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Abstract. Significant differences are found between the In contrast, there have been very few studies of the az-
mean spectral widths from beams in the meridional plane andmuthal anisotropy of Doppler spectral width. Nastrom and
in the zonal plane at both the MU and the White Sands VHFEaton (1995) noted that the mean values of spectral width
radars. The spectral width in the beam directed perpendicand backscattered power at the White Sands (WS) VHF radar
ular to the prevailing wind is greater than that in the beamin New Mexico are larger in the north-south beam than in the
parallel to the wind. The magnitudes of the differences ineast-west beam. A brief experiment reported by Nastrom and
spectral width show a linear relationship with wind speed, Eaton (1997) could not determine if the differences were of
with the greatest differences at the greatest wind speeds. Thastrumental or atmospheric origin. The present study reports
differences in spectral width show a positive correlation with the observed azimuthal anisotropy of the spectral widths,
the differences in backscattered power. The anisotropy irwhich were determined by using the long-term data bases
backscattered power is well-known and is usually attributedavailable from WS and from the Middle and Upper Atmo-
to aspect sensitivity effects. However, the anisotropy in specsphere (MU) radar located near Shigaraki, Japan. In an effort
tral width does not appear to be due to the same mechanisnto understand the origin of these anisotropies, their relation-
and while several hypotheses to account for this are considships to other variables measured by the radars will also be
ered, including finite range-volume effects, effects from thediscussed.
tilting of isentropic layers, and anisotropic turbulence effects,
it is seen that each of these suggestions has its shortcomings.

2 Data

Key words. Meteorology and atmospheric dynamics (turbu-

lence; instruments and techniques) WS and MU are both very large VHF radars with one-way

3 dB beamwidths @) of 2.9 and 3.6, respectively. They
both use 150-m range gates R) over the altitude range of
approximately 5-20km. MU data are for five beam direc-
tions (vertical and at 10zenith angle ¢) toward the four
cardinal directions) and WS has three beams (vertical and at
= 15° toward the north and toward the east). Further tech-

1 Introduction

The azimuthal anisotropy of the backscattered power received, . i
on oblique beams of mesosphere-stratosphere-troposphe cal details of the MU and WS radars are given b)_/ Fukao et
(MST) radars from the troposphere and stratosphere has beéfr (1990) and Nastrom a.nd Eat.on (1993), respectively.
discussed in many studies (e.g. Hocking, 1987; Hocking et MU and WS are at similar latitudes (348 and 32.4N,

al., 1990; Hooper and Thomas, 1995; Tsuda et al., 1986[espec_t|vely),_although other aspe_cts of their locations and
1997a,b; Worthington and Thomas, 1997; Worthington et al. OPerating environments are quite different. For example, max-
1999, 2000). The anisotropy in backscattered power is usulMUm monthly mean zonal wind speeds at MU range from
ally attributed to aspect sensitivity effects associated with thd©SS than 10 m/s during August to over 60 m/s during De-
tilting of aspect sensitive surfaces by gravity waves and, a$®mper, January, and February, while at WS, the range is
discussed by Worthington and Thomas (1997), vertical windTom about 5 m/s during August to about 35 m/s during De-

shears. cember (Nastrom and Tsuda, 2000). Meridional winds are
usually relatively light at both sites and, consequently, the
Correspondence tds. D. Nastrom flow tends to be from the west.

(nastrom@stcloudstate.edu) Hourly profiles of the means, medians, and standard devia-
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Fig. 1. Vertical profiles of the median spectral width (left) and returned power (right) for MU (upper) and WS (lower) during January. Solid
(dashed) lines are for beams in the zonal (meridional) plane. Dotted lines show the differences in the values between the zonal and meridiona
beams.

tions of the radial velocity, spectral width, and backscatteredsquared divided by 21n2) contains contributions due to at-
power were computed for each radar beam at each site. Amnospheric turbulence within the sample volunee?)( and

MU, data were available for 12363 hours from the regularother effects due to beam-, shear-, and wave-broadening
observation periods (about 100 hours per month) from 198602,,,). These contributions are additive (Gossard,1990),
through 1996. At WS, profiles for 25656 hours were avail-

able, taken during the period January 1991 through Septenfaps = ¢ + 0o (1)

ber 1996. )
The back d MU din dB rel Nastrom (1997) found that the beam- and shear-broadening
e backscattered power at was reported in r¢laontributions twZ,,, contain a cross-term, i.e.

