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Abstract. A classical way to reduce a radar’s data is to com-
pute the spectrum using FFT and then to identify the differ-
ent peak contributions. But in case an overlapping between
the different echoes (atmospheric echo, clutter, hydrometeor
echo. . . ) exists, Fourier-like techniques provide poor fre-
quency resolution and then sophisticated peak-identification
may not be able to detect the different echoes. In order to
improve the number of reduced data and their quality rel-
ative to Fourier spectrum analysis, three different methods
are presented in this paper and applied to actual data. Their
approach consists of predicting the main frequency-compo-
nents, which avoids the development of very sophisticated
peak-identification algorithms. The first method is based on
cepstrum properties generally used to determine the shift be-
tween two close identical echoes. We will see in this pa-
per that this method cannot provide a better estimate than
Fourier-like techniques in an operational use. The second
method consists of an autoregressive estimation of the spec-
trum. Since the tests were promising, this method was ap-
plied to reduce the radar data obtained during two thunder-
storms. The autoregressive method, which is very simple to
implement, improved the Doppler-frequency data reduction
relative to the FFT spectrum analysis. The third method ex-
ploits a MUSIC algorithm, one of the numerous subspace-
based methods, which is well adapted to estimate spectra
composed of pure lines. A statistical study of performances
of this method is presented, and points out the very good
resolution of this estimator in comparison with Fourier-like
techniques. Application to actual data confirms the good
qualities of this estimator for reducing radar’s data.

Key words. Meteorology and atmospheric dynamics (trop-
ical meteorology)- Radio science (signal processing)- Gen-
eral (techniques applicable in three or more fields)
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1 Introduction

Wind-profiler radars generally operate in the VHF and UHF
bands, and are used to observe the scattering of radiowaves
from clear-air refractive-index fluctuations. Although not
necessarily optimised for detecting other types of scatter-
ers, the signals that the radars receive, nevertheless, contain
non-clear air echoes, such as hydrometeors at UHF, light-
ning emissions at VHF, clutter at UHF and VHF, etc. As
these radars become an operational tool for short-term pre-
diction and forecasting, as well as a research instrument for
boundary-layer tropospheric and stratospheric studies, then
robust algorithms have to be implemented in order to deter-
mine the different Doppler frequencies present in the signal,
to classify and select the important ones, and to compute the
wind. Primarily, the ordinary algorithm used contains the
following steps: coherent integrations of the signal, applica-
tion of a window, computation of the spectrum using FFT
and incoherent integrations (Tsuda, 1989). Sato and Wood-
man (1982) computed the autocorrelation function instead of
the FFT. Many approaches have been developed to search the
echoes and to extract the corresponding Doppler frequencies
(Yamamoto et al., 1988; Hocking, 1997) with the selection of
the right frequency as the final step in order to compute the
wind velocity. When the sought echo is unique and well sep-
arated from the clutter, and located at 0 Hz, any algorithm
works, yet the fastest is the best. But over a whole verti-
cal wind-profile (i.e. wind as a function of the altitude at a
given time) and in all weather conditions, this is not the case.
Several echoes which may overlap could be present in the
spectrum. The classical case of overlapping is the one be-
tween clutter and atmospheric echo. Fourier-like techniques
provide poor results for close echoes; the frequency reso-
lution is not enough to separate the different contributions.
The atmospheric echo may be approximated by a Gaussian
shape, but the clutter does not correspond to any analytical
model, except when it may be considered as a single spectral
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Fig. 1. Cepstrum results(a) FFT spectrum,(b) cepstrum of the signal,(c) cepstrum of one echo,(d) cepstrum of the periodic term.

point. As a consequence, even with a very sophisticated al-
gorithm devoted to peak identification in a spectrum, it may
be difficult to separate overlapped echoes, especially when
their amplitudes are very different. As an example, in UHF,
if overlapped echoes could not be separated, the identified
Doppler frequency may shift from clear-air to a hydrome-
teor one, from altitude to altitude, from time to time, or from
beam to beam. As a consequence, spurious data or no data,
if using a consensus window, are obtained.

