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Abstract. Possible con®gurations of the magnetic ®eld
in the outer magnetosphere during geomagnetic polarity
reversals are investigated by considering the idealized
problem of a magnetic multipole of order m and degree n
located at the centre of a spherical cavity surrounded by
a boundless perfect diamagnetic medium. In this illus-
trative idealization, the ®xed spherical (magnetopause)
boundary layer behaves as a perfectly conducting surface
that shields the external diamagnetic medium from the
compressed multipole magnetic ®eld, which is therefore
con®ned within the spherical cavity. For a general
magnetic multipole of degree n, the non-radial compo-
nents of magnetic induction just inside the magnetopause
are increased by the factor f1� ��n� 1�=n�g relative to
their corresponding values in the absence of the perfectly
conducting spherical magnetopause. An exact equation
is derived for the magnetic ®eld lines of an individual
zonal �m � 0�, or axisymmetric, magnetic multipole of
arbitrary degree n located at the centre of the magneto-
spheric cavity. For such a zonal magnetic multipole,
there are always two neutral points and nÿ 1 neutral
rings on the spherical magnetopause surface. The two
neutral points are located at the poles of the spherical
magnetopause. If n is even, one of the neutral rings is
coincident with the equator; otherwise, the neutral rings
are located symmetrically with respect to the equator.
The actual existence of idealized higher-degree �n > 1�
axisymmetric magnetospheres would necessarily imply
multiple �n� 1� magnetospheric cusps and multiple �n�
ring currents. Exact equations are also derived for the
magnetic ®eld lines of an individual non-axisymmetric
magnetic multipole, con®ned by a perfectly conducting
spherical magnetopause, in two special cases; namely, a
symmetric sectorial multipole �m � n� and an antisym-
metric sectorial multipole �m � nÿ 1�. For both these

non-axisymmetric magnetic multipoles, there exists on
the spherical magnetopause surface a set of neutral
points linked by a network of magnetic ®eld lines. Novel
magnetospheric processes are likely to arise from the
existence of magnetic neutral lines that extend from the
magnetopause to the surface of the Earth. Finally,
magnetic ®eld lines that are con®ned to, or perpendicular
to, either special meridional planes or the equatorial
plane, when the multipole is in free space, continue to be
con®ned to, or perpendicular to, these same planes when
the perfectly conducting magnetopause is present.
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1 Introduction

An idealized model is developed to elucidate the possible
con®gurations of the magnetic ®eld in the outer
magnetosphere during geomagnetic polarity reversals.
Possible magnetic-®eld con®gurations in the inner
magnetosphere have been considered in previous papers
(Willis and Young, 1987; Willis and Gardiner, 1988).
These papers have been based on the assumption that,
during a geomagnetic polarity reversal, the transitional
magnetic ®eld can sometimes be represented approxi-
mately by a single, non-dipolar, magnetic multipole of
order m and degree n. In particular, Willis and Young
(1987) derived an exact equation for the magnetic ®eld
lines of an individual axisymmetric (or zonal) magnetic
multipole of arbitrary degree �n�. Subsequently, Je�reys
(1988) presented an alternative and somewhat simpler
mathematical derivation of the equation for the ®eld
lines of a single axisymmetric magnetic multipole. This
result was then generalized to the case of an arbitrary
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linear combination of axisymmetric magnetic multipoles
by Backus (1988), who showed that an exact equation
for the magnetic ®eld lines can be obtained elegantly by
analogy with the solution of an equivalent problem in
hydrodynamics (Lamb, 1945). In a special extension to
non-axisymmetric magnetic ®elds, Willis and Gardiner
(1988) derived exact equations for the magnetic ®eld
lines of both symmetric sectorial �m � n� and antisym-
metric sectorial �m � nÿ 1� individual magnetic multi-
poles of arbitrary degree �n�.

The early palaeomagnetic evidence supporting the
belief that the transitional magnetic ®eld in the inner
magnetosphere can sometimes be represented approxi-
mately by a single, non-dipolar, magnetic multipole has
been summarized in previous papers (Willis and Young,
1987; Willis and Gardiner, 1988; Willis et al., 1997). In a
recent review paper, Merrill and McFadden (1999) have
concluded that existing palaeomagnetic data are inad-
equate to determine conclusively whether the transi-
tional magnetic ®eld is predominantly dipolar or
non-dipolar at the Earth's surface. Nevertheless, the
available evidence suggests that non-axisymmetric
multipoles dominate the transitional magnetic ®eld.
Any major change in the con®guration of the geomag-
netic ®eld during a polarity reversal (or even a large
excursion) would inevitably lead to dramatic changes in
geomagnetically trapped radiation, the geographical
distribution of precipitating auroral particles and the
geographical distribution of cosmic rays impinging on
the Earth's upper atmosphere.

The con®guration of the magnetic ®eld in the outer
magnetosphere during a geomagnetic polarity reversal
(or major excursion) is simulated in the present inves-
tigation by placing a magnetic multipole (of arbitrary
order m and degree n) at the centre of an ideal, perfectly
conducting, spherical magnetopause. Stated alternative-
ly, a magnetic multipole is placed at the centre of a
spherical cavity surrounded by a boundless perfect
diamagnetic medium, as illustrated schematically in
Fig. 1. This approach is similar to that adopted by Wu
and Cole (1984a, b) in their formulation of a ``new''
iterative method of calculating the shape of the actual
elongated magnetopause, which separates the ¯owing
solar-wind plasma in the magnetosheath from the
con®ned geomagnetic ®eld in the magnetosphere. In
an appendix, Wu and Cole (1984a) derived an analytic
solution for the particular case of a magnetic dipole
located at the centre of a spherical cavity surrounded by
a boundless perfect diamagnetic medium. These authors
used this analytic solution to test their ``new'' iterative
numerical method of solving the integral equation for
the magnetic ®eld just inside a spherical magnetopause.
Subsequently, Wu and Cole (1984b) successfully tested
their ``new'' iterative numerical method of determining
the shape of the magnetopause in the special situation
for which the external (magnetosheath) plasma pressure
is assumed to be constant and homogeneous over the
entire magnetopause.

The theoretical treatment presented here provides an
exact analytic solution for the magnetic ®eld inside an
idealized spherical magnetosphere, which results from

the con®nement of a multipolar transitional magnetic
®eld by a perfectly conducting spherical magnetopause.
Although the actual magnetopause is almost certainly
not spherical, the idealized problem considered here
provides considerable physical insight into the various
possible topologies of the magnetic-®eld con®guration in
the outer magnetosphere during geomagnetic polarity
reversals. In particular, the magnetic-®eld con®guration
at the spherical magnetopause itself, including the
distribution of neutral points and neutral rings, is
topologically similar to that arising for the classical
(Chapman-Ferraro) magnetopause boundary. This clas-
sical magnetopause boundary is based on the assump-
tion of a unidirectional stream of cold solar-wind
particles being specularly re¯ected at a free magneto-
pause surface (Beard, 1964, 1967). It should be stressed,
however, that no attempt is made here to consider the
merging (or ``reconnection'') of the interplanetary and
terrestrial magnetic ®elds at the magnetopause.

