-
act behaviour of the temperatureT2(r) and shall demonstrate
how well the above approximation is fulfilled. In the follow-
ing, however, we shall make use of Eq. (8). In hydrodynam-
ical terms this equation means that P(2)´s, when expanding
with the solar wind, experience just enough heating to keep
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their temperatureT2 about constant at the expansion of the
solar wind to larger distances. This phenomenon must thus
be reflected in a fine-tuned strength of the energy input terms
on the RHS of the equation of conservation of the P(2)- en-
thalpy flow given by:

div

(
γ

γ − 1
P2vw

)
− (vw ◦ ∇)P2

= βex(
1

2
mpv2

w) + Q2 , (10)

whereβex is the P(2)- injection rate,Ei =
1
2mpv2

w is the
initial P(2) injection energy seen in the solar wind rest frame,
andQ2 denotes the net energy input into the P(2)- fluid due
to nonlinear wave-particle interactions, including losses due
to wave-driving and gains due to Fermi-2 accelerations.

We now want to find the form of the unknown termQ2 that
can satisfy the above differential equation10. Remembering
that the P(2)- mass flow conservation requires:

mpβex = div(ρ2vw) , (11)

we then obtain:

div

(
(

γ

γ − 1
−

v2
w

2C2
)ρ2vw

)
− (vw ◦ ∇)ρ2 = Q2/C2 (12)

and can derive the following result:

Q2 =

(
γ

γ − 1
−

v2
w

2C2

)
div(P2vw) − (vw ◦ ∇)P2 . (13)

The pick-up ion fluid gains the initial injection energyEi

per creation of new pick-up’s and by energy diffusion pro-
cesses due to nonlinear wave-particle interactions; but it also
loses thermal energy by adiabatic cooling and by driving
wave power with the unstable parts of its distribution func-
tion f2. The sourceQ2 only comprises the net balance of
energies pumped into the wave turbulences by kinetic insta-
bilities and absorbed from the wave turbulences by energy
diffusion. Hence,Q2 is the net energy lost by pick-up’s and
finally mediated by waves to solar wind protons. Thus, with
the above Eq. (13) we have just found the form of a net en-
ergy inputQ2 that leads to an isothermal P(2)- behaviour.

Before we study the thermodynamics of the solar wind
protons separately, we take a look into the thermodynamics
of the joint P(1)-P(2)- two-fluid system, which is formulated
by:

div

(
γ

γ − 1
(P2 + P1)vw

)
− (vw ◦ ∇)(P2 + P1)

= βex

(
1

2
mpv2

w − KT1

)
+ Q2 + Q1 . (14)

What is now required is what is physically reasonable for
a stationary outflow. This two-fluid system, in the absence

of any external energy sources aside from the evident en-
ergy sinks, is connected per creation of P(2), with the re-
moval of thermal P(1)-energy, i.e.KT1, and the gain of the
P(2)-injection energy, i.e.Ei . This then leads to the obvi-
ous conclusion that the energy inputsQ1 andQ2 to the P(1)-
and the P(2)- fluids, respectively, connected with nonlinear
wave-particle interactions, have to cancel each other (i.e. no
net energy gain or loss of the wave fields is expected!). This
then evidently requires that:

Q1 = −Q2. (15)

Based on this result and on the expression we have derived
for Q2 in Eq. (13), we thus obtain the single-fluid thermody-
namics of P(1)´s given by the following equation:

div

(
γ

γ − 1
P1vw

)
− (vw ◦ ∇)P1 = −βex(KT1)

−(
γ

γ − 1
−

v2
w

2C2
)div(P2vw) + (vw · ∇)P2 . (16)

We now try to obtain from the above equation a solution for
the solar wind pressureP1 and for that purpose the arrange
Eq. (16) into the more appropriate following form, keeping
in mind thatP2 = C2ρ2 (see Eq. 8) and thatdiv(n2vw) =

−div(n1vw):

div

(
γ

γ − 1
P1vw

)
− (vw ◦ ∇)P1 = KT1div (n1vw)

+(
γ

γ − 1
mpC2 −

mpv2
w

2
)div(n1vw)

+mpC2(vw ◦ ∇)n2 . (17)

We shall now evaluate this equation for a spherically sym-
metric solar wind flow assuming that (see Appendix):

2vw

r
�

dvw

dr

can be used as a satisfactory approximation and with that
obtain:

γ

γ − 1

[
dP1

dr
+

2P1

r

]
−

dP1

dr

=

[
−kT1 +

γ

γ − 1
mpC2 −

mpv2
w

2

]

