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Abstract. It is shown that the left-hand (or ion-type) sense
of polarization can appear in the field interference pattern of
two plane electron whistler waves. Moreover, it is demon-
strated that the ion-type polarized wave electric fields can
be accompanied by the presence at the same observation
point of electron-type polarized wave magnetic fields. The
registration of ion-type polarized fields with frequencies be-
tween the highest ion gyrofrequency and the electron gy-
rofrequency in a cold, overdense plasma is a sufficient in-
dication for the existence of an interference wave pattern,
which can typically occur near artificial or natural reflect-
ing magnetospheric plasma regions, inside waveguides (as in
helicon discharges, for example), in fields resonantly emit-
ted by beams of charged particles or, in principle, in some
self-sustained, nonlinear wave field structures. A compar-
ison with the conventional spectral matrix data processing
approach is also presented in order to facilitate the calcula-
tions of the analyzed polarization parameters.

Key words. Ionosphere (wave propagation) Radio science
(waves in plasma) Space plasma physics (general or miscel-
laneous)

1 Introduction

The analysis of the polarization characteristics of wave fields
based on multi-component field registrations can be an ef-
ficient tool to determine the origin of the received wave
signals, as well as the location of their natural or artificial
sources in space or on the Earth’s surface (Olson and Sam-
son, 1979; Lefeuvre et al., 1982; Lester and Smith, 1980;
Sawada et al., 1993). At the same time, the correct inter-
pretation of the multi-component field data recorded at a sin-
gle observation point cannot be performed without additional
assumptions on the actual space-time structure of the regis-
tered wave fields. For example, it was pointed out that in
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some cases, the registered fields cannot be fitted by a plane
wave field pattern, but probably correspond to the interfer-
ence structure of several plane waves (Southwood and Kivel-
son, 1984; Lundin, 1983; Lefeuvre et al., 1985). Moreover,
an unsuitable modelling of the fields’ structure can lead to a
reduced accuracy in the determination of the waves’ arriving
directions (Moriyama et al., 1979) and to ambiguities in the
interpretation of the physical nature of the registered wave
phenomena (Manninen and Turunen, 1999, 2000).

The direction-finding technique, using the multi-com-
ponent measurements of a wave magnetic field and the re-
construction of its polarization plane, is based on the essen-
tial assumption that the recorded wave field has a plane wave
structure, at least in the cases when the recovered polariza-
tion plane reveals its steady-state nature during the data pro-
cessing session. In other more complex cases, the structure
of the wave field can be reconstructed assuming that the reg-
istration of noncorrelated plane wave field constituents is per-
formed. In this case, the technique, which consists in recov-
ering the so-called wave distribution function, can be used
(Storey and Lefeuvre, 1974). It is shown further that in the
electron whistler frequency band (which extends over more
than three orders of magnitude in a dense, cold plasma that is
typical of the surrounding Earth’s plasma), the trivial, neces-
sary condition for applying both techniques, which is that the
sense of polarization of the reconstructed wave field should
be of electron type, can be complemented by the following
nontrivial sufficient condition: the revelation of the ion sense
of polarization in the data is the indication that a coherent
interference pattern of electron whistler plane waves is reg-
istered. If the latter situation is realized, then the orientation
of the polarization planes does not correspond to the wave
vectors’ directions.

Actually, we show in this paper that the ion-type polar-
ization can appear in the natural interference pattern of two
electron-type polarized waves of the same frequency, but
with different projections of their polarization ellipses on the
plane orthogonal to the ambient magnetic field (it is assumed
that each wave has a fixed polarization plane). Moreover, it
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is found that the wave interference pattern can reveal at the
same observation point opposite senses of polarization for
the electric and the magnetic fields. This result is shown ana-
lytically for the case of field interference patterns of two long
trains of whistler wave packets (incident and reflected), reg-
istered in the region where they overlap (near the so-called
reflecting region). This result allows one to justify the possi-
bility to observe very unusual polarization features of wave
fields of the electron whistler frequency range in a space
plasma where the plane wave approximation is convention-
ally accepted.

In the laboratory plasmas’ devices, where the structure of
the wave fields essentially differs from that of plane waves,
due to the inherent reflection from the walls, the polarization
of the wave fields is known to be much more complex. Actu-
ally, both types of field polarizations have been evidenced
in the interference pattern of guided whistler waves, even
in the case when the helicity of the radiating antenna was
adjusted for the excitation of electron-type polarized waves
only (Chen and Boswell, 1997).

The paper is organized as follows. In Sect. 2, we present
a strict, general analysis that shows the possibility to reg-
ister ion-type field polarization in the interference pattern
of two plane waves of electron sense of polarization; then,
the domains of characteristic parameters where each sense
of polarization can be observed in the interference pattern
are determined. In Sect. 3, considering the field pattern
which results from the steady-state interference of an inci-
dent and a reflected whistler wave propagating in an inhomo-
geneous plasma with a density gradient orthogonal to the am-
bient magnetic field, we show that the electric and the mag-
netic fields can reveal at the same observation point opposite
senses of rotation around the magnetic field lines. The anal-
ysis of the interference pattern’s characteristic features for
the case of two noncorrelated sources of plane waves is pre-
sented in Appendix A. The relations between the calculated
polarization parameters and the conventional spectral matrix
elements are presented in Appendix B. In Sect. 4, we discuss
the preferential conditions of observation and the typical pa-
rameters of the field interference patterns of electron whistler
waves in the Earth’s plasmasphere.

2 Polarization characteristics of the electromagnetic
field

One of the conventional approaches to the analysis of multi-
component wave field data consists in calculating the ele-
ments of the so-called spectral matrix, i.e. in determining
time correlations between the quasi-monochromatic wave
field components. This approach is described briefly in Ap-
pendix B where the characteristic polarization parameters
under discussion in this section are expressed using the spec-
tral matrix elements.

Let us write the wave fieldK(t) as a sum of several quasi-
monochromatic wave field constituents of frequencyω with
constant complex polarization vectorsam (am refers to a sin-

gle plane wave or to any steady-state superposition of plane
waves) and complex amplitudeshm(t), namely:

K(t) ≡
1

2
H (t) exp(−iωt) + c.c.

=
1

2

∑
m

amhm(t) exp(−iωt) + c.c., (1)

whereK can represent the electric or magnetic components
E andB of the electromagnetic wave field.

The sign of the parameterP represents the sense of ro-
tation (or sense of polarization) of the field around the unit
vectorn directed, for example, along the ambient magnetic
field B0

P ≡ 〈([K(t), K(t +
π

2ω
)], n)〉

≡
1

T

T∫
0

([K(t),K(t +
π

2ω
)], n) dt, (2)

where the notations[, ] and (, ) indicate vector and scalar
products and the brackets〈〉 indicate time averaging overT .
P > 0 corresponds to the right-hand sense of rotation of
K(t) aroundn, which corresponds to the counterclockwise
sense of rotation of its projection onto the oriented plane nor-
mal ton.