2 The magnetic ®eld in an idealized spherical
magnetosphere

It is convenient to derive the magnetic ®eld in the
idealized spherical magnetosphere by considering the
con®nement of the general spherical harmonic expan-
sion of the Earth's main magnetic ®eld by a perfectly
conducting spherical magnetopause. The general
approach adopted in Sect. 2.1 facilitates comparisons
with the results presented in previous papers (Willis and
Young, 1987; Willis and Gardiner, 1988; Willis et al.,
1997). As indicated in Fig. 1, the mean radius of the
Earth is denoted by RE and the radius of the concentric
spherical magnetopause is denoted by RM. The main
emphasis of this study is on the con®nement of an
individual magnetic multipole, of speci®ed degree n and

Fig. 1. Schematic illustration of a magnetic multipole (of arbitrary
order m and degree n) located at the centre of a spherical
(magnetosphere) cavity within a boundless perfect diamagnetic
medium. The ®xed spherical (magnetopause) boundary layer behaves
as a perfectly conducting surface that shields the external diamagnetic
medium from the compressed multipole magnetic ®eld within the
spherical cavity

12 D. M. Willis et al.: The outer magnetosphere during polarity reversals



order m, by a perfectly conducting spherical magneto-
pause. Nevertheless, a more general result is presented in
Sect. 2.2 for the magnetic-®eld components within the
magnetosphere in the case of an arbitrary linear
combination of multipoles of identical degree n but
varying order m.

2.1 Spherical harmonic analysis of the magnetospheric
magnetic ®eld

Referred to a system of spherical polar coordinates
�r; h;/�, the general solution of Laplace's equation
�r2V � 0� for the magnetic scalar potential �V � in the
magnetosphere can be expressed in the form (Chapman
and Bartels, 1940; Price, 1967; Vestine, 1967; Wu and
Cole, 1984a):

V �
X1
n�1

Xn

m�0
��Am

n rn � Bm
n rÿnÿ1�cosm/

� �Cm
n rn � Dm

n rÿnÿ1�sinm/�P m
n �cos h� ; �1�

where Am
n ; Bm

n ; Cm
n and Dm

n are arbitrary coe�cients, or
constants, to be determined from the boundary condi-
tions. The pairs of coe�cients Am

n ; Cm
n and Bm

n ; Dm
n refer,

respectively, to contributions that originate from mag-
netic sources that are external �r > RE� and internal
�r < RE� with respect to the surface of the Earth (mean
radius RE). The other quantities appearing in Eq. (1) are
de®ned in the following paragraph.

At points close to the Earth and remote from the
magnetopause (i.e. RE � r� RM), the magnetospheric
magnetic ®eld is dominated by the Earth's main
magnetic ®eld. The external �r � RE� magnetic scalar
potential �V i� of this geomagnetic ®eld of internal origin
is normally expressed in the form (Chapman and
Bartels, 1940; Roederer, 1972; Willis and Young, 1987):

V i �
X1
n�1

Xn

m�0
RE�RE=r�n�1

� �gm
n cosm/� hm

n sinm/�P m
n �cos h� ; �2�

where the superscript i is used to signify that this
contribution is of internal origin. In this representation
of the main geomagnetic ®eld, positions on the surface
of the Earth, and in the magnetosphere, are speci®ed in
terms of (geographic) spherical polar coordinates
�r; h;/� with origin O at the centre of the Earth. These
coordinates are de®ned as follows: r is the radial
distance �r � RE�; h is the geographic co-latitude with
the north geographic pole at h � 0; and / is the
geographic longitude measured east of Greenwich. The
radius of the reference sphere, r � RE, is taken to be the
mean radius of the Earth (6371.2 km); P m

n �cos h� is
Schmidt's partially (or quasi-) normalized associated
Legendre function of order m and degree n (where m and
n are integers); gm

n and hm
n are the experimentally

determined spherical harmonic (or Gauss, or Schmidt)
coe�cients for the particular epoch considered; and all
physical quantities are measured in SI units. Our
de®nition of scalar magnetic potential �V � is such that

the spherical harmonic coe�cients gm
n and hm

n have the
dimensions of magnetic induction (i.e. B = ÿgrad V ).

The spherical harmonic expansion de®ned by Eq. (2)
is valid only outside the region of origin of the Earth's
main magnetic ®eld, which comprises the solid inner
core and the liquid outer core, in an ideal external region
containing no sources of magnetic ®eld (i.e. curl B = 0).
In the present context, Eq. (2) represents the scalar
potential of the Earth's main magnetic ®eld in the ideal
external region �RE � r � RM�. At the spherical boun-
dary, r � RM, the radial component of the total mag-
netic ®eld �Br� must vanish because the magnetopause is
assumed to be perfectly conducting or, stated alterna-
tively, because the boundless surrounding medium
�RM < r <1� is assumed to be perfectly diamagnetic.
The mathematical boundary conditions then become
V ! V i as r! 0 and Br � ÿ@V =@r � 0 at r � RM.
Applying these two boundary conditions to Eqs. (1) and
(2) yields the following relations for the coe�cients
Am

n ;B
m
n ;C

m
n and Dm

n :

Am
n �
�n� 1�

n
Rn�2
E

R2n�1
M

gm
n ; Cm

n �
�n� 1�

n
Rn�2
E

R2n�1
M

hm
n ; �3�

Bm
n � Rn�2

E gm
n ; Dm

n � Rn�2
E hm

n : �4�
If these values of the coe�cients are substituted back

into Eq. (1), the expression for the total magnetic scalar
potential in the magnetosphere �RE � r � RM� becomes

V �
X1
n�1

Xn

m�0
RE�RE=r�n�1 1� ��n� 1�=n��r=RM�2n�1

n o
� �gm

n cosm/� hm
n sinm/�P m

n �cos h� : �5�
As the radius of the spherical magnetopause becomes
in®nitely large (i.e. RM !1 or, equally, RM=RE !1),
Eq. (5) reduces to Eq. (2), which correctly con®rms that
the magnetic ®eld in an unbounded magnetosphere
results solely from the Earth's main magnetic ®eld of
internal origin. Therefore, every magnetic-®eld compo-
nent (and hence every ®eld-line equation) presented here
reduces to the correct limiting form as RM !1, as can
be veri®ed by comparing results presented here with the
corresponding results presented in the papers by Willis
and Young (1987) and Willis and Gardiner (1988). No
allowance is made in this initial investigation, however,
for magnetic ®elds that might result from possible
distributions of charged particles ``trapped'' in such an
idealized spherical magnetosphere.

