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1 Introduction

In their recent paper, Glassmeier et al. (1999) described
observations of a giant pulsation (Pg) measured by the
Scandinavian magnetometer array. Using co-incident
energetic proton observations made by GEOS-2 at a
location nearly conjugate to their ground measurements,
the authors identified a possible bump-on-tail at
~67 keV. Using the azimuthal wave number and the
period of the wave as derived from the ground-based
magnetometer observations, Glassmeier et al. (1999)
tried to test the hypothesis that the Pg they observed on
the ground was driven by this bump-on-tail distribution
through an unstable drift-bounce resonance (e.g.,
Southwood et al., 1969; Southwood, 1976). In order to
be able to match their observations with theory,
Glassmeier ef al. (1999) derived a new resonance
condition and claimed that at times when the conjugate
ionospheres had asymmetric conductivity the usual
integer-N drift-bounce resonance condition could be
satisified by a non-integer value n. We show in this
comment that these calculations and this assertion are
fundamentally flawed.

The standard drift-bounce resonance condition is
written as

a)—mQD:NQB (1)
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where w and m are the wave frequency and azimuthal
wave number, Qp is the particle bounce frequency, Qp is
the particle’s bounce-averaged drift frequency, and N is
an integer (Southwood et al., 1969). For the Pg event
observed by Glassmeier et al. (1999), the resonance
condition was not satisfied for the observed w and m,
assuming a proton energy of 67 keV. To circumvent this
problem, and to attempt to provide a causal link
between the GEOS-2 particle signature and the Pg
observed on the ground, Glassmeir et al. (1999) sug-
gested a more general drift-bounce resonance condition
than that derived by Southwood (1976) and given in our
Eq. (1). They argued that if an asymmetry in the
conjugate ionospheric conductivities exists, then it is
possible for the resonance condition to be generalised
to:

w — mQD = }’IQB (2)

where n € Z, i.e. any real number, n being determined
by the resonant particle path length between mirror
points and the asymmetry in ionospheric conductivity.

Glassmeier et al. (1999) claimed that replacing inte-
ger N with real n “is a proper generalisation of the
Southwood (1976) condition”. If true, this represents
a significant result since observers wishing to explain
observations of ULF pulsations believed to be driven by
drift-bounce resonance would be free to invoke non-
integer values of n into the resonance condition.

The mathematical formulation of Glassmeier et al.
(1999) produces a resonance condition which infers
that particles in drift-bounce resonance experience a
time-independent continual increase in energy regard-
less of the value of n. We show that the calculations of
Glassmeier et al. (1999) are in error and that the
correct treatment retains the condition that N be an
integer. Only in the special drift-resonance case where
N =0 does the particle experience a time-independent
increase in energy along its path. The introduction of
asymmetric ionospheric conductivities at the conjugate
points in opposite hemispheres does not alter this
conclusion.
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2 Resonances on field lines with asymmetric
ionospheric conductivities

Glassmeier et al. (1999) considered the rate of change of
particle energy due to interaction with a ULF wave,
given by

3Wa(s) = qEg(s)vn(s) expli(m¢ — wr)] (3)

where ¢ is the electric charge of the particle, Eg4(s) is the
arc-length-dependent wave azimuthal electric field, vp(s)
the arc-length-dependent particle azimuthal drift veloc-
ity, and ¢ is the azimuthal angle. Following the analysis
of Glassmeier et al. (1999) we can replace vp(s) with its
bounce averaged value (vp(s)) =uvp and set the drift
phase to ¢ = Qpt. If the electric field E(s) is written as

E(s)= Y AyexpiNQpt (4)
N=—00

as in Southwood (1976), then integrating the resulting
expression for d W with respect to time [cf. Eq. (16) of
Southwood, 1976] gives

expli(mQp — w + NQp)t]
((U — mQD — NQB)

o0
oWp = qup Z An
N=—c0

(5)

The dominant term in this summation is the resonant
one for which N satisfies the condition w — mQp = NQp
(cf. Eq. 1).