Under overdense, cold plasma conditions (i.e. when the
electron plasma frequencyωp is greater than the electron gy-
rofrequencyωc), typical of the Earth’s magnetosphere, only
electron whistler plane waves can propagate in the frequency
interval ωH < ω < ωc (ωH is the proton gyrofrequency),
with electric and magnetic field vectors rotating in the same
sense as the electrons gyrate around the magnetic field lines
(electron-type polarization withP > 0). Nevertheless, we
demonstrate here that the ion-type polarization (i.e. when
P < 0) can be registered in the interference pattern of two
plane electron whistler waves; let us mention that nothing of
the kind can be observed in the case of a completely non-
correlated set of plane waves. Then, the registration of ion-
type polarized waves in the electron whistler frequency band
is a sufficient indication for the appearance of interferences
in the wave pattern, which typically can occur near artifi-
cial or natural reflecting surfaces or inhomogeneous magne-
tospheric plasma regions, inside waveguides, in fields reso-
nantly emitted by beams of charged particles or, in principle,
in some self-sustained nonlinear wave field structures (com-
pare to Lundin, et al., 1996, for a hot plasma). In these cases,
the complex amplitudes of the constituents of the total reg-
istered wave field are linked together through the physical
mechanisms of reflection, wave-particle interaction or other
probable nonlinear processes.

In addition to the sense of polarization, it is worth esti-
mating the field intensityW localized in the plane orthogo-
nal ton

W ≡ 〈(K(t) − n (K(t),n), K(t) − n (K(t), n))〉

= 〈([K(t), n], [K(t),n])〉. (3)
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Let us consider in (1) the sum of two plane waves and in-
troduce the relative amplitudeσ and phaseδ of both con-
stituents, i.e.hj = σj exp(iδj ) andh2 = σh1 exp(iδ). The
short averaging timeT in (2) is assumed to be sufficiently
small so thatσ andδ can be considered as constant within
this time interval (but with the wave frequency verifying
ωT � 1). Sinceσj andδj vary typically from one short time
interval to the other, distribution functionsF(σj , δj ) can be
built for a large set of short successive intervalsTk belonging
to the total field registration durationTd (see also Appendix
A); such functions can be used to calculate the mean values
of P andW , which is equivalent to a direct time averaging
over the periodTd .

Calculating the polarization parameterP according to
Eq. (2), one obtains

P =
1

2

〈
σ 2

1

〉
(p1 + σ 2 p2 + 2σ |p12| cosϕ), (4)

where

〈
σ 2

1

〉
≡

1

T

T∫
0

h1(t)h
∗

1(t)dt (5)

and

ϕ ≡ δ + ν, cosν = Re(p12/ |p12|),

sinν = −Im(p12/ |p12|),

pj ≡ i([aj , a
∗

j ], n), j = 1, 2, p12 ≡ i([a1, a
∗

2], n). (6)

The notationsx∗, Re(x) and Im(x) correspond to the com-
plex conjugate value ofx and to the real and the imaginary
parts ofx, respectively;i is the imaginary unit. In the same
manner, one can find that

W =
1

2

〈
σ 2

1

〉
(b1 + σ 2 b2 + 2σ |b12| cos(ϕ + ε)), (7)

where

cosε = Re(p12b
∗

12/ |p12b12|),

sinε = Im(p12b
∗

12/ |p12b12|),

bj ≡
∣∣[aj , n]

∣∣2 , j = 1, 2, b12 ≡ ([a1,n], [a2,n]). (8)

Let us consider the case when electromagnetic fields of both
waves rotate in the same sense aroundn ‖ B0 i.e.p1p2 > 0.

P can change its sign if the equationP(σ) = 0 possesses
real rootsσ at least in some domain ofϕ. Let us show
that the corresponding necessary condition, namely cos2 ϕ ≥

p1p2/ |p12|
2 , can be satisfied for some values ofϕ, i.e. let

us prove that|p12|
2

≥ p1p2. Using the substitutions

t = ia1, s = ia2, q = [a1,n], p = [a2, n], (9)

as well as the relations

(t, p)∗ = (p, t) = (s, q), [p, q] = −n ([a1, a2], n),(10)

one obtains

|p12|
2
− p1p2 = (t, p)(s, q) − (t, q)(s, p)

= ([t, s], [p, q]) = |([a1, a2], n)|2 ≥ 0. (11)

Thus, some real values ofϕ exist which satisfy the inequality
cos2 ϕ ≥ p1p2/ |p12|

2 . However, one can see that, accord-
ing to (11), the interference of two plane waves of the same
plasma mode and sense of polarization, arriving along the
same direction (so thata1 = βa2, whereβ is a complex
number), cannot reveal the inverse sense of polarization in
the resulting wave field pattern.

When both constituents have the same sense of polariza-
tion, i.e.p1p2 ≥ 0, P andp2 (as well asP andp1) have
opposite signs in the(ϕ, σ ) domainG+ described by

s2 arccos(−s2
√

r) ≤ ϕ ≤ π + s2 arccos(s2
√

r),

r ≡ p1p2/ |p12|
2 > 0, s2 = sign(p2), (12)

where the notation sign(p2) indicates the sign ofp2 and

σ− < σ < σ+,

σ± = (−s2 cosϕ ±

√
cos2 ϕ − r)

∣∣∣∣p12

p2

∣∣∣∣ . (13)

Whenp1p2 ≤ 0 (i.e.r ≤ 0), P andp2 have opposite signs
in the domainG− defined by (hereσ− < 0)

0 ≤ ϕ ≤ 2π, 0 < σ < σ+. (14)

Outside the domainsG− and G+, the sense of polar-
ization cannot be modified, i.e.P has the same sign
asp2 (sign(P ) = s2).

Thus, we proved that even in the case when two wave con-
stituents have the same sense of polarization, their resultant
interference pattern can reveal the opposite sense of field ro-
tation when the relative phases and amplitudes of waves sat-
isfy the conditions (12) and (13). However, the eccentricity
of the resultant field’s polarization ellipse, which can be esti-
mated by the calculation of the so-called circular polarization
level parameterCPL (see also Appendix B)

CPL =
P

W
(15)

can essentially differ from those of the constituents.

