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Abstract. A nonlinear technique employing radial basis
function neural networks (RBF-NNs) has been applied to
the short-term forecasting of the ionospheric F2-layer criti-
cal frequency,foF2. The accuracy of the model forecasts at a
northern mid-latitude location over long periods is assessed,
and is found to degrade with time. The results highlight the
need for the retraining and re-optimization of neural network
models on a regular basis to cope with changes in the statis-
tical properties of geophysical data sets. Periodic retraining
and re-optimization of the models resulted in a reduction of
the model predictive error by∼ 0.1 MHz per six months. A
detailed examination of error metrics is also presented to il-
lustrate the difficulties encountered in evaluating the perfor-
mance of various prediction/forecasting techniques.

Key words. Ionosphere (ionospheric disturbances; model-
ing and forecasting) – Radio science (nonlinear phenomena)

1 Introduction

Variations in the solar, magnetospheric, and ionospheric
characteristics can affect a variety of ground-based and
space-borne technological systems (e.g. Hargreaves, 1995;
Feynman and Gabriel, 2000). Disturbances in the ionosphere
can degrade radio propagation and satellite communications;
solar flares can cause positional errors of several kilometers
in ground-based navigation systems, and the Global Position-
ing System (GPS) can be affected by variations in electron
density in the ionosphere. Magnetic storms can induce cur-
rents in long-distance pipelines and cable networks. Magne-
tospheric particles and solar proton flares can affect space-
craft by causing radiation and structural damage. Conse-
quently, predictions of geomagnetic storms have a significant
bearing upon the operation of a number of services (Joselyn,
1995).

The importance of nonlinear behavior within the solar-
terrestrial environment has been demonstrated by Baker et
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al. (1990), and attempts have been made in modeling the
nonlinear dynamics in geomagnetic activity (e.g. Klimas
et al., 1992; Vassiliadis et al., 1995). However, due to
the incomplete understanding of the physics of the Sun-
magnetosphere-ionosphere coupled system, many theoretical
and empirical models often fail to accurately predict iono-
spheric disturbances and geomagnetic storm events (Jose-
lyn, 1995). An attractive alternative approach would be to
adopt knowledge-independent modeling techniques that can
cope with the problems of noise and non-contiguity typically
found in geophysical data sets.

A number of studies have investigated the application of
neural networks (NNs) to geophysical prediction problems
(e.g. Lundstedt, 1992; Williscroft and Poole, 1996; Wu and
Lundstedt, 1997; Francis et al., 1997, 2000; Cander et al.,
1998; Wintoft and Cander, 2000). In this work, we shall
refer to short-term (e.g. 1-hour ahead) predictions as fore-
casts, in order to distinguish these from the more commonly
referred-to longer-term (e.g. monthly median) predictions.
Many of the above studies have used multiple inputs. For
example, Lundstedt (1992) used solar section boundary data,
coronal mass ejection data, solar wind and coronal hole data
to train neural networks for the prediction of a number of
effects including geomagnetic induced currents, while Wu
and Lundstedt (1997) used solar wind andDst data as in-
puts to neural networks for the forecasting of geomagnetic
storms. Williscroft and Poole (1996) predicted daily and
monthly noon values of the ionospheric parameterfoF2 at
Grahamstown, South Africa, using seasonal time informa-
tion, solar and magnetic activities as input data. Cander et
al. (1998) presented a 1-hour ahead forecasting technique for
foF2 and the total electron content (TEC) using input data
which includedfoF2/TEC, a daily sunspot number andDst

index. Wintoft and Cander (2000) usedfoF2 data, together
with magnetic activity indexAE , time-of-day and seasonal
information to forecastfoF2 values for 1 to 24 h ahead. The
above types of models are more commonly known as cross-
prediction models.