Glassmeier et al. (1999) argue that it is the expansion
in Eq. (4) which forces N to be an integer in Eq. (1).
They claim that if the arc length position s of the particle
on the field line is instead approximated by a triangular
function (see Glassmeier et al.’s Eq. (16) and the
correction in their reply, Glassmeier, 1999) then the
resulting expression for /3 can be integrated without
recourse to an expansion like Eq. (4).

Glassmeier et al. (1999) choose to write their electric
field as

Ey(s) = —iEy exp [i ?} (6)

where L is the field line length, and where they claim that
o can account for wave asymmetry about the equator.
This allows them to generate the equation

SWy = —iEgup exp [i(mQD —w)t+ i?} . (7)

Using their triangular function to relate s to ¢, Glass-
meier et al. (1999) then integrate their expression for
0Wp over one bounce cycle to give

TB/Z
oW ~ —igEgvp X { / expli(mQp + nQp — w)t]dt

Tp
+ / expli(mQp — nQp — w)1] - exp(in)dt} (8)
Ty/2
where Tz = 21/Qp and n is specified by n = «//L, where

[ is the distance between the particle mirror points. They
argue that the sum of these integrals will maximise if
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either  — mQp — nQp = 0 (the first integral dominates),
or w — mQp + nQp = 0 (the second integral dominates),
so that the generalised form of the resonance condition
would be w —mQp —nQp =0, with n € # and either
positive or negative.

This mathematical treatment is flawed because of
Glassmeier et al.’s (1999) incorrect treatment of the
form of the wave electric field (stated in Eq. 6). An
alternative and correct treatment can be considered by
adopting an electric field of the form

Ey(s) = Eo(s) expivs(s) ©)

see, e.g., Allan (1982). This formalism can describe the
general form of the electric field eigenmodes supported
by dipolar field lines with footpoints in conjugate
hemispheres of asymmetric ionospheric conductivity
(e.g. Allan and Knox, 1979a, b). Here E4(s) describes
the time-independent amplitude variation of the electric
field along the field line and y(s) describes the field-
aligned phase.

For example, a fundamental (half-wavelength) har-
monic with conjugately symmetric infinite ionospheric
conductivities has (s) = 0 along the entire field line,
and the wave represents an in-phase purely symmetric
standing mode. When realistic finite conductivities are
introduced the wave develops a small propagating
component which can carry Poynting flux to the
dissipative ionosphere. However, for realistic conduc-
tivities, the mode is still dominantly a standing mode
along the majority of the field line; only very close to the
ionosphere where the standing mode electric field is
nodal does y(s) become non-zero (see, e.g., Fig. 4 of
Allan and Knox, 1979b, which shows a case with
conjugately symmetric ionospheric conductivity of
2p = 10 mhos). Even when the conductivities are made
asymmetric (e.g., Fig. 5 of Allan and Knox, 1979b
where Xp = 10,3 mhos), non-critically damped modes
retain the feature that y(s) ~ 0 along the vast majority
of the field line, although in this case Ey(s) is of course
asymmetric.

The equation used by Glassmeier ef al. (1999)
(reproduced as Eq. 6 above) to describe the wave
electric field, however, produces a phase which increases
proportional to s along the entire field line. Under
Glassmeier et al.’s (1999) triangle approximation relat-
ing s to t this generates a field aligned phase for the
resonant particle which is proportional to ¢ for all time.
In fact, as shown by Allan and Knox (1979a, b) far from
being proportional to s, the phase ¥(s) remains approx-
imately constant along almost the entire field line, except
for the 180° step phase changes which occur across the
(near-) nodes of the eigenmodes.