3 Whistler waves’ interference pattern near a reflecting
surface

Let us consider the steady-state field interference pattern
formed by the overlapping of incident and reflected waves
propagating through an inhomogeneous background plasma
layer with a density gradient∇ne orthogonal to the uniform
ambient magnetic fieldB0, in the case when a long incident
whistler wave pulse penetrates the more dense regions from
the rarefied ones; the propagation is limited to the plane de-
fined by the vectors∇ne andB0. Let us assume that over-
dense plasma conditions are satisfied (i.e.ωp � ωc) so that
the local dispersion of whistler waves can be described by
conventional formulas for the refractive indexN

N2(ω, θ) =
ω2

p

ω(ωc |cosθ | − ω)
, (16)
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Fig. 1. Whistler dispersion curve in the plane(k⊥, kz), at a fixed frequencyω < ωc/2. The so-called electromagnetic and quasi-electrostatic
dispersion branches are labelled ‘1’ and ‘2’, respectively; corresponding waves are represented by their wave vectorsk1(k⊥1, kz1) and
k2(k⊥2, kz2) and their anglesθ1 andθ2 with respect to the ambient magnetic fieldB0 (see also Eq. 22), respectively. Group velocity vectors
are indicated asvg1 andvg2. The resonance cone is represented by a dashed oblique line. The reflecting surface, where the group velocityvg

is directed alongB0, corresponds toq = 1; waves are not propagating forq > 1 (q = 4ω2
pω2/ω2

cc2k2
z ). The reflection atq = 1 corresponds

to the conversion of an incident electromagnetic whistler (branch ‘1’) to a quasi-electrostatic whistler (branch ‘2’) with conservation of the
parallel wave numbers,kz1 = kz2, in the presence of a gradient of plasma density acrossB0.

the polarization coefficientsα0
z , α0

x andαx

α0
x =

ω |cosθ | − ωc

ωc |cosθ | − ω
,

α0
z = −sign(cosθ)

ω sinθ

ωc |cosθ | − ω
,

αx ≡ α0
x cosθ − α0

z sinθ = −sign(cosθ) , (17)

of the electric and magnetic fieldsE andB

E =
1

2
aEE exp(−iωt + ik · r) + c.c. ,

E = Aexp(iδ), aE = {−α0
x, i,−α0

z }, (18)

B =
1

2
aBB exp(−iωt + ik · r) + c.c. ,

B = NE, aB = {−i cosθ, −αx, i sinθ}, (19)

the group velocity componentsvgz andvg⊥ along and across
B0, respectively,

vgz = c
(1 + cos2 θ − 2ω |cosθ | /ωc)

N cosθ
,

vg⊥ = c
sinθ(|cosθ | − 2ω/ωc)

N |cosθ |
, (20)

and the spectral energy densityU (Shafranov, 1967; Lundin,
1979)

U =
∂(N2ω2)

∂ω

(1 + α2
x) |E|

2

16πω
=

ωc |cosθ |

(ωc |cosθ | − ω)

|B|
2

8π
, (21)

where θ is the angle between the wave vectork and
B0 (which is directed along thez-axis);E andB are the com-
plex spectral amplitudes of the electric and magnetic wave
fields, respectively.

One can express all the above parameters with the help
of the parallel refractive indexNz = ckz/ω (which is con-
stant in the case of spatial gradients orthogonal to the am-
bient magnetic field) using the relations (see, for example,
Lundin et al., 1994):∣∣cosθ1,2

∣∣ = f A1,2,

A1,2 ≡
2

q

[
1 ±

√
1 − q

]
, q ≡ 4

ω2
p

ω2
c

1

N2
z

, (22)

wheref = ω/ωc and

1 < A2 ≤ 2 ≤ A1, A1 + A2 = A1A2,

(A1 − 1)(A2 − 1) = 1. (23)

The quasi-potential regime of propagation (q � 1) corre-
sponds to the wave dispersion branch labeled ‘2’ on the dis-
persion curvekz(k⊥, ω) where the frequency is fixed (see
Fig. 1). The two plane waves corresponding to branches ‘1’
and ‘2’ can propagate simultaneously only for frequenciesω

less thanωc/2, (more precisely, only for frequencies verify-
ing ω/ωc < 1/A1 = [1 −

√
1 − q]/2 with q < 1); plane

waves are not propagating forq > 1. The wave propagating
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Fig. 2. Definition of the parameters governing the polarization co-
efficients of the incident and reflected plane waves: the plane of
the two-dimensional antenna used for signal registration contains
the unit vectorsn1, n2, m1, andm2 ((n1, n2) = (m1, m2) = 0,

(n1, m1) = cosµ), and its oriented normaln ≡ n3 is parallel to
the ambient magnetic fieldB0; the wave vectorsk1 andk2 of the
incident and reflected waves are situated in the planes formed by
the unit vectorsn3, m1 andn3, n1, respectively, with(k1,n3) =

k1 cosθ1 and(k2,n3) = k2 cosθ2; µ represents the angle between
these planes.

in the direction of increasing plasma density and correspond-
ing to a given branch should reflect (i.e. the perpendicular
component of its group velocityvg should change its sign)
whenq = 1 (i.e. cosθ1,2 = 2f ) and convert itself to the
other branch. In this case, the reflection modifies the propa-
gation angle, and this is the only possibility of inverting the
sense of polarization in the interference pattern of incident
and reflected plane waves; indeed, the waves should nec-
essarily reveal different projections of their polarization el-
lipses on the plane orthogonal to the ambient magnetic field
(see also Eq. 11).

The sense of polarization can be changed only if the rela-
tive amplitudeσ of the constituents (for the electric and the
magnetic wave fields one notesσ ≡ σE = |E2/E1| and
σ ≡ σB = |B2/B1|, respectively) lies in the interval (see
also Eq. 13)

sign(r)(1 −
√

1 − r)

∣∣∣∣p12

p2

∣∣∣∣ = σ 0
− < σ

< σ 0
+ = (1 +

√
1 − r)

∣∣∣∣p12

p2

∣∣∣∣ , (24)

where the parametersr, p2 and p12 have different values
for electric and magnetic field components. Whenσ < σ 0

−

or σ > σ 0
+, the sense of polarization cannot be inverted if

p1p2 > 0. The parametersr, p2 andp12 have to be cal-
culated for the two different cases corresponding to electric
or to magnetic field registration: indeed, one should pay at-
tention that in a magnetized plasma the polarization planes of
magnetic and electric fields do not coincide, even for the case
of plane waves; near the resonance cone (|cosθ | ' ω/ωc),
the electric field is almost linearly polarized and almost or-
thogonal to the magnetic field polarization plane.

In order to obtain expressions forσE andσB , let us con-
sider the interference pattern of two waves propagating in

two planes which cross each other along the magnetic field
line B0‖n at an angleµ; the wave vectorsk1,2 and the angles
θ1,2 verify cosθ1,2 = k1,2 ·n/k1,2 < 0 (see also Fig. 2 for the
definition of the anglesθ1, θ2 andµ). Then the magnetic field
polarization vectorsaB1,2 lying on the planes orthogonal to
the correspondingk1,2 are given by (see also Eq. 17)

aB1 = i(n3 sinθ1 − m1 cosθ1 + iαx1m2), (25)

aB2 = i(n3 sinθ2 − n1 cosθ2 + iαx2n2), (26)

with

m1 = n1 cosµ + n2 sinµ, m2 = n2 cosµ − n1 sinµ, (27)

where the unit vectorsn1 andn2 lie on a plane orthogonal
to the unit vectorn3 ≡ n. The corresponding parameters
pj , bj and|p12| (see Eqs. 6 and 8) can be written as

pj = −2αxj cosθj , bj = α2
xj + cos2 θj , p1p2 > 0, (28)

|p12|
2

=
[
(αx1 cosθ2 + αx2 cosθ1)

2 cos2 µ

+(cosθ1 cosθ2 + αx1αx2)
2 sin2 µ

]
. (29)