In this paper, we have investigated model-based spectral
methods on simulated and actual data. These methods pro-
vide the different main frequency-components present in the
signal; these methods replace the peak-identification algo-
rithm. The aim of this work is to point out the possibility
of separating overlapped echoes directly and then to improv-
ing the number of reduced data and their quality relative to
Fourier spectrum analysis. The radar data came from the
thunderstorm campaign that took place at the National As-

tronomy and Ionospheric Center (NAIC) in Arecibo, Puerto
Rico in 1998 (Petitdidier et al., 2000); UHF and VHF time
series are both used in our tests. In the first part, an estimation
based on cepstrum properties is studied. The cepstrum algo-
rithm has been used to determine the frequency shift between
two echoes, and it is known to provide good results when
the echoes are alike (Oppenheim and Shafer, 1989; Balluet
et al., 1981). For example, this algorithm has already been
applied in Particle Image Velocimetry (PIV) (Fournel et al.,
1992). In this paper, the algorithm will be applied to the
power spectrum of time series provided by a VHF ST radar
with the aim of estimating the shift between two different
echoes (for example, the shift between the ground clutter and
the atmospheric echo). Applied to our data, this method does
not provide a major improvement versus the spectrum anal-
ysis. Then, autoregressive methods are studied in the second
part. The autoregressive (AR) spectral estimator is a stan-
dard tool in the field of spectral estimation and time series
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Fig. 2. Application of the cepstrum algorithm on two different Gaussian echoes.

analysis (Kay and Marple, 1981). This method is applied di-
rectly to time series. Subspace-based methods are presented
in the third part. The key idea consists in a decomposition
of the observation space in two subspaces: the signal sub-
space containing the echoes, and the noise subspace (Bienv-
enue and Kopp, 1979, Schmidt, 1986). This decomposition
is realized by computing the covariance matrix of the signal,
which is then decomposed into its eigenvectors. The signifi-
cant eigenvalues correspond to signal subspace eigenvectors
and the other eigenvalues correspond to the noise subspace.

2 Exploitation of the power cepstrum

2.1 The power cepstrum algorithm

In the cepstrum algorithm, the power spectrumS∗(f ) is
supposed to be the sum of two identical echoes,f0 shifted
(Fig. 1a):

S∗(f ) = S(f ) + S(f − f0) (1)

s∗(t) = s(t)(1 + e2jπf0t ) (2)

wheres(t) is the Fourier transform ofS(f ) ands∗(t) is the
Fourier transform ofS∗(f ). Let us define the complex loga-
rithm by

ln c(S) = ln |S| + i arg(S) (3)

where arg(S) represents the unwrapped phase ofS to ensure
the uniqueness of the function. In the development

ln c
(
s∗(t)

)
= ln c

(
s(t)

)
+ ln c

(
1 + e2jπf0t

)
(4)

the term lnc
(
1 + e2jπf0t

)
is af0 periodical: a Fourier trans-

form of Eq. (4) exhibits a peak at the expected frequency,f0.
Consequently, the power cepstrum ofS∗(f ) is defined by:

CE
(
S∗(f )

)
=

∣∣∣∣FT
(

ln c
[
FT

(
S∗(f )

)])∣∣∣∣

=

∣∣∣∣FT
(

ln c
[
s∗(t)

])∣∣∣∣ (5)

whereCE denotes the cepstrum operator andFT the Fourier
Transform operator. (5) can be rewritten as

CE
(
S∗(f )

)
= CE

(
S(f )

)
+ CE

(
δ(f ) + δ(f − f0)

)
(6)

whereδ(f ) denotes the Dirac distribution.
The cepstrum operator is generally applied directly on a

time series, but in our case, the cepstrum operator is applied
on spectra because we estimate the shift between two Gaus-
sian spectra. Consequently, cepstra are represented with a
“frequency” axis in Fig. 1 (b, c and d).

The second term

CE
(
δ(f ) + δ(f − f0)

)
= FT

(
ln c

[
1 + e2jπf0t

])
of Eq. (6), represented in Fig. 1d, exhibits a peak at thef0
frequency and harmonics which are easily interpreted by the
Taylor expansion of the logarithm function. In Fig. 1b, we
can easily detect this peak but in some cases, the first term
CE

(
S(f )

)
+ (represented in Fig. 1c) can hide that peak and

the estimation won’t be possible (especially when the second
Gaussian echo presents a significant attenuation in compari-
son with the first one).

2.2 Simulation results

For simulations, the spectrum of the signal has been com-
puted as proposed by Papoulis (1965):

S∗(f ) =
1

Ninc

Ninc∑
m=1

(
Sth(f ) + σ 2

b

)∣∣ym

∣∣2 (7)

whereSth(f ) is the theoretical spectrum,σ 2
b is an additive

noise power,Ninc is the number of incoherent integration and
ym is a Gaussian random variable with unit standard devia-
tion. We took 256 points for the FFT algorithm.
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Fig. 3. AR method: tests on the number of pole(a) FFT spectrum,(b) reconstructed spectrum with a pole number of 12;(c) reconstructed
spectrum with a pole number of 5;(d) reconstructed spectrum with a pole number of 50. The vertical line drawn on each plot corresponds to
the 0 Hz frequency.