·

[
dn1

dr
+

2n1

r

]
− mpC2

[
dn1

dr
+

2

r
(n1 + n2)

]
. (18)

This equation can be simplified into the following form:

1

γ − 1

dP1

dr
+

2γ

γ − 1

P1

r

=

[
−kT1 +

1

γ − 1
mpC2 −

mpv2
w

2

]

·

(
dn1

dr
+

2n1

r

)
− mpC2

[
2

r
n2

]
. (19)
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Keeping in mind thatKT1 � mpC2 = KT2, and that the
P(2)- density is related to the total proton density byn2 =

n − n1 , with n as the total solar proton density given by:
n = n0(r/r0)

−2, then yields the following equation:

dP1

dr
+ 2γ

P1

r
= −

[
KT2 − (γ − 1)

mpv2
w

2

]
βex

vw

−KT2(γ − 1)

[
2

r
(n − n1)

]
(20)

which finally, with the P(2)-injection rateβex = n1nH σexvw,
yields:

dP1

dr
+ 2γ

P1

r
=

[
2

r
(γ − 1)KT2

−(KT2 + (γ − 1)
mpv2

w

2
)nH σex

]
n1

−KT2(γ − 1)
2n0

r0
(
r0

r
)3 . (21)

This differential equation is of the following formal form:

dP1

dr
+ g1(r)P1 = g2(r) (22)

and thus has the solution:

P1 = exp

(
−2γ

∫ r

r0

dr

r

)
{
P1,0 +

∫ r

r0

exp

(
+2γ

∫ r

r0

dr

r

)
g2(r

′)dr ′

}
. (23)

Equation (23) further simplifies to:

P1 =

(
r

r0

)−2γ
(

P1,0 +

∫ r

r0

(
r

r0

)2γ

g2(r
′)dr ′

)
. (24)

Representing the functiong2(r) in the form:

g2(r) = g21(r) + g22(r) + g23(r) (25)

then leads to the following solution forP1:

P1 =

(
r

r0

)−2γ

(P1,0 + I21 + I22 + I23) , (26)

where the integralsI21, I22, I23 are given by:

I21 = 2n0(KT2)(γ − 1)∫ x

1
x2γ−3 exp

(
−3(x′

− 1)
)
dx′ (27)

I22 = 3(KT2 − (γ − 1)
mpv2

w

2
)n0∫ x

1
x2γ−2 exp

(
−3(x′

− 1)
)
dx′ (28)

I23 = −KT2(γ − 1)2n0

∫ x

1
x́

2γ−3
dx́. (29)

To derive the above integrals in these forms, the density
n1, given by (see Fahr and Rucinski, 1999) was used,

n1 = n0x
−2 exp

(
− 3(x − 1)

)
. (30)

Furthermore, it is assumed that the H-atom density in the
outer heliosphere is essentially constant, i.e.nH ' nH0 ,
and the following abbreviations were used:

x = r/ro; and 3 = nH0σexro .
Keeping in mind that3 = nH0σexr0 is of the or-

der of 10−3, may permit us to set in the integrals above:
exp(−3(x − 1)) ' 1. In this physically reasonable approxi-
mation, one then obtains the following solution forP1 :

P1 = x−2γ

[
P1,0 + 3

(
KT2

−(γ − 1)
mpv2

w

2

) n0

2γ − 1

(
x2γ−1

− 1
)]

. (31)

First, we now intend to investigate the polytropic be-
haviour of the P(2)-heated solar wind and for that purpose,
we study the expression derivable for the local polytropic in-
dexγ1:

γ1 =
ρ1

P1

dP1

dρ1

(32)

To evaluate Eq. (32), we first take the derivative ofP1 with
respect tor, given in the form:

dP1

dr
=

1

r0

{
−

2γP1

x
+ P1,03(α1 − α2)x

−2
}

, (33)

whereα1 andα2 are defined by:

α1 =
n0KT2
P1,0

= (T2/T1,0) ; and α2 = (γ − 1)
n0mpv2

w

2P1,0.

With Eq. (31) and the relation:dρ1
dr

= −2ρ1
r

, we then ob-
tain from Eq. (32):

γs(x) =
ρ1

P1

dP1

dρ1
= γ −

P1,0

P1

3

4
(α1 − α2)x

−1 . (34)

In the following we shall demonstrate the results of the
thermodynamic behaviour of P(2)-heated P(1)´s by plotting
in Figs. 1 to 3 the quantitiesLog(P1) versus log(ρ1) with
1α = α1 − α2 , P1,0, and3, respectively, as open parame-
ters.