2.2 The magnetic-®eld components
in the magnetosphere

It is shown succinctly in Appendix A that for a general
magnetic multipole of degree n (and not just an
individual zonal, symmetric sectorial or antisymmetric
sectorial multipole) the magnetic-®eld components
�Br;n;Bh;n;B/;n� in the magnetosphere can be expressed
in the following form:

~Br;n � �1ÿ �r=RM�2n�1�Br;n ; �6�
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~Bh;n � f1� ��n� 1�=n��r=RM�2n�1gBh;n ; �7�
~B/;n � f1� ��n� 1�=n��r=RM�2n�1gB/;n ; �8�
where the presence (absence) of the tilde signi®es the
presence (absence) of the perfectly conducting spherical
magnetopause. Equations (6), (7) and (8) are valid for a
magnetic multipole having a magnetic scalar potential
� ~Vn� identical to that obtained by omitting the summa-
tion over n in Eq. (5) but retaining the summation over m.

Therefore, Eqs. (6), (7) and (8) are valid for a general
magnetic multipole of degree n, de®ned by an arbitrary
linear combination of individual multipoles having the
same degree n but di�erent orders m �0 � m � n�.
Equation (6) con®rms that the radial component of
magnetic induction just inside the spherical magneto-
pause �r � RM� is reduced to zero by the presence of the
perfectly conducting spherical magnetopause, as re-
quired by the boundary condition imposed in Sect. 2.1.
Equations (7) and (8) imply that the non-radial compo-
nents of magnetic induction just inside the magneto-
pause �r � RM� are increased by the factor
f1� ��n� 1�=n�g relative to their corresponding values
in the absence of the perfectly conducting spherical
magnetopause. This general result holds for each of the
special cases considered separately in Sects. 3, 4.2 and
4.3, namely m � 0, m � n and m � nÿ 1, respectively.

For simplicity, the tilde and the second subscript �n�
are omitted in all subsequent equations (apart from
those presented in Appendix A).

3 Zonal magnetic ®elds

Consider ®rst the case in which an individual zonal
�m � 0�, or axisymmetric, magnetic multiple of arbitrary
degree n is con®ned by such an ideal spherical magne-
topause. It then follows from Eq. (5) that the scalar
potential �V 0

n � of this individual axisymmetric magnetic
multipole of degree n is given by

V 0
n � g0nRE�RE=r�n�1 � f1� ��n� 1�=n��r=RM�2n�1g
� P 0

n �cos h� : �9�
The magnetic ®eld (B) can be found from the equation
B � ÿgrad�V 0

n �. Therefore, since dP 0
n �cos h�=dh �

ÿ�n�n� 1�=2�1=2P 1
n �cos h� (Chapman and Bartels, 1940,

Chapter XVII, Eq. 55), the components of the axisym-
metric �B/ � 0� magnetic ®eld B � �Br;Bh� are given by

Br � �n� 1�g0
n�RE=r�n�2�1ÿ �r=RM�2n�1�P 0

n �cos h� �10�
and

Bh � �n�n� 1�=2�1=2g0n�RE=r�n�2

� f1� ��n� 1�=n��r=RM�2n�1gP 1
n �cos h� : �11�

These last two equations can also be derived directly
from Eqs. (6) and (7), using Eqs. (7) and (8) in the paper
by Willis and Young (1987).

The di�erential equation for the ®eld lines of an
axisymmetric magnetic ®eld is

dr=Br � r dh=Bh ; �12�
if the axis of magnetic symmetry is assumed to coincide
with the polar axis of the system of spherical polar
coordinates de®ned in Sect. 2. This last assumption
involves no real loss of generality. Substituting Eqs. (10)
and (11) into Eq. (12) yields the following di�erential
equation for the magnetic ®eld lines inside the axisym-
metric spherical magnetosphere

f1� ��n� 1�=n��r=RM�2n�1g
r�1ÿ �r=RM�2n�1� dr

� 2�n� 1�
n

� �1=2P 0
n �cos h�

P 1
n �cos h� dh : �13�

The right-hand side of this last equation is identical to
the right-hand side of Eq. (11) in the paper by Willis and
Young (1987) and can be integrated by the method
described in that paper (see also Je�reys, 1988).
Moreover, the left-hand side of Eq. (13) can be
expressed as the sum of the two terms rÿ1dr and
��2n� 1�=n��r2n=R2n�1

M ��1ÿ �r=RM�2n�1�ÿ1dr, both of
which can be integrated immediately. Using this ap-
proach, it is found that Eq. (13) can be integrated to give

r � rnf�1ÿ �r=RM�2n�1��j sin hP 1
n �cos h�j�g1=n ; �14�

where rn denotes a constant of integration. As in the
paper by Willis and Young (1987), the parameter rn
speci®es a particular axisymmetric shell of ®eld lines;
each ®eld line on the shell lies in a meridian plane (/ =
constant). The generalization of Eq. (14) to the case of
an arbitrary linear combination of axisymmetric multi-
poles is presented in Appendix B in terms of an analogy
with the solution of an equivalent problem in hydrody-
namics (Lamb, 1945).

The interpretation of the parameter rn in Eq. (14)
involves a subtlety that warrants explanation. The term
inside the fcurlyg brackets on the right-hand side of this
equation becomes in®nitesimally small as r! RM and
hence this equation is meaningful mathematically only if
rn !1 as r! RM. Therefore, the ®eld lines that lie on
the ideal spherical magnetopause surface are those for
which the parameter rn is in®nitely large. This conclu-
sion may be understood physically by considering the
simple case of a magnetic dipole �n � 1�. In the absence
of a con®ning spherical magnetopause �RM !1�, Eq.
(14) reduces to the well-known equation for dipolar ®eld
lines, namely

r � r1 sin
2 h ; �15�

where the parameter r1 speci®es the geocentric distance
at which an individual ®eld line (or shell of ®eld lines)
crosses the equatorial plane (h � p=2). Imagine a
perfectly conducting spherical magnetopause that con-
tracts radially in such a way that its radius decreases
from an initial in®nitely large value to the ®nal ®nite
value RM. During its inward radial motion, this perfectly
conducting spherical magnetopause sweeps up all the
magnetic ¯ux initially distributed throughout the vol-
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ume RM < r <1 (the ``snowplough'' e�ect) and redis-
tributes this ¯ux within the spherical magnetospheric
cavity (r � RM). It is then clear topologically that the
®eld lines on the spherical magnetopause are equivalent
to those that extend initially to an in®nitely large
distance from the dipole (i.e. r1 � 1), namely those that
lie arbitrarily close to the dipole axis �h � 0; p) at the
surface of the Earth.