Similarly, one can write the electric field polarization vectors
aE1,2 of the same plane wave constituents as (see also Eq. 17)

aE1 = i(n3α
0
z1 + im1α

0
x1 + m2), (30)

aE2 = i(n3α
0
z2 + in1α

0
x2 + n2), (31)

so that

pj = −2α0
xj , bj = 1 + (α0

xj )
2, p1p2 > 0, (32)

|p12|
2

=
[
(α0

x1 + α0
x2)

2 cos2 µ

+(1 + α0
x1α

0
x2)

2 sin2 µ
]
. (33)

Let us now consider the propagation in a common plane
(i.e. µ = 0, n ‖ B0) of two plane waves corresponding to
the different branches ‘1’ and ‘2’, as mentioned above (see
also Fig. 3 for a schematic representation of the waves’ re-
flection). Then Eq. (29) becomes

|p12| = |cosθ2| + |cosθ1| , r = q,

∣∣∣∣p12

p2

∣∣∣∣ =
A1

2
, (34)

and thus, Eq. (24) can be written as

σ 0
− = 1 < σB < σ 0

+ = A1 − 1. (35)

In order to express the amplitude of the wave before and af-
ter the reflection, let us use the energy flux conservation law
along the direction of the plasma density gradient, i.e. across
the magnetic fieldB0. The equality of the incident and the
reflected energy fluxes (see Eq. 21) at some perpendicular
(i.e. acrossB0) distance from the reflecting surface provides
the following relation (the flux cross section parallel toB0 is
the same for the incident and the reflected whistler beams)∣∣vg⊥1

∣∣U1 =
∣∣vg⊥2

∣∣U2, (36)
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Fig. 3. Outlines of the reflection process showing the conversion of the quasi-longitudinal electromagnetic whistler branch ‘1’ (incident ray
beam) to the quasi-resonant electrostatic whistler branch ‘2’ (reflected ray beam), respectively, (see also Fig. 1); the existence of a plasma
density gradient∇ne across the ambient magnetic fieldB0 provides geometrical optics reflection of the incident ray beam at the reflecting
surface whereq = 1 (see also Eq. 22). The region represented in gray is the interference zone between the incident and the reflected
waves. The distance1H represents the extension of the wave field interference pattern across the ambient magnetic field, whereas1L and
1S1 = 1L cos g1 are the cross sections of the incident ray beam alongB0 and transverse to the incident group velocityvg1, respectively.

leading to

σB =

∣∣∣∣B2

B1

∣∣∣∣ =

√∣∣∣∣sinθ1

sinθ2

∣∣∣∣ < 1. (37)

Thus, it is impossible to satisfy the relationσ 0
− = 1 < σB

Eq. (35): for the magnetic field components, the ion sense of
polarization cannot be observed in the wave interference pat-
tern of the two plane whistler mode branches near the reflect-
ing surface. However, a similar conclusion is not obvious in
what concerns the electric field, due to the noncoincidence
of the polarization planes of electric (18) and magnetic (19)
wave field components.

For the interference pattern registered by a multi-
component electric field detector (actually

∣∣Ej

∣∣ is the modu-
lus of the electric field component transverse tokj ), one can
derive from Eq. (36) that

σE =

∣∣∣∣E2

E1

∣∣∣∣ =

√∣∣∣∣sinθ1

sinθ2

∣∣∣∣cosθ2

cosθ1
< 1. (38)

However, the condition similar to Eq. (35) is now written as

σ 0
− =

∣∣∣∣p12

p2

∣∣∣∣ (1 −
√

1 − r) < σE

< σ 0
+ =

∣∣∣∣p12

p2

∣∣∣∣ (1 +
√

1 − r), (39)

which can be expressed using Eqs. (32)–(33) andp1/p2 < 1
as(

A2

A1

)2
(

1 − A1f
2

1 − A2f 2

)
=

p1

p2
= σ 0

− < σE < σ 0
+ = 1 (40)

with

σE =
A2

A1

(
1 − A2

1f
2

1 − A2
2f

2

)1/4

< 1. (41)

The conditions (40) were analyzed numerically for different
parametersq andf (see Eq. 22). Figure 4a shows the con-
tours of constant levels ofσE as a function ofq andf in the
validity range of Eq. (40).

The corresponding relative phase should satisfy the in-
equality (see Eq. 4)

cosϕ < −
(p1 + σ 2

E p2)

2σE |p12|
, (42)

i.e. forp1, p2 > 0 :

p1 + σ 2
E p2

2σE |p12|
< |cosϕ| < 1, cosϕ < 0. (43)

Let us prove the inequality (42) forσE satisfying Eq. (40) at
least at one observation point located at some distance1R

from the reflecting surface; then, we will have shown that the
electric field registered in the interference pattern of the two
whistlers can be ion-type polarized. In order to demonstrate
this, let us trace the variation of the mutual phase difference
as a function of the transverse distance1R from the reflect-
ing surface

(k⊥2 − k⊥1)1R =

√
1 − q

q
· (4(kz1R))

·

(√
A2

2f
2(1 − A2

1f
2) +

√
A2

1f
2(1 − A2

2f
2)

)−1

, (44)
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Fig. 4. Contours of constant levels
in the (q, f ) regions compatible with
the appearance of the ion sense of po-
larization in the field interference pat-
tern of two plane whistlers, for different
parameters characteristic of the waves’
polarization: (a) electric field ratioσE

= |E2/E1| (see Eq. 41);(b) relative
plasma volumedi (see Eq. 45) filled
by ion-type polarized electric fields;(c)
absolute value of the circular polariza-
tion level | 〈CPL〉 | averaged over the
regions containing ion-type polarized
fields (see Eq. 49);(d) minimum thresh-
old (kz1L)th of the phasekz1L (see
Eq. 51), wherekz is the parallel wave
number of the waves and1L the cross
section of the whistler ray beam along
the ambient magnetic field. In all pic-
tures, the actual values of the param-
etersσE , di , | 〈CPL〉 | and (kz1L)th
have been set to zero for(q, f ) val-
ues where no ion-type field polarization
was revealed.

wherek⊥1,2 are the perpendicular components of the wave
vectorsk1,2. Then, the following consideration can be pro-
vided : let us consider some value ofσE satisfying the con-
ditions (40), for example, whenq ' 0.64 andf ' 0.1,

i.e. when(k⊥2 − k⊥1)1R ' 6.2 (kz1R). Let us assume
for simplicity that the valueq ' 0.64 is reached at the dis-
tance1R ≡ 1R0.64 and that the plasma density is homoge-
neous beyond this limit. Then, at1R > 1R0.64, σE keeps
a constant value, namelyσE = (σE)0.64; however, the phase
difference(k⊥2 − k⊥1)1R continues to grow so that once
Eq. (42) should be satisfied, which should result in the ap-
pearance of the ion sense of polarization in the interference
pattern of the two whistler waves.

Thus, we proved that the electric field measurable in
the resulting interference pattern of an incident and a re-
flected whistler wave (reflection with conversion of disper-
sion branches) can reveal the ion sense of polarization. At
the same time, a remarkable effect is demonstrated: the elec-
tric and the magnetic fields in the electron whistler frequency
range can rotate in opposite senses around the ambient mag-
netic field; namely, the magnetic wave field rotates in the
same sense as an electron, while the electric field can reveal
the ion sense of rotation at the same points of the interference
pattern.