First, in Fig. 1, the parameter1α is varied with the fol-
lowing values selected:1α1 = 50 ; 1α2 = 30; 1α3 = 10.
As is evident in this figure the pressureP1 drops the least
with the densityρ1, or equivalently the solar distancex, the
higher the value for1α is, i.e. the more efficient the P(2)-
induced heating of the P(1)´s is. On the other hand, in Fig. 2,
we can show that when keeping the same value for1α, then
the pressureP1,0 just acts as a factor in the Eq. (31) forP1
and hence, its variation simply moves up or down the whole



1514 H. J. Fahr: Solar wind heating

-4 -3 -2 -1 0 1
log n [cm-3]

-15

-14

-13

-12

-11

lo
g

 P
 [

er
g

 c
m

-3
]

1

2
3

Fig. 1. Plotted is the logarithm of the solar wind pressureP1 versus
the logarithm of the density n1 at3 = 1·10−3 andT1,0 = 5·104K

for different values of1α = α1 − α2, i.e. for 1:1α = 50, 2:1α =

30, 3:1α = 10 .
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Fig. 2. Plotted is the logarithm of the solar wind pressureP1 versus
the logarithm of the density n1 at 3 = 1 · 10−3 and1α = 50
for different values ofT1,0, i.e. for 1:T1,0 = 5 · 104K, 2:T1,0 =

7 · 104K, 3: T1,0 = 3 · 104K.

curve by a constant vertical shift. The pressureP1 at larger
solar distances reacts even more sensitively to a variation in
the quantity3 = nH σexr0. Ascribing this variation in3
(31 = 1 · 10−3, 32 = 2 · 10−3,33 = 3 · 10−3) to a cor-
responding variation in the H-atom densitynH0, Fig. 3 then
reveals that at higher values ofnH0, the non-adiabatic be-
haviour ofP1 already starts further inward at smaller solar
distancesx.

Furthermore, in Figs. 4 and 5, we show the polytropic in-
dex γ1(x) given in Eq. (34) as a function ofx for different
values of1α and3, respectively. As one can already see
from Eqs. (31) and (34), the functionγ1(x) reduces from
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Fig. 3. Plotted is the logarithm of the solar wind pressureP1 versus
the logarithm of the density n1 at 1α = 50 andT1,0 = 5 · 104K

for different values of3, i.e. for 1:3 = 1 · 10−3, 2: 3 = 2 · 10−3,

3:3 = 3 · 10−3 . For comparison purposes data from the VOY-
AGER space probes are plotted as dots with a best fitting straight
line (dashed curve), according to a polytropic index ofγ ∗

1 = 1.28
(see Whang, 1998).

its initial value ofγ1,0 ' γ = 5/3 to an asymptotic value
of γ1(x → ∞) = γ∞, which depends neither on1α nor
3. The range of solar distances whereγ1 turns out to be be-
tween, say, 1.4 and 1.2, i.e. clearly below the adiabatic value,
is, however, fairly sensitive to both3 and1α. With parame-
ter values3 = 3·10−3 and1α = 50 one would obtain poly-
tropic indices below 1.3 all the way from 5 AU outwards, as
was already observed by VOYAGER-2 (see Whang, 1999).

3 Average energy transfer between the P(2)- and P(1)-
fluid

In the preceding section we have used the hypothesis that
waves driven by P(2)´s energize solar wind protons and
thereby eventually transfer a specific fraction of their initial
pick-up energy per P(2), i.e. ofEi =

1
2mpv2

w, to the solar
wind background, i.e. to the P(1)´s. We shall study which
fraction of this initial P(2)- energy is eventually transfered
to the P(1)´s when they finally leave the inner heliosphere,
passing over the heliospheric termination shock. The net
P(2)-induced wave energy input to P(1)´s per unit volume
and time, according to Eq. (12), is given by:

Q1 = −Q2 = −

(
γ

γ − 1
−

v2
w

2C2

)
div(P2vw) + (vw ◦ ∇)P2 (35)

We may evaluate this expression here by assuming, as al-
ready done before, thatKT2 = mpC2, as well as the solar
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Fig. 4. Plotted is the polytropic indexγ1 versus the logarithm of
the solar distancer at 3 = 1 · 10−3 and T1,0 = 5 · 104K for
different values of1α = α1 − α2, i.e. for 1:1α = 50, 2:1α = 30,
3:1α = 10 .

wind velocityvw, are constants. Then the above expression
evaluates to:

Q1 = −

(
γ

γ − 1
KT2 −

mpv2
w

2

)
div(n2vw) − KT2(vw ◦ ∇)n2 . (36)