tive to an arbitrary reference; for use here, it has been multi-

plied by the square of the range. The backscattered power 92

at WS was reported a62. At large o the backscattered Ofeam shear= 3{(142C2 +v?) — 252C Ruu,

power at VHF is from Bragg scattering, while at small

other processes lead to aspect sensitivity effects (e.g. Chau of oa A R2 > AR

et al., 2000). Studies of aspect sensitivity (e.g. Tsuda et al., +#z| R°S" + ?‘30&0‘) +u? 28 S'n2 20 (2)

1986, 1997a) indicate that the backscattered power decreases

sharply witha out to about 10 (although in some cases, whereC = cose, S = sina, R is rangey is the speed of the

aspect sensitivity may extend to highe). As mentioned  wind in the plane of the beam,is that in the plane perpen-

above, tilting of aspect sensitive surfaces by gravity waves ogicular to the beam, and. is the vertical gradient of. The

other processes can lead to apparent azimuthal anisotropy @fst term inside the braces, called the beam-broadening term,

backscattered power. is usually much larger than the others, although in strong
The observed spectral Widthrgbs; the 3 dB half-width  shear conditions, the second term, called the cross-term, can
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Fig. 2. Differences irngbsvalues between the meridional and zonal beams for the prevailing zonal (meridional) flow in the left (right) panels

for MU (upper) and WS (lower). See text.

also be significant. The termsﬂaﬁ are nearly always negligi- shown in Fig. 1 by dotted lines; for clarity, they have been
ble. The contribution due to wave-broadening is also nearlyoffset toward the left by 0.2 s2. The largest (smallest)

always negligible (Nastrom and Eaton, 1997). A(’ozbs are for winter (summer) months.

The shapes of the profiles ofbs resemble the shapes of
the profiles of wind speed at both sites. Indeed, Eq. (2) shows
that the beam-broadening contributiom'@%s is very closely
related to wind speed. The profilesaq? in Fig. 1 were ob-
the results; during other months (not shown), the results aréa'ned by applying the standard corrections for beam, shear,

similar during winter and decrease during summer, with min—and wave broadening tfgbs (followmg_ Nastrom ?”d Eaton,
imum values near zero during August. In Fig. 1, the bold 1997). Some of the values are negative when wind speeds are

(light) solid line at MU is for the beam directed toward the 2798 as discussed by Fukao et al. (1994). While the shapes
west (east). The mediafgbs is greater in the zonal beams of theoy” profiles are different from.th.ose feﬁbs, the differ-

than in the meridional beams at both MU and WS. (The me-€nces between the zpngl and merldlo.nal'(jlrectlon.s are about
dians for the east and west beam at MU are different abovéhe Same, I.€. ap_plylngcorr does not significantly diminish
approximately 12 km; the origin of this difference is unknown the azimuthal anisotropy.

and in this study we will focus on the differences between In Fig. 1, the largest differences in the values between the
the west beam and the meridional beams). The magnitudezonal and meridional beams are found near 11km, near the
of the differences betweewgbs in the meridional plane and level of maximum wind speed. Figure 2 further illustrates
the zonal plane are about the same at MU (north beam minuge relationship between the magnitudes of the anisotropies
west beam at MU) and WS, ranging up to about 0218, (Ao, North minus west at MU) and wind speed. Mean val-
The differencesz(sogbs) for all twelve calendar months are ues oangbs are plotted for 10 ms! wind-speed bins. The

3 Results

Figure 1 shows the profiles ofgbs for January to illustrate
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Table 1. Coefficients of correlation ohogbs and Aatz (meridional plane minus zonal plane) with other variables measured by the VHF
radars at MU and WS. Correlations of magnitue@.2 are flagged with a star

WS MU
7km 12km 17km 7km 12km 17 km

No 14033 11793 13499 11073 9330 9325
Correlation WIthAGObS

Wind speed 0.16 0.12 0.07 0.25* 0.25* 0.11
u 0.25* 0.17 0.09 0.26* 0.26* 0.10

v 0.04 0.08 0.05 —-0.04 0.05 0.15
du/dz 0.03 0.20 * 0.25* 0.32* 0.22* 0.37*
dv/dz 0.01 0.09 0.01 0.02 -0.21* -0.07

Correlation withAo?