Let us calculate the ratiodi of the size of the space region
where the ion sense of polarization can be observed for any
eccentricity of the polarization ellipse (for the casep1, p2 >

0) to the size of the space region corresponding to a phase
variation of 2π ; since the former size is proportional to the

size 28 of theϕ-interval determined by Eq. (42), one has

di =
8

π
, 8 = arccos(

∣∣∣p1 + σ 2 p2

∣∣∣ /2σ |p12|). (45)

Figure 4b shows the contours of the constant levels ofdi as a
function off andq in the validity range of Eq. (40). One can
see that the highest values of the relative volumes filled by
ion-type polarized electric fields (di is always less than 50%)
correspond to the domain of low frequenciesf and small
parametersq, when one wave (here, the quasi-resonant wave
labelled ‘2’ on Figs. 1 and 3) reveals an essential electric field
component along its wave vector (see also Fig. 4a). Ion-type
polarized fields appear, in general, in the regions where the
polarization vectors of the interfering whistler plane waves
are the most different from each other; this is not the case
for regions just near the reflecting surface whereq ' 1 and
where both incident and reflected waves are similar to each
other.

In order to clarify the field structure revealed by the inter-
ference pattern, let us calculate the circular polarization level
CPL in the plane orthogonal toB0, averaged over the space
region with ion-type polarized fields

〈CPL〉 =
〈P 〉

〈W 〉
. (46)

Averaging onϕ while keeping all other parameters constant,
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one can find that

〈P 〉 =
1

2
σ 2

1

{
p1 + σ 2 p2 − 2σ |p12|

√
1 − cos2 8

8

}
, (47)

〈W 〉 =
1

2
σ 2

1

{
b1 + σ 2 b2 − σ

(p1b2 + p2b1)

|p12|

·

√
1 − cos2 8

8

}
, (48)

where we used Eqs. (8) and (A11) of Appendix A; finally,
we obtain

〈CPL〉 = ĈPL

[
(1 − tan(8)/8)

·

(
1 − ĈPL((p1b2 + p2b1)/2 |p12|

2) tan(8)/8
)−1

]
(49)

with

ĈPL = (p1 + σ 2 p2)/(b1 + σ 2 b2). (50)

ĈPL corresponds to the value of the circular polarization
level averaged over all the space. Figure 4c shows the con-
stant contour levels of|〈CPL〉| as a function off andq, in
the validity range of Eq. (40). One can see that the domain
of small values of both frequencyf and parameterq is char-
acterized by resultant electric fields with elongated polariza-
tion ellipses on the plane orthogonal to the ambient magnetic
field.

For the case of a steady-state interference pattern as dis-
cussed above, the spectral matrix (see Appendix B) calcu-
lated at each observation point is singular and possesses a
single, nonvanishing eigen number. The corresponding com-
plex eigen vector calculated for the magnetic wave field, for
example, and the apparent wave vector (i.e. the vector or-
thogonal to the magnetic field polarization plane) are not
connected with the polarization plane and the wave vector
of any plane wave. The direction of the apparent wave vector
oscillates while the observer moves off the reflecting surface
and, here in particular, its projection on the ambient magnetic
field conserves its sign. It is not the case for the oriented
normal to the electric field polarization plane: its projection
oscillates with large angular amplitudes so that the sign of
the projection to the ambient magnetic field can be opposite
in different space regions. This is the actual “mechanism” of
appearance of opposite polarization senses within the inter-
ference pattern.

4 Discussion and conclusion

In the previous section it was shown that the ion sense of po-
larization can appear in the interference pattern of two plane
waves even when both of them are electron-type polarized.
Moreover, the electric and the magnetic wave field compo-
nents can reveal opposite senses of polarization at the same
registration point. Then, one should not be surprised that
for the complex field structures typical of waveguide modes

in laboratory devices, the sense of polarization of the fields
in the vicinity of the plasma chamber’s axis can be oppo-
site to that of the fields located near the walls of the tube
filled by the plasma. The guided wave field is a typical ex-
ample of a steady-state interference pattern: in the case of
a cold plasma, it can be represented as a sum of two waves
(cylindrical or not depending on the waveguide cross section)
in order to satisfy the boundary conditions; then, the polar-
ization characteristics of the total field (sense of field rota-
tion and eccentricity of the ellipse) can be expressed with
the help of the plane waves’ linear polarization coefficients
where, for the same parallel wave number, the relevant differ-
ent transverse wave numbers (represented in general by com-
plex values imposed by boundary conditions) are substituted.
As an example, for typical waveguide modes excited in he-
licon discharges by antennas with spatial right- or left-hand
helicities, the sense of polarization of the magnetic field near
the waveguide axis is of electron or ion type, respectively,
(Shoji et al., 1993). In another case, as shown on the Fig. 3
of Chen and Boswell (1997), where the magnetic field profile
is characterized by one node located at some distance from
the tube axis, the wave field region with ion sense of polar-
ization (close to the walls) represents around 50% of the total
tube volume (case of a radiating antenna with right-hand he-
licity).

Let us discuss in more detail the case of the surround-
ing Earth’s plasma where the plane wave approximation is
conventionally accepted. At least two qualitatively differ-
ent cases of field interference pattern registration can be an-
alyzed. First, considering a long whistler pulse, interfer-
ences can occur in the regions near the artificial or the natu-
ral reflecting surfaces where the incident and the reflected
waves overlap. In the case of a two-dimensional propa-
gation in the plane containing both the background mag-
netic fieldB0 and the density gradient∇ne, the wave reflec-
tion should correspond to the conversion of whistler waves
from the quasi-longitudinal to the quasi-resonant propaga-
tion regimes (or vice versa; otherwise, the necessary condi-
tion (11) is not satisfied) and this can happen in the space re-
gion with decreasingωc/ωp along the ray path. Then, under
steady-state conditions, each space region reveals different
polarization states, depending on the spatial variation of the
waves’ phases differences. As an example, for the parame-
tersq = 0.64 andf = 0.1 (see also the previous section and
Fig. 4b), the relative volumedi (45) of space filled by fields
with the ion sense of polarization approaches 35%. Actually,
it is more easy to register ion-type polarized electric fields in
the domain of small values off andq where, however, the
eccentricity of the polarization ellipses is rather high.

Actually, the necessity to dispose of, for physical analysis,
a sufficiently extended overlapping region between incident
and reflected waves (i.e.1k⊥ 1R > 2π in Eq. 44) imposes
a lower limit to the width of the parallel ray beam formed by
the long electromagnetic pulse. This condition can be written
as (see also Fig. 3)

1k⊥ 1L > 2π

(∣∣∣∣ vgz

vg⊥

∣∣∣∣
1
+

∣∣∣∣ vgz

vg⊥

∣∣∣∣
2

)
≡ (kz1L)th , (51)
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wherevgz and vg⊥ are defined by Eq. (20) and1L is the
cross section of the beam along the ambient magnetic field.