Keeping in mind that:

div(n2vw) = nH n1σexvw, (37)

and thatn2 = n − n1, with (see Eq. 30):

n2 = n0x
−2 [1 − exp(−3(x − 1))

]
(38)

then allows one to transform Eq. (36) into:

Q1 = −

(
γ

γ − 1
KT2 −

mpv2
w

2

)
3

n0vw

r0

[
x−2(1 − 3(x − 1)

]
+KT2

vwn0

r0
3(x−2

+ 2x−3) , (39)

which, in view of the fact that within our integration limits of
x ≤ 100, the quantity3x � 1 can be further simplified to:

Q1 = −3
n0vw

r0{(
2γ − 1

γ − 1
KT2 −

mpv2
w

2

)
x−2

+ 2KT2x
−3

}
. (40)

With this expression for the P(2)-induced energy input, one
arrives at a total energy input per unit of time into a sector of
the inner heliosphere, distending with a space angled� from
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Fig. 5. Plotted is the polytropic indexγ1 versus the logarithm of the
solar distancer at1α = 50 andT1,0 = 5·104K for different values
of 3, i.e. for: 1:3 = 1 · 10−3, 2: 3 = 2 · 10−3, 3:3 = 3 · 10−3 .

r = r0 (i.e. inner boundary where no P(2)´s are present) to
r = rs = 100r0 (i.e. heliospheric shock location) given by:

01 = d�

∫ rs

r0

r2Q1dr, (41)

which, with the use of Eq. (40), takes the following form:

01 = −r3
0d�

∫ x

1
x23

n0vw

r0{(
2γ − 1

γ − 1
KT2 −

mpv2
w

2

)
x−2

+ 2KT2x
−3

}
dx, (42)

and thus can be simplified to:

01 = −3r2
0n0vwd�

∫ x

1{(
2γ − 1

γ − 1
KT2 −

mpv2
w

2

)
+ 2KT2x

−1

}
dx . (43)

This finally can be evaluated to yield:

01 = −3r2
0n0vwd�{(

2γ − 1

γ − 1
KT2 −

mpv2
w

2

)
(x − 1) + 2KT2 ln(x)

}
.(44)

For the outer boundaryxs ' 100 of the integration (i.e the
location of the termination shock) this expression finally sim-
plifies to:

01 = −3r2
0n0vwd�(

2γ − 1

γ − 1
KT2 −

mpv2
w

2
)xs . (45)
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Now we want to compare this expression for01 with the
total energy input0i into the same inner heliospheric so-
lar wind sector per unit of time due to the total loading of
the solar wind with freshly implanted PUI‘s of energyEi

= (1/2)mpv2
w at a local implantation rateβex within the

same space sector as considered above. For0i one thus ob-
tains the following expression:

0i = d�

∫ rs

r0

r2βex(r)

(
1

2
mpv2

w

)
dr . (46)

Keeping in mind that the local PUI production rate can be
expressed byβex = div(ξnvw), then allows one to arrive at:

0i = 3n0r
2
0vw

[mp

2
v2
w

]
d�(xs − 1) . (47)

The ratio2 of the above energy inputs01 and0i taken
from Eqs. (45) and (47) is thus given by:

2 =
01

0i

=

−3r2
0n0vwd�(

2γ−1
γ−1 KT2 −

mpv2
w

2 )xs

3n0r
2
0vwd�[

mp

2 v2
w]xs

= 1 −

2γ−1
γ−1 KT2

mp

2 v2
w

= 1 −

2γ−1
γ−1
1
2M2

2

, (48)

whereMpui is the PUI Mach number defined by:

M2
2 =

ρ2v
2
w

P2
'

1

αc

(
rs

rc
)0.3

= 2.24 (
rs

rc
)0.3.

The above expression when evaluated forγ = 5/3 then
tells us that the above result can only reasonably well de-
scribe the P(1)-P(2) two-fluid thermodynamics, if the P(2)-
Mach number fulfills the following relation:

M2 ≥
2
√

7 = 2.65. (49)

As one can see in the result presented for2 in Eq. (48)
regarding the effectivity of the energy transfer from P(2)´s to
P(1)´s, the value of3, i.e. of nH , does not play any role in
this context. What counts, however, are the values ofα1 and
of α2, as one can see when rewriting Eq. (48) in the following
form:

2 = 1 −

2γ−1
γ−1 KT2

mp

2 v2
w

=
α2 − (2γ − 1)α1

α2
. (50)

As one can conclude from the above relation, it is nec-
essary for an energy transfer from P(2)´s to P(1)´s that
α2 ≥ (7/3)α1. For instance, for values likeα2 = (8/3)α1;
(9/3)α1; (10/3)α1, , respectively, one could expect to have
energy transfer ratios of2 = 0.125; 0.222; 0.3.