An analogous physical argument applies to the
magnetic ®eld lines of the individual axisymmetric
multipole of degree n, which are identi®ed by particular
values of the parameter rn in Eq. (14). The ®eld lines that
lie on the spherical magnetopause are those that would
extend to an in®nitely large distance from the multipole
(i.e. rn � 1) in the absence of the con®ning magneto-
pause. This physical explanation can be con®rmed
conceptually by judicious inspection of Fig. 2, which is
presented and discussed in Sect. 6.1, and by comparison
of this ®gure with Fig. 1 in Willis and Young (1987).

4 Sectorial magnetic ®elds

4.1 The magnetic scalar potentials

In this section exact equations are derived for the ®eld
lines of two special non-axisymmetric magnetic multi-
poles, each of which is assumed to be con®ned by the
ideal, perfectly conducting, spherical magnetopause
de®ned in Sects. 1 and 2. Following the work of Willis
and Gardiner (1988), these two special magnetic multi-
poles have arbitrary degree n but restricted order m,
namely (1) m � n and (2) m � nÿ 1. Thus this study
extends the earlier work to the case in which the ®eld
lines of these special non-axisymmetric magnetic multi-
poles are constrained to lie within the idealized spherical
magnetosphere.

As noted in the earlier investigation (Willis and
Gardiner, 1988), Schmidt's partially normalized form of
the associated Legendre function P m

n �cos h� can be
expressed as a ®nite series as follows if m > 0 (Chapman
and Bartels, 1940, Chapter XVII, Eqs. 10 and 20):

P m
n �cos h� � �2n�!

2n � n!

2

�n� m�!�nÿ m�!
� �1=2

sinm h

�
�
cosnÿm hÿ �nÿ m��nÿ mÿ 1�

2�2nÿ 1� cosnÿmÿ2 h

� �nÿ m��nÿ mÿ 1��nÿ mÿ 2��nÿ mÿ 3�
2 � 4�2nÿ 1��2nÿ 3�

� cosnÿmÿ4 hÿ � � � � � � � � � �
�
: �16�

In the degenerate case m � 0, Eq. (16) yields a value of
P 0

n �cos h� that is too large by a factor 21=2 (see
Chapman and Bartels, 1940, Chapter XVII, Eqs.19
and 20). However, in the present context, this degen-
erate case arises only for a magnetic dipole (m � 0,
n � 1) aligned with the polar axis (h � 0; p) and even in
this situation the use of Eq. (16) gives the correct
con®guration of magnetic ®eld lines because the

con®guration is independent of the magnitude of the
scaling factor.

For the two individual non-axisymmetric magnetic
multipoles considered here, namely symmetric sectorial
multipoles (m � n) and antisymmetric sectorial multi-
poles (m � nÿ 1), it is clear from Eqs. (5) and (16) that
the corresponding scalar potentials become, respectively,

V n
n �
�2 � �2n�!�1=2

2n � n!
cn

nRE�RE=r�n�1

� f1� ��n� 1�=n��r=RM�2n�1g
� sinn h cos�n�/ÿ /n

n�� �17�
and

V nÿ1
n � �2n�!

2n � n!

2

�2nÿ 1�!
� �1=2

cnÿ1
n RE�RE=r�n�1

� f1� ��n� 1�=n��r=RM�2n�1g
� sinnÿ1 h cos h cos��nÿ 1��/ÿ /nÿ1

n �� ; �18�
where, in general cm

n � j��gm
n �2 � �hm

n �2�1=2j and
/m

n � �1=m�arctan�hm
n =gm

n � for 0 � m � n �c0n � g0n,
h0

n � 0� (Roederer, 1972; Willis and Gardiner, 1988).
The order m satis®es the condition m � n in Eq. (17) and
the condition m � nÿ 1 in Eq. (18).

4.2 Symmetric sectorial multipoles �m � n�

The magnetic-®eld components of a symmetric sectorial
multipole �m � n�, which is con®ned within the idealized
spherical magnetosphere, can be found from the equa-
tion B � ÿgrad�V n

n �, in which V n
n is de®ned by Eq. (17);

they are

Br � �n� 1�Cn
nrÿ�n�2�f1ÿ �r=RM�2n�1g

� sinn h cos�n�/ÿ /n
n�� ; �19�

Bh � ÿnCn
nrÿ�n�2�f1� ��n� 1�=n��r=RM�2n�1g

� sinnÿ1 h cos h cos�n�/ÿ /n
n�� ; �20�

B/ � nCn
nrÿ�n�2�f1� ��n� 1�=n��r=RM�2n�1g

� sinnÿ1 h sin�n�/ÿ /n
n�� ; �21�

where

Cn
n �
�2 � �2n�!�1=2

2n � n!
cn

nRn�2
E : �22�

Referred to a system of spherical polar coordinates,
the set of di�erential equations for the ®eld lines of a
general magnetic ®eld is of the form

dr=Br � r dh=Bh � r sin h d/=B/ : �23�
Substituting Eqs. (19), (20) and (21) into (23) yields the
following three di�erential equations for the magnetic
®eld lines of an individual symmetric sectorial magnetic
multipole �m � n� con®ned within the spherical magne-
tosphere of radius RM:
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f1� ��n� 1�=n��r=RM�2n�1gdr

r�1ÿ �r=RM�2n�1� � ÿ �n� 1�
n

tan h dh ;

�24�
sec2 h dh
tan h

� ÿ cot�n�/ÿ /n
n��d/ ; �25�

f1� ��n� 1�=n��r=RM�2n�1gdr

r�1ÿ �r=RM�2n�1�
� �n� 1�

n
sin2 h cot�n�/ÿ /n

n��d/ : �26�
It follows from the functional form of Eqs. (19), (20)

and (21) that the three di�erential Eqs. (24), (25) and (26)
are valid if 0 < h < p. The polar axis �h � 0; p� is a
magnetic neutral line if n > 1 and no singularities exist
on this axis in the special case n � 1, which corresponds
to a dipole with its axis lying in the equatorial plane
(Roederer, 1972). However, it should be noted that Eq.
(26) can be derived directly from Eqs. (24) and (25),
which implies that the magnetic ®eld lines are de®ned
uniquely by the latter two (independent) equations.
Nevertheless, Eq. (26) is still of value because it de®nes
those ®eld lines that lie in the equatorial plane �h � p=2�.