Glassmeier et al’s (1999) erroneous form of E(s)
leads to an incorrect linear relationship between field-
aligned phase and ¢, and it is this which causes them
to infer that regardless of the value of n a resonance
condition can be generated in which the electric field in
the frame of the particle is time-independent. This is
incorrect, and the assertion by Glassmeier et al. (1999)
that a non-integer n can generate a viable drift-bounce
resonance condition when the wave fields are asymmet-
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ric is wrong. When the correct analysis is undertaken it
becomes clear that N must be an integer for a genuine
resonance to occur, and that in general the particles do
not experience a time-independent electric field, except
for the special case when N = 0. The existence of this
flaw can be clearly shown with a simple graphical
analysis and we demonstrate this in detail.

3 Graphical treatment of drift-bounce resonance

Southwood and Kivelson (1982) developed a powerful
graphical means of understanding the energy exchange
between mirroring energetic particles and high-m ULF
waves. By mapping the path of the mirroring energetic
particle in the wave rest frame, i.e. a frame which moves
with the waves azimuthal phase speed, the possible
conditions for drift-bounce resonance with different
harmonic waves can be analysed. For example, South-
wood and Kivelson (1982) show that purely symmetric
(odd mode) waves may be driven through drift (N = 0),
or drift-bounce (N = £2, 44, ...) resonances, the N =0
resonance usually being dominant (Southwodd, 1976).
Similarly, purely antisymmetric (even mode) waves may
be excited by N = +1,+3,... drift-bounce resonances
(N = +1 usually dominant).

In their paper, Glassmeier et al. (1999) considered the
possibility of drift-bounce resonance driving asymmetric
ULF wave modes whose line of symmetry/anti-symme-
try is displaced from the equatorial plane. As discussed
already, waves of this type are expected to be supported
by field lines with asymmetric ionospheric conductivities
at the conjugate points in opposite hemispheres (e.g.
Allan and Knox, 1979a, b). Glassmeier et al. (1999)
correctly concluded that in this case both asymmetric
odd (with symmetry about a line displaced from the
equatorial plane) and even (with anti-symmetry about a
line displaced from the equator) mode waves might be
driven at the same time by either even- or odd-N
resonances. In the asymmetric wave case the symmetries
of the waves and particles are different. This means that
there are some trajectories which involved no net
transfer of energy in the symmetric case but in the
asymmetric case can result in a secular decrease in
particle energy. This in itself represents a very important
result. However, it is the claim by Glassmeier ez al.
(1999) that these energy exchanges could be generated
by non-integer-n resonances which is in error.

To illustrate why this is the case, we can examine the
physics of the resonance condition (1) as was described
previously by Southwood and Kivelson (1982). In the
frame of the wave, the particle’s azimuthal drift speed
is Doppler shifted by the azimuthal phase speed of
the ULF wave (w/m) so that in the wave frame
¢ =Qp — w/m. For the case of an N =0 resonance,
the wave and the particle move with the same azimuthal
phase speed so that ¢ =0 and the particle “‘sees” a
constant time-independent electric field. For other
resonances, where both N and hence ¢ are #0, the
particles move with respect to the wave. In this case, the
path of the particles must be examined carefully to
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Fig. 1. Trajectories of two ions in the wave rest frame (solid and
dashed lines) which are in N = —1 drift-bounce resonance with a
second field aligned harmonic wave (after Southwood and Kivelson,
1982). The positive and negative signs represent the direction of wave
electric field and the position of maximum amplitude

determine whether a particular wave harmonic can be
resonant with a given particle trajectory.

In order for a particle to maintain any possible
resonance and give energy to the waves, it must not have
an energy loss over part of its trajectory totally cancelled
out by subsequent energy gain later. This means that the
particle must return to the same phase relative to the
wave after an integer number of bounces in the wave
frame. If the particle does not return to the same relative
phase, its phase shifts with respect to the wave, the result
being that no resonances and hence no sustained wave
growth are possible. Mathematically, this is equivalent
to requiring that the particles travel across an integer
number N of azimuthal wavelengths (14 = 2n/m) in a
bounce cycle. For example, equating the time for the
particle to cross one wave azimuthal wavelength (¢ /¢)
with the bounce time 27/Qp, gives the relation m¢p = Qp,
ie.,

G)—WIQDZ—QB s

(10)
which is the same expression as Eq. (1) with N = —1.
The situation is exactly analogous to the well-known
wave particle cyclotron resonances where o — kjv| =
NQ.. For cyclotron resonance, the Doppler shifted wave
frequency must match an integer number (N) of
cyclotron frequencies Q..