In Fig. 2, two different Gaussian echoes have been com-
puted: the first one at zero frequency, modeling the ground
clutter with a SNR of 15 dB and a normalized standard de-
viation of 0,0015 and the second one, with a normalized fre-
quency of−0,2, a SNR of 20 dB and a normalized standard
deviation of 0,025. Even if the power cepstrum exhibits a
peak at the expected frequency, the presence of numerous
other peaks does not permit an immediate reliable estimation
of the frequency shift.

2.3 Conclusion

As shown in the simulation, robust extraction of the shift fre-
quency is not possible due to the numerous peaks. Conse-
quently, this method has not been applied on actual data. In
Sects. 3 and 4, a very different approach has been investi-
gated which presents great improvements in relation to the

FFT algorithm. It consists of two powerful parametric meth-
ods which rely on different models for the received signal.

3 Exploitation of autoregressive methods

3.1 Presentation of the method

The autoregressive (AR) spectral estimator is a standard tool
in the field of spectral estimation and time series analysis
(Kay and Marple,1981). AR models are often used to model
data which are not necessarily generated by AR equations.
For instance, high-order models are commonly used to es-
timate peaked spectrum. This method is well-known for its
good behaviour in resolving spectral peaks from noisy data.
Given a time seriesxn, n = 0, 1, · · ·N − 1, which is the sum
of the output of an AR process,sn, and a white noise

xn = sn + wn
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Fig. 4. AR method: choice of the orderp: two Gaussian echoes withf1 = 0.1σ1 = 0.04SNR1 = 20dB;f2 = 0.21σ2 = 0.005SNR2 =

18dB. (a) FFT spectrum,(b) mean bias of the estimation,(c) mean rms of the estimation,(d) spectral flatness coefficient.

and given
p∑

k=0

aksn−k = −ξn a0 = −1

wherewn andξn are uncorrelated white noise processes, it is
well-known that

SAR(ω) =
σ 2

ξ∣∣A(ω)
∣∣2 (8)

whereσ 2
ξ is the variance ofξn and

A(ω) =

p∑
k=0

ake
−jωk a0 = −1 .

In the application investigated in this paper,ak will be esti-
mated by solving the Yule-Walker equations using the well-
known Levinson-Durbin algorithm.

3.2 Selection of the order

The first step is to determine the length of the predictor or
pole numberp for a correct representation of the spectrum.

This delicate choice is important for the frequency estima-
tion, as shown in Fig. 3, where three different values ofp

have been tested. In the present case (Fig. 3a), the atmo-
spheric echo is stronger than the clutter one; in many cases,
it is the reverse situation.p = 5 (Fig. 3c) leads to a fairly
poor representation of the spectrum; in the case where an
atmospheric echo is weaker than the clutter one, the atmo-
spheric echo may not be present in the spectrum.p = 50
(Fig. 3d) leads to a fairly rich representation of the spec-
trum with parasite peaks: it is no longer possible to safely
select the right Doppler frequency. The intermediate case
of p = 12 (Fig. 3b) leads to a correct representation of the
spectrum.

In order to safely select a correct pole numberp, typi-
cal VHF spectra have been simulated, corresponding to two
different extreme cases (Fig. 4a and Fig. 5a). For each spec-
trum, a statistical study of the performance (bias and rms) of
the estimator according top has been investigated over 500
Monte Carlo noise realizations. Figure 4 (b and c) and Fig. 5
(b and c) show that for these two typical situations, the op-
timal order is aroundp = 12: in Fig. 4b and Fig. 4c, the
value ofp = 13 minimizes both the mean bias and mean
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rms; in Fig. 5b and Fig. 5c, the value ofp = 12 minimizes
the mean bias, but not the rms. An alternative to this classi-
cal statistical study is to selectp according to the predictive
noise spectral flatness. Such a spectral flatness coefficientFc

can be defined as follow (Stoı̈ca, 1997)

0 ≤ Fc =

exp

[ 1
2∫

−
1
2

ln
(
Sn(f )