4 Concluding remarks

We can state that whenever the solar wind system moves
through a fractionally ionized interstellar medium, P(2)´s are
automatically produced by ionization of neutral interstellar
H-atoms that penetrate into the supersonic region of the he-
liosphere. These ions, upon momentum-sharing with the so-
lar wind at the P(2)- loading process, decelerate the wind. In
addition, the original solar wind is modulated substantially in
its dynamics and thermodynamics, when P(2)´s, as a separate
suprathermal ion population, are mixed up with P(1)´s and at
the same time are tied to a joint bulk velocityvw. The solar
wind is decelerated by about 10%, depending on the den-
sity of the interstellar H-atoms (see appendix). In addition,
the solar wind protons are polytropically heated by nonlin-
ear wave-particle interactions induced by P(2)-driven hydro-
magnetic waves, leading to a quasi-polytropic P(1) behaviour
with distance-dependent polytropic indicesγs(x) ≤ (5/3).
A polytropic solar wind behaviour, with indicesγs ' 1.28
in regions between 10 and 40 AU, as obtained in our cal-
culations, is, in fact, confirmed by solar wind proton tem-
perature measurements carried out with VOYAGER-2 (see
Whang, 1999). By means of this nonlinear P(2)-wave-P(1)
energy coupling, about 10 to 20% of the intitial PUI injec-
tion energyEi is transfered to solar wind protons. The effec-
tive Mach numbersM1,2 of the solar wind flow are reduced
substantially to values of about 2 to 3, which are associated
primarily with the solar wind Mach numberM2 and are lim-
ited toM2 ≥ 2.65. The two-fluid plasma mixture composed
of P(1)´s and P(2)´s in many respects behaves like a mixture
of a heavy and a light gas, except that the moment trans-
fer terms are not of the type of the classical ones that are
valid under collision-dominated conditions (see, for exam-
ple, Braginskii, 1965; Burgers, 1969), but are by its nature
wave-particle coupling terms.
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Appendix A

In the following we come back to the Eq. (8) which was used
in this paper and we want to evaluate in a more quantitative
manner the expression

P2/ρ2 = αc

( rs

r

)0.3
v2
w (A1)

First, we want to derive an expression for the solar wind de-
celeration as given in Eq. (3). In view of the fact that the
relative P(2) ion abundanceζ(r) always remains small with
respect to Eq. (3) (see Fahr and Rucinski, 1999), one can
simplify Eq. (3) into the following form:
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vw = vw0 exp

(
2

3

∫ r

r0

ξ

r
dr

)
exp

(
−

4

3

∫ r

r0

nH σex(1 − ξ)dr

)
. (A2)

From Eq. (7) in Fahr and Rucinski (1999) we learn that:

σexnH =
1

1 − ξ

∂ξ

∂r
(A3)

and obtain Eq. (A2) in the following form:

vw = vw0 exp(
2

3

∫ r

r0

ζ

r
dr) exp(−

4

3
|ξ − ξ0|) . (A4)

Now taking into account thatξ0 = ξ(r0) ' 0 and that for
distances of relevance here, i.e. forr ≥ rc ' 30AU , the
functionξ = ξ(r) can be well approximated by:

ξ(r) = σexnH r

then yields Eq. (A4) in the following form:

vw = vw0 exp(−
2

3
σexnH r) , (A5)

which, aside from of the factor(2/3) instead of 1, was also
already found in an earlier work by Holzer (1972), Fahr
(1973) and Lee (1997). Taking this result we then are led
to the following expression for Eq. (A1):

P2/ρ2 = αc

( rs

r

)0.3
v2
w

= αc

( rs

r

)0.3
(1 −

4

3
σexnH r)v2

w0 . (A6)

With σex ' 10−15 cm2 andnH = nH∞ = 0.07 cm3, one
then finds that betweenr = rc = 30 AU andr = rs = 90 AU
the expressionP2/ρ2 = KT2/mp given by Eq. (A6) only
varies between the following values:

0.58v2
w0 ≥ P2/ρ2 ≥ 0.40v2

w0.

In view of this fairly mild variation over a large distance
domain of the outer heliosphere we feel encouraged to ap-
proximate the temperatureT2 by:

T2 ' 0.5
(mp

K

)
v2
w0 [Kelvin] .
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