Equations (24) and (25) may be integrated immedi-
ately to give

r � rn
nf�1ÿ �r=RM�2n�1��jcos hj�n�1g1=n �27�

and

jtann h sin�n�/ÿ /n
n��j � Kn

n ; �28�
where rn

n and Kn
n denote constants of integration. It

follows from Eq. (20) that the magnetic ®eld of a
symmetric sectorial multipole con®ned within the spher-
ical magnetosphere of radius RM is locally parallel to the
equatorial plane (i.e. Bh � 0 if h � p=2). For a ®eld line
lying in the equatorial plane �h � p=2�, Eq. (26) may
also be integrated at once to give

r � �rn
n�0 �1ÿ �r=RM�2n�1�
n

� fjsin�n�/ÿ /n
n��jg�n�1�=n

o1=n
; �29�

where �rn
n�0 denotes another constant of integration.

4.3 Antisymmetric sectorial multipoles �m � nÿ 1�

The magnetic-®eld components of an antisymmetric
sectorial multipole �m � nÿ 1�, which is con®ned within
the idealized spherical magnetosphere, can be found
from the equation B � ÿgrad�V nÿ1

n �, in which V nÿ1
n is

de®ned by Eq. (18); they are

Br � �n� 1�Cnÿ1
n rÿ�n�2��1ÿ �r=RM�2n�1�

� sinnÿ1 h cos h cos��nÿ 1��/ÿ /nÿ1
n �� ; �30�

Bh � ÿCnÿ1
n rÿ�n�2�f1� ��n� 1�=n��r=RM�2n�1g

� ��nÿ 1� cos2 hÿ sin2 h� sinnÿ2 h

� cos��nÿ 1��/ÿ /nÿ1
n �� ; �31�

B/ � �nÿ 1�Cnÿ1
n rÿ�n�2�f1� ��n� 1�=n��r=RM�2n�1g

� sinnÿ2 h cos h sin��nÿ 1��/ÿ /nÿ1
n �� ; �32�

where

Cnÿ1
n � �2n�!

2n � n!

2

�2nÿ 1�!
� �1=2

cnÿ1
n Rn�2

E : �33�

As in the case of a symmetric sectorial multipole,
substituting, Eqs. (30), (31) and (32) into Eq. (23) yields
the following three di�erential equations for the mag-
netic ®eld lines of an individual antisymmetric sectorial
multipole �m � nÿ 1� con®ned within the spherical
magnetosphere of radius RM:

f1� ��n� 1�=n��r=RM�2n�1gdr

r�1ÿ �r=RM�2n�1�
� ÿ�n� 1� sin h cos h dh

��nÿ 1� cos2 hÿ sin2 h� ; �34�

cos h dh

sin h��nÿ 1� cos2 hÿ sin2 h�

� ÿ cot��nÿ 1��/ÿ /nÿ1
n ��d/

�nÿ 1� ; �35�

and

f1� ��n� 1�=n��r=RM�2n�1gdr

r�1ÿ �r=RM�2n�1�

� �n� 1� sin2 h cot��nÿ 1��/ÿ /nÿ1
n ��d/

�nÿ 1� : �36�

It is clear from the functional form of Eqs. (30), (31)
and (32) that the three di�erential Eqs. (34), (35) and
(36) are valid if either 0 < h < p=2 or p=2 < h < p. The
polar axis (h � 0; p) is a magnetic neutral line if n > 2
and no singularities exist on this axis in the degenerate
case n � 1 and the special case n � 2. The degenerate
case n � 1 corresponds to a zonal (or axisymmetric)
dipole, which is considered in greater detail in Sect. 3,
and the special case n � 2 corresponds to a ``normal''
(or planar) quadrupole aligned with the polar axis
(Roederer, 1972). As in the case m � n, Eq. (36) can be
derived from Eqs. (34) and (35), which implies that the
®eld lines are de®ned uniquely by the latter two
(independent) equations. Moreover, the magnetic ®eld
is locally perpendicular to the equatorial plane (h � p=2)
in the case of an antisymmetric sectorial magnetic
multipole (m � nÿ 1) and therefore Eq. (36) provides
no useful additional information.

Equation (34) can be integrated immediately by
standard methods to give (Beyer, 1984; integral 346)

r � rnÿ1
n f�1ÿ �r=RM�2n�1�
� �j�nÿ 1� cos2 hÿ sin2 hj��n�1�=2g1=n ; �37�

where rnÿ1
n is a constant of integration. If n � 1 �m � 0�,

Eq. (37) simpli®es to the form

r � r01�1ÿ �r=RM�3� sin2 h: �38�
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Since P 1
1 �cos h� � sin h, this last equation can also be

obtained by putting n � 1 in Eq. (14), which is the
general equation for the ®eld lines of an individual
axisymmetric multipole of degree n, aligned with the
polar axis (h � 0; p) and con®ned by the perfectly
conducting spherical magnetopause of radius RM. If
n � 1 �m � 0�, the (axisymmetric) magnetic ®eld lines
are con®ned to geographic meridian planes (B/ � 0), as
implied by Eqs. (30), (31) and (32). In this degenerate
case Eq. (35) is nulli®ed. However, if n > 1, Eq. (35) can
be rewritten in a more convenient form (Willis and
Gardiner, 1988), which can be integrated immediately
by standard techniques to give (Beyer, 1984; integral
346)

j sinnÿ1 h sin��nÿ 1��/ÿ /nÿ1
n ��j

�j�nÿ 1� cos2 hÿ sin2 hj��nÿ1�=2
� Knÿ1

n ; �39�

where Knÿ1
n is another constant of integration.

5 General properties of the magnetic ®eld lines

The purpose of this section is to derive some general
geometrical properties of the magnetic ®eld lines for the
three special cases of an individual magnetic multipole
con®ned by a perfectly conducting (concentric) spherical
magnetopause, namely: (1) zonal multipoles (m � 0); (2)
symmetric sectorial multipoles (m � n); and (3) anti-
symmetric sectorial multipoles (m � nÿ 1).

5.1 Zonal multipoles (m � 0)

It follows from Eqs. (10) and (11) that the magnetic ®eld
of the con®ned zonal multipole of degree n is horizontal
(Br � 0) at values of h that satisfy the equation
P 0

n �cos h� � 0 and also everywhere on the spherical
magnetopause (r � RM). Likewise, the magnetic ®eld is
vertical (Bh � 0) at values of h that satisfy the equation
P 1

n �cos h� � 0. The numerical values of h that satisfy the
equations P 0

n �cos h� � 0 and P 1
n �cos h� � 0 have been

tabulated by Chapman and Bartels (1940, Table D) for
1 � n � 7.