The situation for drift-bounce resonance with
N = —1 is schematically illustrated in Fig. 1 (adapted
from Southwood and Kivelson, 1982), which shows two
possible particle trajectories at different drift phases in
the field of an antisymmetric (second harmonic) wave in
the wave’s rest frame. The trajectories shown are linear
approximations to the particle bounce motion between
mirror points, the same approximation as the triangular
function adopted by Glassmeier er al. (1999) (their
Eq. 16; see also the correction in their reply Glassmeier,
1999). On the dashed trajectory, an ion experiences
equal positive and negative azimuthal electric fields over
its path. In linear theory, where the action of the wave
on the particle is considered over unperturbed paths,
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Fig. 2. Trajectories of two ions in N = -2 drift-bounce resonance

with a fundamental field aligned mode (same format as Fig. 1)

the particle has zero net energy change. The solid line
trajectory, however, shows an ion experiencing a pos-
itive azimuthal electric field over the whole of its path.
Consequently, the ion is in resonance with the wave, and
experiences a secular deceleration imparting its energy
to the wave. If the local particle distributions are
energetically favourable so that overall more particles
are decelerated than accelerated then there is a net
transfer of energy from the particles to the wave.

In Fig. 2 we show the situation for the N = -2
resonance with a symmetric fundamental mode wave.
The dashed trajectory shows a particle crossing equal
positive and negative azimuthal electric field regions and
hence experiencing zero net (linear) energy change. The
solid trajectory, however, crosses the equatorial plane at
the times of maximum positive wave amplitude and
reaches its mirror point at the times of maximum
negative amplitude. Since the wave is a fundamental
field-aligned harmonic, the electric field at the equator is
greater than at the mirror points, the result being that
the particle experiences a net (linear) deceleration over
it’s path. Again, under conditions where the particles
have energetically favourable distribution functions
energy can be transferred from the particles to the wave.

We can also consider the situation for non-integer-n.
In particular we will demonstrate how it is impossible
for the n = 0.4 interaction, which Glassmeier et al.
(1999) proposed as the driver of their Pg, to result in
sustained wave growth. First, in Fig. 3, we consider a
possible » = 0.4 interaction between three particles of
different drift phase with a perfectly symmetric odd
mode wave (in this case the fundamental). Here n = 0.4
represents the situation whereby, in the frame of the
wave, during 5 bounce cycles the particles drift east
through 2 azimuthal wavelengths. This means that
—2(2n/m¢) = 5(2n/Qp), which gives m¢p = —2Qp/5 or
alternatively that

(J)*WIQD:O.“-QB . (11)

Both the dashed paths (trajectories 1 and 3) in Fig. 3
traverse equal positive and negative field regions and
hence there is no net (linear) deceleration. In a way
similar to the N = —2 case shown in Fig. 2, however, the
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solid trajectory in Fig. 3 involves decelerations and
accelerations of the particle in the positive and negative
electric field regions which are not precisely symmetric.
Indeed, although the particle crosses the equatorial
plane in both positive and negative fields, the equatorial
(maximum field-aligned amplitude) negative fields are
encountered when the wave has maximum (temporal)
amplitude. At times earlier and later than this, the
particle moves away from the temporal maximum and
towards the mirror points where the electric fields and
hence the acceleration will be weaker. Conversely, there
are two equatorial crossings in the positive E4 regions
close to, but on either side of, the temporal wave
maxima which will cause particle deceleration. Due to
the differences between the field aligned and azimuthal
field variations, there is the hypothetical possibility for
a small imbalance to occur between the positive and
negative £, regions sampled on this trajectory. How-
ever, because the particles are repeatedly accelerated and
decelerated any net energy exchange is likely to be
insignificant. In particular, in the real situation, a
particle on this trajectory will be affected non-linearly
by the wave field accelerations/decelerations. This
means that the precise phase of the particle trajectory
will be shifted slightly over time so that any slight net
deceleration over one set of five bounce cycles is likely to
be phase shifted into an overall acceleration over the
following set of cycles so that the effect tends to be
cancelled. In this way we would expect the particles to
experience phase mixing with respect to the waves, and
hence there should be no overall energy transfer from
the particles to the waves (this is not to be confused with
the oscillations of waves at the local Alfvén eigenfre-
quencies whereby the phase of the waves with respect to
each other increases in time, which has also been
described as phase mixing, see, e.g., Mann and Wright,
1995).