)
df

]
1
2∫

−
1
2

Sn(f )df

≤ 1 , (9)

whereSn(f ) is the spectrum of the noise given by

Sn(f ) =
S
(
f

)
SAR

(
f

) (10)

with S(f ) as the FFT spectrum andSAR(f ) as the AR spec-
trum. Since this noise must be white, the pole numberp for
the AR estimation is given by the corresponding spectrum

Sn(f ) which is the flattest. The flatness ofSn(f ) is charac-
terized by the spectral flatness coefficient previously intro-
duced. As the flatness ofSn(f ) increases withFc, the pole
numberp for theAR estimation is given by the value which
maximizesFc. The results of simulations lead to a choice of
p = 13 in the first case (Fig. 4d) andp = 10 in the second
case (Fig. 5d). Regarding all of these results, the value of
p = 12 seems to be a good choice for the various scenarios.

3.3 Experimental Results

The AR method has been applied to a time series of VHF and
UHF radar data. Since the tests were promising, this method
has been applied to reduce the radar data obtained during two
thunderstorms. The reconstructed spectrum is computed for
each sampled altitude and time. The adequacy between the
FFT spectrum and the reconstructed spectrum confirms the
choice ofp = 12 for the AR model. The following step is to
select the right peak frequency. In the presence of a broad-
band echo, two very close peaks are obtained regardless of
whether the pole number is even or odd; an average value,
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Fig.6 
Reshaping of the autocorrelation sequence Fig. 6. Reshaping of the autocorrelation sequence.

representative of the mean peak frequency, is computed. In
some cases, although fewer than in the regular FFT spectrum
method, the Doppler frequency cannot be detected because it
is merged into a large echo. This case occurs when the atmo-
spheric echo is very close to the clutter and relatively broad.
This method, as it was implemented, cannot provide either
the standard deviation or the backscattered power; using the
reconstructed spectrum, they are underestimated especially
whenp is small. In the data reduction process, these param-
eters were obtained by means of the FFT spectrum after the
identification of the mean frequency of the concerned echo.

3.4 Conclusion

The AR method, as it was implemented, improved the peak
identification relative to the FFT spectrum analysis. It was
an interesting method to obtain a first guess of the wind data;
therefore, a peak search was no longer necessary. In our case,
one of the limitations is the need to compute the spectrum
in order to retrieve the other parameters, such as standard
deviation and backscattered power. But further investigations
will be carried out to avoid this constraint.

4 Introduction of a model-based approach for subspace
parametric estimation

Different algorithms are exploiting subspace properties of
covariance matrix methods (Bienvenue and Kopp, 1979,
Schmidt, 1986). For simulation and experimental results, the
MUSIC algorithm has been computed.

4.1 Application of the MUSIC algorithm to the times series

MUSIC (Multiple Signal Characterization) is one of the
“high resolution subspace methods”, which is well adapted to
estimate spectra composed of pure lines. This was first used
as an array processing to estimate the direction-of-arrival of
different point sources. Our approach is original since the
MUSIC algorithm is applied to the autocorrelation function
of the time series. On the hypothesis of a spectrum contain-
ing echoes with a relatively small standard deviation, the the-
oretical autocorrelation function is considered as a sum of
sinusoidal signals with a slowly varying amplitude,

Fig. 7. Resolution of the MUSIC algorithm versus FFT algorithm.

r(t) =

∑
i

αi(t)e
jωi t .

The frequency estimation is conducted here as if the envelope
was constant (the termsαi(t) are assumed to be independent
of t). This hypothesis corresponds to a spectrum composed
of pure lines and it leads to the use of the MUSIC algorithm.

Consider anN × 1 complex vectorr(t) corresponding to
the concatenation ofN autocorrelation lags. As in array sig-
nal processing problem formulation, in order to obtain mul-
tiple vectorial sub-observations ofr(t), the vectorr(t) must
be reshaped intoKm × 1 vectorsrk, as explained in Fig. 6,
whereTS is the pulse repetition time,1TS is an adjustable
shift andK = int[(N − m)/1 + 1], where int() denotes the
integer part operator. A classical eigenvalue decomposition
of the covariance matrix

Rr =
1

K

K∑
k=1

rkr
H
k

is then performed to estimate the first spectral moments of
Gaussian echoes and where(•)H denotes the Hermitian trans-
pose. The influence of the temporal variation ofαi(t) on the
quality of the MUSIC estimation in the case of a single echo
can be found in Besson and Stoı̈ca (1996).