Estimating Eq. (51) at the point(q, f ) = (0.64, 0.1) leads
to (kz1L)th = 18 (see also the previous section and Eq. 44).
For such a wide beam of long electromagnetic pulse, the ex-
tension1H of the field interference pattern across the ambi-
ent magnetic field verifies1k⊥1H > 2π ; a similar condi-
tion can be written for the cross section1Si of the ray beam
i (i = 1, 2), using1Si = 1L cosgi and tangi =

∣∣vgz/vg⊥

∣∣
i

(see also Fig. 3). Figure 4d represents the contours of con-
stant levels of(kz1L)th as a function of(q, f ) values com-
patible with the occurrence of the ion-type polarization in
the interference pattern. One can see that, for low frequency
quasi-electrostatic whistler wave pulses, i.e. whenq andf

are both small, the condition (51) is not difficult to fulfill;
thus, this domain of(q, f ) is preferential for the observation
of unusual polarization features of whistler electric fields.

The reflection with conversion occurs typically for light-
ning generated whistler waves when they propagate upward
in a smoothly inhomogeneous plasmaspheric plasma. The
reflection with conversion to the quasi-resonant propagation
regime (i.e. the change, for the same upward orientation of
the wave vector, from increasing to decreasingL-shells along
the ray path) typically takes place before the whistler wave
packets can reach the plasmapause where the minimum of
ωc/ωp is realized. In this case, however, at least one condi-
tion (namely, smallf ) that favors the observations of the in-
verse sense of polarization is violated: typically the reflection
occurs when the wave frequency is comparable with, but not
much less than, the value of the local electron gyrofrequency.

The other conditions of registration are typical of waves
originating from different distant sources of noncoherent na-
ture. Then, one can reasonably assume that the phases of the
wave packets arriving at the receiver are not correlated so that
their mutual differences are uniformly distributed over the
interval[0, 2π ] during the long total observation timeTd . In
this case, different polarization states can be registered dur-
ing shorter time intervals when the variation of phases is neg-
ligible; the probability to register ion-type polarization in this
case can be estimated using Eqs. (A6)–(A7) of Appendix A.

One should pay attention to the possible comparatively
small intensity of the wave field of the inverse sense of po-
larization, which arises from the interference of plane wave
constituents of the same sense of polarization. Indeed, ac-
cording to Eq. (4), the inverse sense of polarization can ap-
pear only if the cross field term proportional to|p12| domi-
nates both the terms proportional top1 andp2. However, it is
not surprising that, for the same value of the phase difference
ϕ as in Eq. (4), the cross term in Eq. (7) can reduce the value
of the total field intensity. Quantitatively, for the case of two
noncorrelated sources (see Appendix A), the probabilityd2
to observe the field with the inverse sense of polarization is
greater than the relative intensity of the wave fieldW2 with
inverse sense of polarization, i.e.d2 > W2 (see Eq. A12).

Thus, we demonstrate in this paper that the sense of po-
larization of the nonplane wave field corresponding to some
interference pattern of two plane waves can be opposite to

that of each wave constituent. It is shown that the ion and
the electron senses of polarization can be both revealed in-
side the coherent mixture of plane electron whistler waves;
moreover, the registration of the ion sense of polarization in
an overdense, cold plasma certainly indicates the existence
of a coherent wave interference pattern. One should pay at-
tention that the “revelation of wave coherence” in the reg-
istration pattern, i.e. the actual observation of interferences,
essentially depends on the inherent phase scattering time of
the arriving wave packets, as well as on the receivers’ fre-
quency filters’ bandwidths (which are inversely proportional
to the filters recovering times or quality factors of the filters);
the same remark is applicable to the width of the analogical
or digital filters used in the subsequent data processing.

Nevertheless, there are some cases when a persistent phase
coherence naturally appears, corresponding, for example,
to the interference of waves near reflecting surfaces, inside
waveguides and in the field patterns excited by the resonant
emission of charged particles’ beams. It follows from the fact
that, at least for wave frequencies less than half of the elec-
tron gyrofrequency, the electron whistler mode in an over-
dense plasma (ωp > ωc) is characterized by the existence of
two plane waves of the same frequency and of the same par-
allel wave number which propagate at different angles with
respect to the ambient magnetic field (and thus, which have
essentially different polarization vectors, which is indispens-
able for satisfying condition (11) which is necessary for the
inversion of the polarization sense). Then, the registration
of the ion sense of polarization in the interference pattern
of two whistlers should not be, in principle, a very surpris-
ing phenomenon; however, the eccentricity of the polariza-
tion ellipse of the total field can differ noticeably from that
of each plane wave constituent. When the wave distribution
function should be recovered (Storey and Lefeuvre, 1974),
then the appearance of the ion-type polarization in the elec-
tron whistler frequency band is the sign of a failure, indicat-
ing that the averaging time should be increased in order to
reduce the influence of the interference cross terms, if possi-
ble. However, the truncation of the averaging time can also
be useful: the field structure near the reflecting regions can
be recovered and the information about the phase correla-
tions between the constituents of the compound signals can
be gathered.

Finally, let us mention that one of the possible manifes-
tation of magnetic field interference patterns with ion-type
polarization registered on the Earth’s surface in the electron
whistler frequency band has been recently reported by Man-
ninen and Turunen (1999, 2000). The authors have demon-
strated that the preferential sense of magnetic field polariza-
tion for the power line harmonics radiation (PLHR) is of ion-
type, while for the usual whistlers it is of the electron-type.
This difference can be connected with the spatial structure of
the magnetic field of the usual whistlers’ transient signals and
with the probable steady-state nature of the field structure of
the PLHR emissions near the Earth’s surface. The complete
clarification of the curious physical phenomena described in
this paper will be possible after the publication of the avail-
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able experimental data.

Appendix A The probability of registration of the
inverse sense of polarization in the field pattern
of two noncorrelated sources

Let us study the characteristics of the field interference pat-
tern of two waves of relative amplitudes and phasesσj and
δj , respectively (see also notations in the text after Eq. 3).
One can consider the total time interval[0, Td ] of wave field
registration as a large set of short intervals of equal duration
Tk (for simplicity) so that the variation over the intervalsTk

of the parameters(σ1, σ2, δ1, δ2)k, characteristic of the two
wave constituents, can be described with the help of a dis-
tribution functionF(σ1, σ2, δ1, δ2). To calculate the fraction
of time d2 during which the property ‘G’ of the field is ver-
ified in the registered interference pattern (here, ‘G’ is the
sense of polarization which is opposite to that of the second
constituent with subscript ‘2’), one can directly add the cor-
responding time intervalsTk(G) scattered over[0, Td ], i.e.

d2 =
1

Td

∑
Tk(G). (A1)

The valued2 is actually the probability to register inversely
polarized fields when compared to the sense of polarization
of the second wave constituent; using the distribution func-
tion F(σ, δ) ≡ F(σ1, σ2, δ1, δ2), one can write

d2 ≡

∫
G

dσdδ F(σ, δ), (A2)

whereσ ≡ (σ1, σ2) and δ ≡ (δ1, δ2);G is the region of
(σ , δ) = (σ1, σ2, δ1, δ2) values where the inverse sense of
polarization is registered (similar to the domainsG− and
G+ defined in Sect. 2 of the text). The distribution func-
tion F(σ , δ) of the wave field parameters should be chosen
in accordance with the probable nature of the fields’ sources
or derived directly from the observation of the wave fields.