In a rather different approach, Francis et al. (1997, 2000)
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have used only the ionospheric parameterfoF2 as input for
their neural network models to predictfoF2. This is an ex-
ample of a self-prediction model. Despite their simplicity,
the models were shown to offer significant improvements
over the performance of reference persistence and recurrence
models on hourly, daily, and monthly time scales. For exam-
ple, for 1-hour ahead forecasts at Slough, UK, the hourly
model offers an improvement of∼ 42% and∼ 45%, re-
spectively, over the persistence and the 24-hour recurrence
models. For the 1-day ahead predictions, the daily noonday
model gives an enhancement in model prediction accuracies
over the persistence model of∼ 60%. The monthly median
model shows an improvement of∼ 40% over the baseline
persistence model for 1-month ahead predictions. Such a
comparison with simple recurrence and persistence models
is a minimum prerequisite of any rigorous assessment of new
forecasting algorithms, and without it, performance claims
with respect to new algorithms are rendered meaningless.

An assessment of the true value of space weather predic-
tion schemes is, however, more complicated than a simple
(albeit valuable) comparison with recurrence and persistence
models. The space weather environment is nonstationary
over a number of time scales, ranging from periods of days to
11 years or more. However, typical data sets are shorter than
11 years, and even when these long data sets are available, it
may not be possible to undertake the necessary matrix opera-
tions on the data set as a whole (due to limited computing re-
sources). Consequently, the neural network models and their
associated error statistics usually presented are quite specific
to a particular epoch. This was illustrated forcefully when a
re-optimized version of the Francis et al. (2000) 1-hour ahead
forecasting model was incorporated into our real-time fore-
casting system – the Ionospheric Forecasting Demonstrator,
IFD (http://www.cpar.qinetiq.com). It soon became clear that
the predictive capability of the IFD was degrading with time.
In this paper, we describe a number of methods for assessing
the long-term performance of NN models, and illustrate how
the predictive accuracy of a NN model can be maintained in
a non-stationary environment.

2 Analysis approach

Solar-terrestrial data sets are typically very noisy. The Time
Series Analysis Routines (TSAR) described by Smith et al.
(1998) employ novel and robust methods that can cope with
the problems of noise and data dropouts. The detailed math-
ematical theory behind the TSAR software can be found in
Smith et al. (1998). Here, we shall give a brief summary of
the Radial Basis Function Neural Network (RBF-NN) model
used in this study.

2.1 Principal component analysis

The use of principal component analysis (PCA) in the pre-
processing of the time series allows for the separation of the
signal and noise subspaces, and improves the performance

of the NNs by reducing the effects of over-fitting through the
removal of the noise subspace. PCA is usually undertaken by
employing linear singular value decomposition (SVD). The
rows of the matrices used in the SVD calculation are obtained
by sliding a window, of lengthn, across the time series one
point at a time. A set ofn orthogonal linear filters is gener-
ated, and a subset containing the principal components that
adversely affect the model accuracy can then be deselected
to act as a noise filter.

2.2 Radial basis function neural network

The modeling of time series data seeks to fit the input/output
data points (Xn, Yn), wheren = 1 . . . N , andN = total num-
ber of data points in the time series, to a model of the form
Y = f (X). The RBF-NN offers one approach to the solu-
tion of this problem, and has the advantage over the more
commonly used Multi-Layer Perceptron (MLP) techniques
of being able to find a globally optimum solution to a time
series prediction problem in a single pass training process
that determines the appropriate model weights (Broomhead
and Lowe, 1988). (MLPs can only produce locally optimum
solutions through an iterative training process.)

In the RBF approach,f (Xn) is assumed to be a linearly
weighted sum of radially symmetric functions ofX, such that

f
(
Xn

)
=

N∑
i=1

ωiϕi

(
| Xn − ci |

)
, (1)

whereωi are the weights of the functionsϕi , andci are the
centers of radial symmetry.