[1cm]

4.2 Simulation results

In order to exhibit the improvement obtained with subspace
approaches versus FFT algorithms, we compute a simulation
with two identical Gaussian echoes, with a fixed normalized
standard deviation ofσ = 0.0125 for 256 points. For each
value of the SNR shown in Fig. 7, the limit of resolution,
obtained by the smallest value of the shift between echoes,
which provides two well separated peaks in the spectrum,
is evaluated. As expected, the limit of resolution is better
for the MUSIC algorithm and enables a detection of the two
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Fig. 8. Simulation example with two identical Gaussian echoesNinc = 1, SNR = 10dB, Nff t = 1024,f1 = 0.0391,f2 = 0.0586
andσ = 0.01.

Fig. 9. Simulation example with two different Gaussian echoesNinc = 1, SNR = 10dB, Nff t = 256, σ1 = 0, 005, f1 = 0.0781,
σ2 = 0, 02 andf2 = 0.0813.

echoes, where the Fourier-like techniques lack in resolution.
Moreover, one can notice that for a SNR greater than−5 dB,
the resolution of the MUSIC algorithm reaches the zero limit:
in this case, it is always theoretically possible to separate two
echoes. With actual data, the noise and statistical fluctua-
tions of the signal limit the possibility to separate very close
echoes. This improvement of the resolution is illustrated in
Fig. 8 and Fig. 9 where a strong overlapping has been simu-
lated. In Fig. 8, considering only the spectrum, it is difficult
to know whether the spectrum is composed of one or two

echoes, except if this was ascertained from time or/and alti-
tude continuity. Bias and variance have been estimated with
500 Monte Carlo simulations. Clearly, an estimation of the
mean frequencies is still possible in a domain where Fourier-
like techniques fail.

4.3 Experimental results

Figures 10 and 11 present the results of a MUSIC computa-
tion of a VHF times series obtained during a thunderstorm, in
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Fig. 10. Experimental results: first example.

Arecibo, PR during September and October 1998. These two
examples present cases with overlapped echoes. For these
two cases, MUSIC provides an estimation of the mean veloc-
ity which is consistent with the Fourier spectrum. In Fig. 11,
MUSIC exhibits three significant peaks where a Fourier es-
timation would have some difficulties in estimating the rel-
ative contribution of the ground clutter and the “negative”
frequency peak. Of course, we need to pay attention to the
interpretation of the results: when Gaussian echoes have a
large standard deviation, MUSIC will exhibit several peaks
inside that echo, thereby complicating the analysis of the re-
sults. Thus, an a-posteriori analysis is necessary to interpret
the different peaks obtained with MUSIC and to select the
one which is representative of the atmospheric contribution.
As a matter of fact, several contributions may be present in
the spectrum: clear air, clutter, hydrometeor, in case of strong
rain, and spurious echoes. Moreover, it is important to men-
tion that the MUSIC algorithm can be implemented in real
time.

4.4 Conclusion

If the standard deviation of the echo is small, subspace-based
methods provide good results. Application of subspace-based

2020 0

Fig. 11. Experimental results: second example.

methods to large standard echoes leads to poor statistical per-
formances due to the inadequacy between the signal and the
pure line spectra model assumed by subspace-based meth-
ods. An alternative to this problem is to take into account
the algorithm for both the Doppler frequency and standard
deviation, conducting so to a 2D pseudo-spectrum. This is
ongoing work (Boyer and al., 2001).

5 Conclusion

Several approaches were presented to overcome the lack of
resolution of Fourier-like techniques. The Cepstrum tech-
nique does not bring immediate improvements as it is not
well adapted to broadband echoes and therefore does not per-
mit overlapped-echo identification. The AR technique, due
to existing routines, is easy to implement. The determina-
tion of the pole number has to be adapted to the concerned
case. The peak selection is easier than in the FFT spectrum
due to some filtering, but some cases need a more sophis-
ticated search than a maximum search. The standard devi-
ation and the backscattered power could be retrieved from
the “reconstructed” spectrum, but further investigation must
be done. The MUSIC algorithm, applied to the autocorrela-
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tion function, appears to be a good alternative to Fourier-like
techniques when echoes are overlapped, with a possible real
time implementation. A decisive step is to estimate the two
other moments of the echoes (for a joint estimation of the
three spectral moments of the echoes, see Boyer et al., 2001).
The next step will be to implement this algorithm on a work
station, to reduce actual data routinely and to compare with
methods based on peak identification in the power spectrum.
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