Let us calculate the mean value of the polarization param-
eterP (see also Eq. (2) in the text) according to the definition

PG ≡

∫
G

dσdδ F(σ, δ) P (σ, δ) (A3)

and use the notation̂P for the value ofP integrated over the
total domain of(σ , δ) values admissible for the investigated
process; P̂ should coincide with the integral(

∫
P dt)/Td

over the total time intervalTd .
Let us consider, as a possible example, the distribution

function F(σ , δ) ≡ F1(σ1, δ1) F2(σ2, δ2) corresponding
to the system of two independent wave field constituents;
moreover, let us assume for simplicity thatFj (σj , δj ) ≡

Fj (σj ) 8j (δj ), which is the case when the amplitudeσj

of the constituentj does not depend on its phaseδj . Fi-
nally, considering that phases are uniformly distributed, one
can write thatFj (σj , δj ) = Fj (σj )/2π . Using the so-called

Raleigh distribution functionFj (σj ) for the amplitudes of
the constituents

Fj (σj ) = (σj/β
2
j ) exp(−σ 2

j /2β2
j ),

∞∫
0

dσjFj (σj ) = 1, (A4)

full analytical calculations can be performed. In order to es-
timate the fraction of timed2 when the inverse sense of po-
larization can appear, one needs to integrate the distribution
functionF(σ, δ) over the corresponding regionG

d2 ≡

∫
G

dσdϕ

2π∫
0

dδ1

∞∫
0

dσ1σ1F1(σ1)F2(σσ1)/4π2, (A5)

with σ = σ2/σ1 andϕ = δ2 − δ1 + ν (see also Eq. (6) in the
text). The domainG is defined by Eqs. (13) or (14) depend-
ing on the sign ofp1p2; for the definition ofp1,2 and other
parameters used in following formulas, the reader should re-
fer to the Sect. 2 of the text. Finally, one can find (Lundin,
1985) that

d2 = (1 − R/
√

1 − r + R2)/2 (A6)

with

r = p1p2/ |p12|
2 ,

R = (sign(r) |p1| + σ̃ 2
|p2|)/2̃σ |p12| ,

σ̃ = β2/β1. (A7)

Whenp1p2 > 0 (i.e. sign(r) = 1), one hasd2 ≤ 1/2 and
the maximum value(d2)max = (1 −

√
r)/2 is reached for

σ̃ 2
= p1/p2. Whenp1p2 < 0, d2 changes monotonically

from 1 to 0 whileσ̃ traces the interval ranging from 0 to∞.
Let us mention that in the simple case of two linearly po-
larized waves (p1 = p2 = 0) with noncolinear polarization
vectors in a plane orthogonal to the unit vectorn, both clock-
wise and counterclockwise senses of rotation of the total field
can be equivalently registered depending on the mutual phase
differenceϕ. Whenϕ is uniformly distributed over the in-
terval [0, 2π], one can suppose thatd2 = 1/2, which is in
accordance with Eq. (A6).

Let us calculate the ratioD2 of the intensityWG of fields
with inverse sense of polarization to the total field intensity
Ŵ localized in the plane orthogonal ton

D2 ≡
WG

Ŵ
=

∫∫
G

dσdδ F(σ, δ) W(σ, δ)∫
dσdδ F(σ, δ) W(σ, δ)

. (A8)

After cumbersome calculations one finds that

D2 =
1

2

(
1 −

R
√

1 − r + R2
−

R(1 − r)

2(1 − r + R2)
3
2

)
, (A9)

where we used the relation Re(p12b
∗

12) = (b2p1 + b1p2)/2.
Indeed, one can write using the notations (11) that

2Re(p12b
∗

12) = (t, p)(p, q) + (s, q)(q, p)

= (t, q)(p, p) + (s, p)(q, q)

+([t, p], [p, q]) + ([s, q], [q, p]). (A10)
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As

[p, q] = −n ([a1, a2], n)

and

([t, p],n) = i(a2, n)(a1, n) − i(a1, a
∗

2) = ([s, q],n),

the two last terms in Eq. (A10) cancel each other so that

2Re(p12b
∗

12) = (t, q)(p, p) + (s, p)(q, q)

≡ p1b2 + p2b1. (A11)

D2 can also be written as a function ofd2 in a very simple
way

D2 = d2
2(3 − 2d2). (A12)

Then, the obvious relationD2 ≤ d2 (in the case when
p1p2 > 0 so thatd2 ≤ 1/2) means that the relative intensity
of the field recorded with the inverse sense of polarization is
less than the relative time duration of its registration.

Calculations ofPG andCPLG = PG/WG lead to (see
also Eqs. (4), (7) and (15) in the text)

PG = −s2 2β2
1 σ̃ |p12| γ d2

2, γ ≡

√
1 − r + R2, (A13)

WG = β2
1(b2 σ̃ 2

+ b1) d2
2 (3 − 2d2), (A14)

and

|CPLG| =

(
2̃σ |p12|

b1 + σ̃ 2 b2

)(
γ

3 − 2d2

)
. (A15)

The mean value of the circular polarization level̂CPL over
the total domain of(σ , δ) values is (see also Eq. (B8) of Ap-
pendix B):

ĈPL =
p1 + σ̃ 2 p2

b1 + σ̃ 2 b2
. (A16)

Appendix B The spectral matrix approach

Writing the wave fieldK(t) as a sum of several quasi-
monochromatic plane wave field constituents with constant
complex polarization vectorsam and complex amplitudes
hm(t), namely

K(t) ≡
1

2
H (t) exp(−iωt) + c.c.

≡
1

2

∑
m

amhm(t) exp(−iωt) + c.c., (B1)

one can define the spectral matrix (also called “coherence
matrix” (Born and Wolf, 1959), “polarization tensor” (Lan-
dau and Lifshitz, 1960), or “Gram’s matrix” (Ghantmakher,
1966) in mathematics) as

Sij ≡ (Hi, Hj ) ≡
1

T

T∫
0

Hi(t)H
∗

j (t)dt. (B2)

The elements of the matrixSij are the scalar products of the
functionsHi(t) which are the components of the wave field
vectorH (t) (B1); the notation(∗) corresponds to the com-
plex conjugate value. Let us mention that for the case when
only the amplitudes of the field components, i.e.|Hi(t)|, are
registered (and not the phases), the corresponding spectral
matrix can also be useful for the analysis of the wave field
structure (Lefeuvre, 1977).