The set of model parameters, including window length and
number of centers, is optimized to give the best solution to
the functionf (Xn) such that the errorE is minimized

E =

N∑
n=1

[
f

(
Xn

)
− Yn

]2
. (2)

The effectiveness of the prediction model can be quan-
tified in terms of the normalized root-mean-squared error
(NRMSE), which is essentially the root-mean-squared error
(RMSE) divided by the standard deviation,σ , of the input
data

NRMSE =

√√√√√√√√
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[
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(
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)
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]2
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[
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σ
, (3)

whereX is the mean value ofXn, n = 1 . . . N . A NRMSE of
zero indicates a perfect prediction, while a NRMSE of unity
indicates that the model is no more effective than taking the
mean of the data.

A subjective measure of the effectiveness of the technique
can be seen in Fig. 1, which shows a 1-hour ahead RBF-NN
model following the variations infoF2 through a storm pe-
riod in February 2000. For this particular RBF-NN model,
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Fig. 1. MeasuredfoF2 and 1-hour
ahead forecasts during a storm event in
February 2000. The gap in the mea-
suredfoF2 time series represent missing
data.

the NRMSE was found to be 0.26, representing an improve-
ment of∼ 35% and 42% over the reference persistence and
24-hour recurrence models, respectively.

3 Data analysis

3.1 Data description

For this study, hourlyfoF2 measurements from the UK
ionosonde station at Chilton (51.6◦ N, 358.7◦ E) from June
1995 to October 2000 are used. Measurements at the Chilton
station started in the mid-1990’s, and after an initial settling-
in period, the percentage of missing data points per year fell
to ∼ 4% in 1997, a value which has since been maintained.

As is typical in many geophysical data sets, the time se-
ries used in this study contains many data dropouts (e.g. as-
sociated with instrument failure, and data values which fall
outside the accepted range of thefoF2 parameter). These
discontinuities in the data time series pose a significant ob-
stacle for prospective nonlinear prediction schemes, which
generally require continuous data. A nonlinear interpolation
technique, which minimizes the effects of interpolation upon
any given modeling process, has been developed by Francis
et al. (2001) to deal with data gaps in the time series. For
1-hour ahead forecasts, this has been shown to provide an
overall improvement of 2.3% and 3.8% over the 24-hour re-
currence and persistence interpolation schemes, respectively.
This nonlinear interpolation technique, however, is compu-
tationally and time intensive, and as a result, has not been
utilized in this study. Instead, missing data points are inter-
polated using the 24-hour recurrence values.

3.2 Model description and test error analysis

A number of optimized NN forecasting models were gen-
erated using the data time series offoF2 from the Chilton
ionosonde station. The optimization process involves adjust-
ing the input vector window length and centers, as discussed
in the previous section. Each model contains 1.5 years’ worth
of data, of which 75% of the data points available were used
to train and optimize the model, and the remaining 25% were
used to test the model’s predictive accuracy on unseen data.
The remainder of the period of available data (up to October
2000) was then used to evaluate the long-term performance
of the model.

The data periods used for each model, the data character-
istics, such as the mean and standard deviation,σ , of the
input data, and the percentage of missing data, are detailed
in Table 1. The data are characterized by improving qual-
ity, a higher mean value, and increased variability as time
progressed. Also included in the table are the model test er-
rors. As an indication of the effectiveness of the nonlinear
modeling routines against the more common linear model-
ing techniques, the model test errors (based on the last 25%
of the input data time series) are compared with that from the
reference persistence and recurrence models, which assume
that the data pointYn+1 will be the same asYn andYn−23, re-
spectively (Table 2). The considerable improvements of the
RBF-NN models over persistence predictions can be seen to
range from approximately 25 to 50%, while improvements
over 24-hour recurrence predictions are between∼ 28 and
58%.