It is immediately obvious from Eq. (14) that r attains
its minimum value, r � 0, if either sin h � 0 or
P 1

n �cos h� � 0, provided rn is ®nite. (As noted in Sect. 3,
rn !1 as r! RM.) In fact, sin h is a factor of P 1

n �cos h�
and hence h � 0 and h � p are automatically roots of the
equation P 1

n �cos h� � 0 (Chapman and Bartels, 1940,
ChapterXVII, Eqs. 10 and 20;Matsushita andCampbell,
1967, Volume II, Appendix 3). Therefore, the magnetic
®eld is vertical (radial) everywhere on the axis ofmagnetic
symmetry (h � 0; p) and on the set of cones h � hi where
hi �1 � i � nÿ 1) denotes one of the (nÿ 1) roots of the
equation P 1

n �cos h� � 0 in the range 0 < h < p (Chapman
and Bartels, 1940, Chapter XVII, Sect. 17.6). If hi � p=2
for a particular value of i, which occurs if n is even (i.e. if
nÿ 1 is odd), the corresponding cone h � hi degenerates
to the equatorial plane. Hence the magnetic ®eld lines are
straight and vertical on the axis of magnetic symmetry

and on the cones h � hi. Every other ®eld line is curved
and becomes vertical (radial) only asymptotically at the
origin. All these results are exactly the same as those in the
absence of the perfectly conducting spherical magneto-
pause.

An important new result arises as a direct conse-
quence of the presence of the perfectly conducting
spherical magnetopause. Since the radial component of
the magnetic ®eld vanishes everywhere on this surface by
de®nition, neutral points, or rings, occur wherever a
radial magnetic ®eld line in the magnetosphere intersects
the spherical magnetopause. Therefore, two neutral
points exist where the axis of magnetic symmetry
(h � 0; p) intersects the spherical magnetopause
(r � RM). Likewise, �nÿ 1� neutral rings exist where
the cones h � hi intersect this same surface, where
hi �1 � i � nÿ 1� again denotes one of the �nÿ 1� roots
of the equation P 1

n �cos h� � 0 in the range 0 < h < p.
Similarly, by an argument analogous to that present-

ed by Willis and Young (1987, see Sect. 6), it can be
shown that the values of h at which suites of similar
magnetic ®eld lines reach their maximum radial distance
from the origin, rm, are given by the n roots of the
equation P 0

n �cos h� � 0. This is the condition for the
magnetic ®eld to be horizontal. Stated alternatively,
the magnetic ®eld is horizontal everywhere on the set of
cones h � hi, where hi �1 � i � n� now denotes one of
the n roots of the equation P 0

n �cos h� � 0 in the range
0 < h < p (Chapman and Bartels 1940, Chapter XVII,
Sect. 17.6). Therefore, the values of h at which suites of
similar magnetic ®eld lines reach their maximum radial
distance from the origin are unchanged by the presence
of the perfectly conducting spherical magnetopause,
although the maximum radial distances actually
achieved obviously do depend on the magnitude of the
radius of the magnetopause (RM).

Equation (14) provides a complete description of the
magnetic ®eld lines for an individual zonal (axisymmet-
ric) magnetic multipole (m � 0) con®ned by a perfectly
conducting (concentric) spherical magnetopause. This
equation de®nes, for di�erent values of rn, a set of
surfaces of revolution on which families of magnetic
®eld lines lie. As the magnetic ®eld is axisymmetric,
every ®eld line is con®ned to a magnetic meridian plane.
The actual con®gurations of the magnetic ®eld lines for
representative low-degree zonal multipoles (m � 0) are
presented and discussed in Sect. 6.1.

5.2 Symmetric sectorial multipoles �m � n�

It follows from Eqs. (19), (20) and (21) that the magnetic
®eld of the con®ned symmetric sectorial multipole of
degree n is locally parallel to the equatorial plane;
that is Bh � 0 if h � p=2. Similarly, the magnetic ®eld
is locally perpendicular to the 2n meridional planes
/ � /n

n � �2k � 1�p=2n, where k � 0; 1; 2; . . . ; 2nÿ 1;
that is Br � Bh � 0, B/ 6� 0 everywhere in these planes
apart from the polar axis �h � 0; p�, which is a neutral
line (Br � Bh � B/ � 0) if n > 1. The special case
m � n � 1 corresponds to a magnetic dipole lying in
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the equatorial plane (Roederer, 1972). The magnetic
®eld is purely meridional (B/ � 0) in the 2n planes
/ � /n

n � kp=n �k � 0; 1; 2; . . . ; 2nÿ 1� and becomes
purely radial (Bh � B/ � 0) at the intersections of these
meridional planes with the equatorial plane (h � p=2).
Magnetic ®eld lines that are con®ned to the special
meridional planes (B/ � 0) or the equatorial plane
(Bh � 0), when the symmetric sectorial multipole is in
free space, continue to be con®ned to these same planes
when the perfectly conducting spherical magnetopause
is introduced.

As a result of the presence of this perfectly conduct-
ing surface, however, neutral points occur wherever a
radial ®eld line in the magnetosphere intersects the
spherical magnetopause. Therefore, 2n neutral points
exist at the intersections of the 2n meridional planes
/ � /n

n � kp=n �k � 0; 1; 2; . . . ; 2nÿ 1� with both the
equatorial plane �h � p=2� and the spherical magneto-
pause (r � RM). In addition, the polar axis (h � 0; p) is a
neutral line if n > 1 and thus neutral points inevitably
exist on the spherical magnetopause surface at the two
poles.

The three Eqs. (27), (28) and (29) provide a complete
description of the magnetic ®eld lines for the general
symmetric sectorial magnetic multipole �m � n� con-
®ned by a perfectly conducting (concentric) spherical
magnetopause. Equation (27) de®nes, for di�erent
values of rn

n, a set of surfaces of revolution on which
families of magnetic ®eld lines lie. As noted previously,
the magnetic ®eld is purely meridional (B/ � 0) in the 2n
planes / � /n

n � kp=n �k � 0; 1; 2 . . . ; 2nÿ 1); therefore,
the surfaces of revolution de®ne the planar ®eld lines in
these 2n planes. Equation (28) de®nes, for di�erent
values of Kn

n , the magnetic meridian curves on a sphere
or, alternatively, the singly curved surfaces whose
intersections with the surfaces of revolution de®ned by
Eq. (27) are the general ®eld lines of the con®ned
symmetric sectorial magnetic multipole �m � n�. Since
Eq. (28) is identical to Eq. (23) in the paper by Willis
and Gardiner (1988), the magnetic meridian curves on a
sphere are unchanged by the con®nement of the
symmetric sectorial multipole �m � n� by a perfectly
conducting spherical magnetopause. Finally Eq. (29)
de®nes, for various values of �rn

n�0, the set of magnetic
®eld lines that lie entirely in the equatorial plane. The
actual con®gurations of the magnetic ®eld lines for
representative low-degree symmetric sectorial multipoles
�m � n� are presented and discussed in Sect. 6.2.