The subsequent conclusions about the field structure are
based, typically, on the analysis of the eigen values of the
Hermitian matrixSij (B2) (Olson and Samson, 1979; Means,
1972). The existence of a single dominating eigen value is
usually interpreted as the case when a nearly single plane
wave is registered, even if this is actually not proved. Other
cases need more complex interpretations (Voyevudskiy and
Lundin, 1984). The properties of the spectral matrix under
consideration depend strongly on the value of the averaging
time T chosen for data processing (see Eq. B2), on the time
intervals between arriving quasi-monochromatic wave pack-
ets in actual signals, on the duration of these signals, as well
as on the “inherent phase correlation time” between them. In
general, the smaller the averaging time is, the more a single
eigen value can dominate the others. The most complicated
analysis includes the determination of the waves’ distribu-
tion function under the assumption that the registered signal
consists of noncorrelated spectral plane wave constituents
(proportional to|hm|

2) with linear polarization vectorsam

(Storey and Lefeuvre, 1974).
In application to the surrounding Earth’s plasma, one can

consider the case when large sets of wave packets arriving
from different sources are registered. When the total duration
Td of the registration is very long, one can assume that the
phases of the arriving wave packets are distributed uniformly
over the interval[0, 2π], so that, as a result, one can present
the spectral matrix of noncorrelated wave constituents nu-
merated bym as

Sij =

∑
m

(am)i (a∗
m)j lim

Td→∞

1

Td

Td∫
0

|hm(t)|2 dt. (B3)

Under this assumption an algorithm of reconstruction of the
so-called wave distribution function was developed by Storey
and Lefeuvre (1974).

However, let us consider another approach to the process-
ing of the multi-component wave field data; indeed, let us
split the total registration time durationTd =

∑
k Tk into

a large set of short intervalsTk comparable with the de-
lay times between arriving wave packets and their durations
(these characteristic time scales of the process under consid-
eration are not known in advance), so that one can assume
that the amplitudes and the phases of the constituents are
nearly constant duringTk (then, a single eigen value dom-
inates for the spectral matrix corresponding toTk). Within
some intervalsTk(G) distributed over[0, Td ], the spectral
matrix can reveal rather unusual peculiarities of the wave
field polarization (in comparison with plane wave polariza-
tion, for example). The spectral matrixSG

ij , corresponding to
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the selected set of registration intervalsTk(G), where the reg-
istered field reveals some special property labelled′G′, can
be calculated in two ways: the first one consists in summing
the integralsSG

ij (k) as follows

SG
ij =

∑
k(G)

SG
ij (k),

SG
ij (k) ≡ (Hi, Hj ) ≡

1

Tk(G)

∫
Tk(G)

Hi(t)H
∗

j (t)dt, (B4)

wherek(G) represents the set of intervalsTk(G) where the
property′G′ is realized. The second way consists in using
the distribution functions of the parameters of the wave con-
stituentsamhm(t) (see Eqs. (A3) and (A4), for example),
which are supposed to be known beforehand. The probabil-
ity of observing fields with the property′G′ can be found by
calculating the ratio of the total time intervalTG =

∑
Tk(G)

when′G′ is realized (for example,′G′ can represent the ion-
type polarization of the field in the electron whistler fre-
quency band) to the total registration timeTd ; one can also
calculate integrals similar to Eq. (A3) over the domainG of
the wave constituents’ parameters where the property′G′ is
realized. This mathematical approach can be used to estimate
the polarization parameterPG, the field intensityWG and the
level of circular polarizationCPLG (see Eqs. (A13), (A14)
and (A15), respectively), corresponding to the regime of reg-
istration of the wave field when the property′G′ is realized.

The polarization parametersP andW (see Eqs. (2) and (3)
in the text) can be expressed through the elements of the cor-
responding matrixSij (B2) by taking into account the fol-
lowing general relations

Sij ≡ Rij + iJij = Rij − eijk~k,

~k ≡ −
1

2
ekmnSmn, e123 = 1,

ekmn = −emkn = −eknm, (B5)

whereRij and Jij are the real and the imaginary parts of
the matrix elements (the summation over repeated indexes
is implied in Eq. B5). Then, the polarization parameterP

indicating the sense of field rotation is

P = (~, n) = −JA
12, (B6)

where the 2D matrixSA
ij ≡ (Sij )i,j≤2 ≡ RA

ij + iJA
ij is the

main minor(i, j ≤ 2) of the 3D matrixSij calculated in
the coordinate system where the third axis is directed along
the vectorn (SA

ij can be directly calculated using only two
components of the field on the “oriented plane” of a two-
dimensional antennaA orthogonal ton). In the same manner
one obtains the field intensityW localized in the plane or-
thogonal ton as

W =
1

2
(SA

11 + SA
22), (B7)

so that the circular polarization levelCPL is expressed as

CPL =
P

W
= −

2JA
12

(SA
11 + SA

22)
. (B8)

For the right-hand (with respect ton) circularly polarized
field one obtainsCPL = 1.

At last, let us briefly prove the known mathematical re-
sult that, in the case when the spectral matrixSij (B2) has
a single, nonvanishing eigen value,λ =

∑
Sαα, the wave

field (B1) can be expressed as

K(t) ≡
1

2
H (t) exp(−iωt) + c.c.

=
1

2
a h(t) exp(−iωt) + c.c., (B9)

where the constant polarization vectora is the eigen vector
of the spectral matrix Eq. (B2). However, let us mention
that the polarization vectora can be, in principle, crucially
different from the plane wave polarization vector of some
plasma mode, especially when considering the registration
of steady-state interference patterns of different plane waves
during the averaging time durationTd .

For the single, nonvanishing eigen valueλ, the so-called
functions of coherence0αβ satisfy the following conditions
for anyα andβ (hereafter, the summation over the repeated
indexesα andβ is not implied)

0αβ ≡

∣∣Sαβ

∣∣2
SααSββ

= 1. (B10)

Using scalar products of the functionsHα(t) (B1) according
to the definition (B2), the condition (B10) can also be written
as

(Hα, Hα)(Hβ , Hβ) = (Hα, Hβ)(Hβ , Hα)

=
∣∣(Hα, Hβ)

∣∣2 . (B11)

In the general case, one can expressHα(t) throughHβ(t) as

Hα(t) = Hβ(t)
(Hα,Hβ)

(Hβ , Hβ)
+ 9(t), (B12)

where the function9(t) is evidently orthogonal toHβ(t), i.e.
(9, Hβ) = 0; then, one can obtain the identity

(Hα,Hα) ≡
(Hα, Hβ)(Hβ , Hα)

(Hβ , Hβ)
+ (9, 9). (B13)

If the condition (B11) is satisfied, one has(9, 9) = 0; then,
the continuous function9(t) is equal to zero at any point of
the interval[0, T ] where the scalar product (B2) is defined.

Thus, when the conditions (B10) are satisfied for anyα

andβ, the corresponding Eqs. (B12) and (B13) are satisfied
with 9(t) ≡ 0; thenH (t) = h(t)a and one can write

Sijaj = ai |a|
2 1

T

T∫
0

|h(t)|2 dt ≡ λai, (B14)

where, for example,h(t) = H1(t) and the components of the
constant vectora are selected asak = (Hk, H1)/(H1, H1),
so thata is the eigen vector of the matrixSij corresponding
to the single eigen valueλ; this proves the statement (B9).
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