3.3 Long-term model error analysis

While it is common to present model errors such as those
given in Table 2, in this work we are also interested in the
long-term performance of the neural network models. The
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Table 1. Description of prediction models

Model Train & test period Predict % of Mean σ Test
no. from missing (MHz) (MHz) NRMSE

data

1 1 Jun 95–31 Dec 96 Jan 97 15.7 4.24 1.12 0.346

2 1 Jan 96–30 Jun 97 Jul 97 12.0 4.08 1.13 0.310

3 1 Jul 96–31 Dec 97 Jan 98 9.45 4.17 1.11 0.268

4 1 Jan 97–30 Jun 98 Jul 98 4.38 4.33 1.35 0.281

5 1 Jul 97–31 Dec 98 Jan 99 4.05 5.00 1.56 0.222

6 1 Jan 98–30 Jun 99 Jul 99 4.35 5.47 1.96 0.228

7 1 Jul 98–31 Dec 99 Jan 00 4.08 6.11 2.01 0.180

Table 2. Comparison of RBF model normalized root-mean-squared errors (NRMSE) with persistence and 24-hour recurrence model NRMSE

Model RBF model Persistence Improvement of Recurrence Improvement of
no. NRMSE NRMSE RBF model over NRMSE RBF model over

persistence (%) recurrence (%)

1 0.346 0.506 31.6 0.478 27.6

2 0.310 0.432 28.2 0.569 45.5

3 0.268 0.430 37.7 0.469 42.9

4 0.281 0.377 25.5 0.598 53.0

5 0.222 0.385 42.3 0.429 48.3

6 0.228 0.338 32.5 0.540 57.8

7 0.180 0.355 49.3 0.357 49.6

normalized root-mean-squared errors (NRMSE) for 1-hour
ahead forecasts for the series of models from January 1997
to October 2000 are shown in Fig. 2. Each point repre-
sents a monthly averaged value (calculated by summing over
all available data points in the month and then dividing by
the total number of data points), and each curve starts after
the previously described test period has ended (see Table 1).
Immediately apparent is the degradation which occurs with
time, and the benefit accrued from periodic retraining and re-
optimizing of the neural network models. Model retraining
every year, and most beneficially every 6 months, is neces-
sary.

It can also be clearly seen that the NRMSEs are smaller
in winter than in summer, indicating that the RBF-NN mod-
els perform better during winter. To examine the reason for
this difference, we need to look at the variation in thefoF2
time series over the course of one year, an example of which
is shown in Fig. 3. During the winter months, thefoF2 data
exhibits a clear diurnal variation, whereas the summer varia-
tion is unclear, with the peak-to-peak variation being smaller
and almost noise-like. As can be seen from Eq. (3), if all
other factors remain unchanged, then the smaller variation
in the summer data will result in a higher NRMSE. From

the perspective of the neural network developer, our model
is, therefore, more successful in making the winter forecasts.
However, while the NRMSE provides a useful measure of
the model’s success, the normalization obscures the absolute
error associated with the forecast. For systems assessment,
this might be more important.

The absolute errors can be best seen in Fig. 4, which
shows the un-normalized root-mean-squared errors (RMSE)
for each of the models over the same time scale as seen in
Fig. 2. Again, the advantages of periodic retraining and re-
optimizing of the models can be seen. The absolute errors
can be reduced by up to∼ 0.1 MHz per six months as a re-
sult. Since the standard deviation of the input data is not
taken into account when computing RMSE, we can see that
the absolute errors are smaller in summer than in winter. This
can be attributed to the fact that the variation from highest to
lowest foF2 values within the period of one day are greater
in winter than in summer, thus producing higher absolute er-
rors in the winter forecasts. The anomalously high RMSE
for March 2000 in Fig. 4 corresponds to an unusually high
meanfoF2 input value for the same month, which is a result
of the high peak values (above 10 MHz) seen in the hourly
foF2 data throughout the month.
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Fig. 2. Normalized root-mean-squared errors for 1-hour ahead forecasts offoF2 from January 1997 to October 2000.