This non-integer-n phase mixing does not occur in
integer-N cases. For example, for the N = —2 case
shown in Fig. 2, it can be seen that small non-linear
perturbations to the particle trajectory maintain the
resonance and allow for a secular net energy transfer

N

Fig. 3. Trajectories of three ions of different drift phase in an » = 0.4
drift-bounce wave-particle interaction with a symmetric fundamental
field-aligned harmonic (same format as Fig. 1)
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N

Fig. 4. Trajectory of an ion in an n = 0.4 drift-bounce wave-particle
interaction with an asymmetric fundamental field-aligned harmonic
mode (same format as Fig. 1)

from the particle to the wave. In other words the non-
integer-n drift-bounce interactions, such as n = 0.4,
cannot be described as resonances and hence they are
not viable candidates for driving ULF pulsations.

Glassmeier et al. (1999) claimed that an »=0.4
resonance might still be viable, however, if the interac-
tion were with an asymmetric fundamental mode wave
whose axis of symmetry is displaced away from the
equatorial plane. In Fig. 4, we show this case, with the
drift phase taken to be the same as the solid path
(trajectory 2) from Fig. 3. The vertical dotted lines
highlight the positions in wave phase where the particles
reach their mirror points, and hence approximate the
regions where for the Southern Hemisphere the particles
would experience close to the maximum electric field
magnitudes. Examining the trajectory carefully shows
that whilst over some sections of the trajectory there
appears to be the possibility for the particles to be
strongly declerated by being closer to the wave ampli-
tude maxima south of the equatorial plane, later in the
orbit these effects are cancelled by the parts of the orbit
which are closer to the northern mirror point where the
electric field is weaker, so that the benefit is lost. As in
the symmetric wave case shown in Fig. 3, there is the
hypothetical possibility for a small imbalance between
the linear acceleration and deceleration experienced over
a trajectory of five particle bounce cycles, however, any
imbalance is likely to be insignificant. Moreover, non-
linear orbit phase mixing removes the possibility of any
overall energy exchange, so that even when the wave
fields are asymmetric about the equator non-integer-n
interactions are not viable candidates for driving high-m
waves. This being the case, an alternative drift-bounce
resonance with integer N must be invoked if this is the
mechanism responsible for driving the Pgs reported by
Glassmeier et al. (1999).

4 Alternative interpretation of data
for integer-/V resonances

Glassmeier et al. (1999) make the assumption that their
Pg occurs as a consequence of drift-bounce resonance
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with energetic protons, and that an enhancement
observed in the proton distribution function at ~67
keV offers a likely energy source. Although the corre-
lation of the wave intensity with the proton enhance-
ment in the 5975 keV band appears quite convincing in
Fig. 5 of Glassmeier et al. (1999), these protons fail to
satisfy the drift-bounce resonance condition for integer
N. Since drift-bounce resonance is a likely source of
instability, we have made an estimate of the energy of
protons which could lead to a resonance if an integer N
was assumed.