5.3 Antisymmetric sectorial multipoles (m � nÿ 1)

It follows from Eqs. (30), (31) and (32) that there are
2�nÿ 1� neutral lines �Br � Bh � B/ � 0� in the equa-
torial plane �h � p=2) of a con®ned antisymmetric
sectorial multipole; these are located at the inter-
sections of the equator with the 2�nÿ 1� meridional
planes / � /nÿ1

n � �2k � 1�p=2�nÿ 1�, where k � 0; 1; 2;
. . . ; 2nÿ 3. Elsewhere, the magnetic ®eld is locally
perpendicular to the equatorial plane; that is, Br �
B/ � 0, Bh 6� 0 if h � p=2. Moreover, the magnetic ®eld

is locally perpendicular to the 2�nÿ 1� meridional
planes / � /nÿ1

n � �2k � 1�p=2�nÿ 1�; that is, Br �
Bh � 0, B/ 6� 0 everywhere in these planes apart from
the polar axis, which is a neutral line if n > 2, and the
2�nÿ 1� equatorial neutral lines. The degenerate case
m � 0, n � 1 corresponds to a zonal dipole coincident
with the polar axis and the special case m � 1, n � 2
corresponds to a ``normal'' (or planar) quadrupole
aligned with the polar axis (Roederer, 1972). Finally, the
magnetic ®eld is purely meridional �B/ � 0� in the
2�nÿ 1� planes / � /nÿ1

n � kp=�nÿ 1� �k � 0; 1; 2;
. . . ; 2nÿ 3� and becomes purely radial �Bh � B/ � 0�
at the intersections of these meridional planes with the
circular conical surface h � arctan

��nÿ 1�1=2�, h �
pÿ arctan

��nÿ 1�1=2�. Magnetic ®eld lines that are
con®ned to the special meridional planes �B/ � 0�,
when the antisymmetric sectorial multipole is in free
space, continue to be con®ned to these same planes
when the perfectly conducting spherical magnetopause
is introduced.

As a result of the presence of this perfectly conduct-
ing surface, however, neutral points occur wherever a
radial ®eld line in the magnetosphere intersects the
spherical magnetopause. In the degenerate case m � 0,
n � 1, two neutral points exist where the polar axis �h; p�
intersects the spherical magnetopause �r � RM�: in this
degenerate case the polar axis is also the axis of
magnetic symmetry. In the general case, 4�nÿ 1� neutral
points exist at the intersections of the 2�nÿ 1� meri-
dional planes / � /nÿ1

n � kp=�nÿ 1� �k � 0; 1; 2; . . . ;
2nÿ 3� with the circular conical surface h �
arctan��nÿ 1�1=2�, h � pÿ arctan��nÿ 1�1=2�; in this case
there are 2�nÿ 1� neutral points in each hemisphere. As
already noted, the polar axis �h � 0; p� is a neutral line if
n > 2 and there are also 2�nÿ 1� equatorial neutral lines
at the intersections of the equator �h � p=2� with the
2�nÿ 1� planes / � /nÿ1

n � �2k � 1�p=2�nÿ 1�, where
k � 0; 1; 2; . . . ; 2nÿ 3. Therefore, neutral points inevita-
bly exist where the polar axis and the 2�nÿ 1� equatorial
neutral lines intersect the spherical magnetopause.

The two Eqs. (37) and (39) provide a complete
description of the magnetic ®eld lines for the special
tesseral (or ``general antisymmetric sectorial'') magnetic
multipole speci®ed by m � nÿ 1. Equation (37) de®nes,
for di�erent values of rnÿ1

n , a set of surfaces of revolution
on which families of magnetic ®eld lines lie. As noted
previously, the magnetic ®eld is purely meridional
�B/ � 0� in the 2�nÿ 1� planes / � /nÿ1

n � kp=�nÿ 1�;
therefore, the surfaces of revolution de®ne the planar
®eld lines in these 2�nÿ 1� meridional planes. Equation
(39) de®nes, for di�erent values of Knÿ1

n , the magnetic
meridian curves on a sphere or, alternatively, the singly
curved surfaces whose intersections with the surfaces of
revolution de®ned by Eq. (37) are the general ®eld lines
of the special tesseral magnetic multipole �m � nÿ 1�.
Since Eq. (39) is identical to Eq. (29) in the paper by
Willis and Gardiner (1988), the magnetic meridian
curves on a sphere are unchanged by the con®nement
of the special tesseral magnetic multipole �m � nÿ 1� by
a perfectly conducting spherical magnetopause. The
actual con®gurations of the magnetic ®eld lines for
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representative low-degree antisymmetric sectorial mul-
tipoles �m � nÿ 1� are presented and discussed in
Sect. 6.3.

6 Con®gurations of the magnetic ®eld lines in the
outer magnetosphere

The purpose of this section is to illustrate and discuss
the characteristic con®gurations of the magnetic ®eld
lines in the outer magnetosphere for the three special
cases: (1) zonal multipoles �m � 0�; (2) symmetric
sectorial multipoles �m � n�; and (3) antisymmetric
sectorial multipoles �m � nÿ 1�.

6.1 Zonal multipoles (m � 0)

Figure 2a±d shows the magnetic-®eld-line con®gurations
for the ®rst four low-degree axisymmetric �m � 0�, or
zonal, multipoles, respectively; namely, an axial dipole
�n � 1�, an axial quadrupole �n � 2�, an axial octupole
�n � 3� and an axial sedecimupole �n � 4�. (Some
authors use the term ``hexadecapole'' rather than
``sedecimupole''; the latter term was introduced by
Winch, 1967, whereas Willis and Young, 1987, used

the former term.) These four magnetic-®eld-line con®g-
urations have been calculated from Eq. (14) by choosing
an appropriate set of values f�rn�jg of the parameter rn
for each value of n�1 � n � 4� in the illustrative case for
which RM � 10RE. For each value of �rn�j, the variable h
is incremented to provide a set of coordinates f�rj; hj�g
that specify the individual ®eld line de®ned by the
parameter �rn�j. For ®nite values of RM, the values of rj
are determined from Eq. (14) by ®nding the appropriate
root of this polynomial equation of degree �2n� 1�. In
the case of a con®ned zonal magnetic multipole, the four
magnetic-®eld-line con®gurations presented in Fig. 2a±d
show that neutral points exist on the spherical magne-
topause surface at the two poles. In addition, �nÿ 1�
neutral rings exist on the magnetopause surface and if n
is even one of these neutral rings lies in the (magnetic)
equatorial plane.