Wind speed 0.14 0.13 0.12 0.26* 0.21* 0.11
u 0.23* 0.19 0.15 0.27* 0.22* 0.10

v 0.03 0.03 —0.10 —0.03 0.04 0.14
du/dz -0.00 -0.31* -0.38* 0.38* 0.28* 0.38*
dv/dz 0.01 0.05 0.09 0.04 -0.01 —0.04
Apower 0.15 0.34* 0.39* 0.04 0.17 0.21*
powet, 0.08 0.16 0.12 —0.04 0.02 —0.03
ow 0.03 0.00 0.02 0.03 0.00 0.02
0,2 —v 0.68* 0.55* 0.24* 0.39* 0.32* 0.14

abscissa in the left-hand (right-hand) panels is the zaal ( have chosen to flag only magnitude6.2 in Table 1.
(meridional ¢)) wind speed and only observations withwind At 7 and 12km, the correlations are approximately the
directions within 30 of east-west (north-south) were used. same for the total wind speed and for the zonal component,
Data were sorted into three altitude groups, representing thand correlations witly are<0.15 at all heights. Correlations
troposphere (4.8-9.8 km), near the level of maximum windswith du/dz are all large, except at 7 km at WS. Most corre-
(9.8-15.1km), and the lower stratosphere (15.1-19.1km)lations withdv/dz are<0.2.
Error bars extene-20/+/No (whereo is the standard devia-  The correlations withApower seen in Table 1 are positive
tion of the No data points in each group) and thus representand increase with altitude at both WS and MU. Because the
the 95% confidence interval for the mean of each group.  anisotropy in backscattered power is often attributed to grav-
The curves in Fig. 2 are all concave in the left-hand panelsty wave activity (e.g. Hocking, 1987; Tsuda et al., 1997b;
and convex in the right-hand panels, indicating hhé,g in Worthington et al., 1999), this pattern of correlation coeffi-
the beam perpendicular to the wind is greater than that in theients might suggest that there is a relationship betvma«f;%
beam parallel to the wind. The corresponding curvegsiaf and the intensity of gravity wave activity. However, the cor-
as a function of wind speeds (not shown) have nearly iden+elation of Ac? with o, (often used as an indicator of gravity
tical shapes since the main correction term is due to beamvave intensity) is insignificant.
broadening, which is about the same magnitude for both zonal The correlation coefficents afo? with o2 — v are large
and meridional planes. and positive at nearly all levels. These results imply thag
Table 1 gives the correlation coefficients of hourly val- becomes larger ag? becomes larger.
ues oangbs with wind speedy, v, and the vertical shears Returning to Fig. 1, the right-hand panels show the verti-
of the wind, at three representative levels. The correlationcal profiles of the median power (multiplied by the range-
coefficients of Ao? with the same variables and with the squared) at MU and 0612\, at WS. At MU, the power in
anisotropy of backscattered powélf(at WS), backscattered the west beam (the bold solid line) is generally greater (less)
power in the meridional beam, the hourly standard deviationthan that in the other beams in the troposphere (stratosphere).
of the vertical velocity ¢,,), and the value of? in the merid-  Most of the monthly mean differences relative to the west
ional beam are also given. In order to focus attention onbeam, shown by dotted lines offsetl5 dB, fall to the right
wind speed and wind shear (i.e. baroclinic) effects rather thar{left) of the vertical reference line below (above) approxi-
possible convective effects, only data for September throughmately 11 km. At WS, there is a bias in I@f, between the
May were used in Table 1. Although all correlation coeffi- meridional and the zonal beams; the mean magnitude of the
cients greater than approximately 0.04 are statistically sig-bias over all heights is 0.175. It is not known if the source
nificant due to the large number of data pairs used here, wef the mean bias is instrumental. However, note that the dif-
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ferences between the zonal and meridional beams’ valuesyhich is different for the beams parallel and perpendicular
shown by the dotted lines (plotted offset by15.5), have a  to the wind. This suggestion is currently being investigated
pattern in the vertical similar to that seen at MU, i.e. they using observations from MU and the results will be reported
are to the right (left) of the reference line entered-46.675  in the future.
below (above) approximately 11 km. The anisotropy in the
backscattered power as a function of azimuth, as seen herécknowledgementsSDN was partially supported by the Air Force
is consistent with that seen in past studies. Several studie@ffice of Scientific Research. _ )
have shown that the changes in anisotropy in backscattered oPical Editor D. Murtagh thanks a referee for his help in evalu-
A . ting this paper.
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