In our calculations we use the wave characteristics as
observed on the ground (7 ~ 100 s; m ~ —26) and for
the drift frequency Qp we use the value as defined by
Chisham (1996) which includes both an energy depen-
dent gradient-curvature term and electric field depen-
dent convection and corotation terms. We assume that
the L-shell of resonance is L ~ 5.44 (the dipole field
L-shell of MUO, the station where maximum amplitude
was observed), that the local time of the event can be
expressed as ¢ ~ 135° (i.e., ~0900 MLT), that the pitch
angle of the protons « ~ 20°, and that the convection
electric field can be estimated by its dependence on K),;
in this case K, = 4—. Based on this, we estimate that
the drift-bounce resonance condition is satisfied for
energies W ~12keV (N =+41) and W ~ 250 keV
(N =0).

Protons of these energies will only contribute to wave
growth if the particle distribution function £ is increas-
ing with W at these energies, i.e.

dr _of  dLof
dw ~— ow dW8L>0 ’ (12)

This equation shows that instability can occur if there is
a sufficient spatial gradient in some part of the resonant
distribution (i.e. 9f /0L is large) or if the distribution
is inverted at some point (bump-on-tail) so that
Of /OW > 0 (see Southwood et al., 1969). If we assume
that a bump-on-tail distribution is responsible for the
instability then we should be looking for a positive slope
in the proton distribution function at either W ~ 12 keV
or W ~ 250 keV. The proton instrument used by
Glassmeier et al. (1999) had an energy range from 28—
402 keV and so would not detect a bump-on-tail at
lower energies. No bump-on-tail is observed at 250 keV
but this could be a result of the energy resolution of the
instrument; only 10 energy channels exist between 28
and 402 keV.

We cannot be sure, without further evidence, if either
of these particle populations is responsible for the
growth of the Pg. However, the spacecraft data appear
to suggest that the Pg is a fundamental mode wave
which suggests that the N = 0 solution (W ~ 250 keV)
may be the most likely. Particles of this energy have drift
periods ~1 h and so could have originated from the
substorm injection observed ~0530-0600 UT. However,
if protons with energies ~67 keV are to be implicated
in the Pg generation then an alternative genera-
tion scenario to drift-bounce resonance needs to be
found.
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5 Summary

Whilst the conclusion of Glassmeier et al. (1999) that
both odd and even asymmetric wave modes could be
driven by the same drift-bounce resonance is correct, we
have shown that Glassmeier ef al.’s (1999) subsequent
assertion that non-integer-n drift-bounce resonances
could drive this type of asymmetric wave is in error.
The ability for odd-N resonances to drive both even and
odd mode waves at the same time, so long as they are
excited on field lines with conjugately asymmetric
conductivies, may be very important. Indeed this might
provide an explanation for the driving mechanism of
some of the high-m pulsations which have been previ-
ously reported in the literature. For example, Allan ez al.
(1983) reported observations of multiple harmonic
high-m pulsations which they believed could have been
driven by drift-bounce resonance. However, because
both even and odd modes were observed at the same
time, the authors were forced to propose that both drift
and bounce resonances (each resonant with very different
parts of the energetic particle spectrum) were operating
at the same time and in the same location. As Allan ez al.
(1983) point out, this is “an extremely complicated
situation”. If the possibility of some wave asymmetry is
included then it could be possible for both even and odd
modes to be driven by the same N resonance.

Similarly, in a study of compressional high-m waves,
Takahashi et al. (1987) pointed out that whilst an
N = +£1 drift-bounce resonance could have excited
waves with the period and azimuthal wave number
observed, their observations were of fundamental mode
waves which (if symmetric) could not be excited by an
N = %1 drift-bounce resonance. However, if an iono-
spheric conductivity asymmetry were present then fun-
damental (albeit asymmetric) mode waves could be
excited by N = +1 drift-bounce resonance. We reiterate,
however, that even when asymmetric modes are excited,
it is only the integer-N drift-bounce resonances which
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can exchange energy efficiently enough to give sustained
wave growth via the well-known condition given in
Eq. (1).
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