Fig. 3. Monthly medianfoF2 values for the year 1998 (solid line). Dashed and dotted lines represent the upper and lower quartiles,
respectively.
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Fig. 4. Root-mean-squared errors for 1-
hour ahead forecasts offoF2 from Jan-
uary 1997 to October 2000 (Legend as
in Fig. 2).

Fig. 5. Monthly meanfoF2 values from
July 1995 to October 2000.

Also seen in Fig. 4 is the general increasing trend in the
RMSE. The time period over which the forecasts are made
is during an ascending phase of the solar cycle, as can be
seen in Fig. 5, which shows the monthly meanfoF2 values
from July 1995 to October 2000. To compensate for this in-
creasing trend in the meanfoF2 data, we have demeaned the
root-mean-squared errors by dividing by the monthly mean
of the input data (Fig. 6). The annual variation in RMSE still
remains.

3.4 Retraining versus re-optimizing

We have shown in the previous section the benefits of peri-
odic re-optimization of neural network models to cope with

nonstationary data sets. This is a consequence of developing
models with input data sets that are shorter than the longest
characteristic period of the data. Ideally, models should be
trained using longer series of data, to take into account the
large range of physically significant time scales seen in geo-
physical data sets. In particular, models trained using 11 or
more years of data would be able to account for the varia-
tion in foF2 data over the solar cycle. Unfortunately, pro-
cessing constraints meant that the length of the input data
time series in this study was limited to 1.5 years; this still
contained∼ 13 000 data points. Furthermore, the optimiza-
tion process for the neural network model took roughly 1–2
weeks of computing time.
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Fig. 6. Demeaned root-mean-squared
errors for 1-hour ahead forecasts of
foF2 from January 1997 to October
2000 (Legend as in Fig. 2).

Fig. 7. MeasuredfoF2 and 1-hour
ahead forecasts from original and re-
trained models for the time period 7–9
May 2000.

In the absence of adequate resources, we have investigated
an alternative approach to improving the model predictive ac-
curacy on a new data set. The approach simply retrains the
neural network model to obtain new weights while still using
previously optimized window length and centers. This ap-
proach saves considerable computer processing time, in that
a “new” model can be generated in a matter of hours rather
than weeks. Figure 7 shows the actualfoF2 time series, to-
gether with the comparison of nonlinear forecasts performed
using an out-of-date model, and that using a retrained model.
Even though not fully optimized, the retrained model shows
clear improvements over the out-of-date model. Thus, in
the absence of adequate processing time, simply retraining
the model rather than re-optimizing can prove to be a useful

option to improve model forecasts.

4 Conclusions

The use of radial basis function neural network (RBF-NN)
models for the 1-hour ahead forecasts offoF2 at a northern
mid-latitude location has been shown to provide improve-
ments of up to 50% over the reference persistence prediction
models, and up to 58% over the 24-hour recurrence mod-
els. Analyses have demonstrated the importance of retraining
and re-optimizing ionospheric forecasting models at regular
intervals to cope with the non-stationary data set. Specifi-
cally, model predictive errors were found to be reduced by



1038 A. H. Y. Chan and P. S. Cannon: Nonlinear forecasts offoF2

∼ 0.1 MHz per six months as a result of periodic retraining
and re-optimization. Our studies have also shown that, in
the absence of adequate computing resources and time, re-
training of the model without re-optimizing still proves to be
beneficial.

This work further illustrates the problems of benchmark-
ing one analysis technique against another. Neither the
simple root-mean-squared (RMS) errors, nor the demeaned
RMS errors, nor the normalized RMS errors (NRMSE) offer
the definitive error analysis approach. While the normalized
RMS error is an excellent metric for understanding and com-
paring predictive schemes, the RMS error is invaluable for
quantifying the absolute errors. The former is needed to pro-
vide a meaningful measure of the model’s success; the lat-
ter is a necessary requirement for understanding the utility of
these prediction techniques in practical applications. Clearly,
no one metric tells the complete story, and it is incumbent on
all forecasters to provide a realistic range of error metrics.
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