The physical explanation of the compression of a
zonal magnetic ®eld may be understood in terms of the
reasoning that follows Eq. (14). Since magnetic ®eld
lines cannot enter the perfectly diamagnetic surrounding
medium, they are con®ned within the spherical magne-
tospheric cavity. This con®nement is clearly illustrated
in Fig. 2a±d, which shows the compression of magnetic
®eld lines by the spherical magnetopause for the ®rst
four low-degree axisymmetric multipoles �1 � n � 4� in
the particular case RM � 10RE. In order to demonstrate
more generally how the spherical magnetopause com-
presses magnetic ®eld lines in the outer magnetosphere,
it is instructive to calculate the maximum radial
distance, rm, of a speci®ed ®eld line for various values
of RM. The maximum radial distances achieved by a
selection of ®eld lines can then be compared with the
corresponding values in the absence of a perfectly
conducting spherical magnetopause. The comparisons
are shown in Tables 1±4, in which the left-hand columns
give the maximum (non-dimensional) radial distances
�rn=RE; 1 � n � 4� in the absence of a con®ning magne-
topause �RM !1�. The remaining columns in these
tables give the corresponding maximum (non-dimen-
sional) radial distances �rm=RE� for several illustrative
values of the cavity radius �RM� in the range
10 � RM=RE � 1000. All distances in these tables are
expressed in Earth-radii �RE�, measured from the centre
of the Earth, and are given to ®ve signi®cant ®gures
in order to show small changes. The values of h at
which magnetic ®eld lines achieve their maximum radial
distances are given (to the nearest second of arc) in
the captions to Tables 1±4. The precise positions of the
neutral points �P� and neutral rings �R� that lie on the
magnetopause surface, as illustrated in Fig. 2a±d for
the ®rst four zonal magnetic multipoles �1 � n � 4�, are
listed in Table 5.

For convenience, Tables 1±4 show the compression
of magnetic ®eld lines, measured by the value(s) of the
parameter rm=RE relative to the value of the parameter
rn=RE �1 � n � 4�, rather than the limiting value of the
parameter rm=RE as RM=RE !1. The limiting value of
the parameter rm=RE is only equal to the value of the
parameter rn=RE in the simplest case of a magnetic
dipole �n � 1�; hence the use of the terms directly

Fig. 2a±d. Illustrative magnetic-®eld-line con®gurations for low-
degree zonal (axisymmetric) magnetic multipoles �m � 0�: a dipole
�n � 1�, b quadrupole �n � 2�, c octupole �n � 3�, and d sedecimu-
pole �n � 4�. In this illustrative ®gure (and in Figs. 3 and 4), the
radius of the magnetopause is taken to be ten times the radius of the
Earth �RM � 10RE�
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r1/RE RM/RE

10 25 50 100 250 500 1000

5 4.5340 4.9609 4.9950 4.9994 5.0000 5.0000 5.0000
10 6.8233 9.4584 9.9219 9.9900 9.9994 9.9999 10.000
25 8.6756 17.058 22.670 24.627 24.975 24.997 25.000
50 9.3344 20.878 34.116 45.340 49.609 49.950 49.994
100 9.6668 22.922 41.756 68.233 94.585 99.219 99.900
250 9.8667 24.167 46.672 86.756 170.58 226.70 246.27
500 9.9333 24.583 48.334 93.344 208.78 341.16 453.40
1000 9.9667 24.792 49.167 96.668 229.22 417.56 682.33
106 10.000 25.000 49.999 99.997 249.98 499.92 999.67

Table 1. Maximum radial distances (rm/RE; h = 90°) of selected
magnetic ®eld lines, for various values of the radius of the perfectly
conducting spherical magnetopause (RM/RE), in the case of an
axial dipole (n = 1). The value of the parameter r1/RE speci®es
directly (see Sect. 6.1) the corresponding maximum (equatorial)

radial distance of each selected (dipolar) ®eld line in the absence of
the spherical magnetopause (RM/RE ® ¥). All distances in Tables
1±4 are expressed in Earth-radii (RE), measured from the centre of
the Earth, and are given to ®ve signi®cant ®gures

r2/RE RM/RE

10 25 50 100 250 500 1000

5 4.0599 4.0822 4.0825 4.0825 4.0825 4.0825 4.0825
10 7.2815 8.1499 8.1645 8.1650 8.1650 8.1650 8.1650
25 9.5212 18.204 20.300 20.409 20.412 20.412 20.412
50 9.8800 23.136 36.408 40.599 40.823 40.825 40.825
100 9.9700 24.531 46.272 72.815 81.499 81.645 81.650
250 9.9952 24.925 49.400 95.212 182.04 203.00 204.09
500 9.9988 24.981 49.850 98.800 231.36 364.08 405.99
1000 9.9997 24.995 49.963 99.700 245.31 462.72 728.15
106 10.000 25.000 50.000 100.00 250.00 500.00 1000.0

Table 2. Maximum radial distances (rm/RE; h = 54° 44¢ 08¢¢, 125°
15¢ 52¢¢) of selected magnetic ®eld lines, for various values of the
radius of the perfectly conducting spherical magnetopause (RM/
RE), in the case of an axial quadrupole (n = 2). The value of the

parameter r2/RE speci®es indirectly (see Sect. 6.1) the correspond-
ing maximum radial distance of each selected ®eld line in the
absence of the spherical magnetopause (RM/RE ® ¥)

r3/RE RM/RE

10 25 50 100 250 500 1000

5 (i) 4.2424 4.2459 4.2460 4.2460 4.2460 4.2460 4.2460
(ii) 3.9397 3.9416 3.9416 3.9416 3.9416 3.9416 3.9416

10 (i) 7.9059 8.4904 8.4919 8.4919 8.4919 8.4919 8.4919
(ii) 7.5114 7.8824 7.8832 7.8832 7.8832 7.8832 7.8832

25 (i) 9.8508 19.765 21.212 21.230 21.230 21.230 21.230
(ii) 9.8135 18.779 19.698 19.708 19.708 19.708 19.708

50 (i) 9.9813 24.272 39.530 42.425 42.460 42.460 42.460
(ii) 9.9767 24.091 37.557 39.397 39.416 39.416 39.416

100 (i) 9.9977 24.909 48.545 79.059 84.904 84.919 84.919
(ii) 9.9971 24.886 48.183 75.114 78.824 78.832 78.832

250 (i) 9.9999 24.994 49.907 98.508 197.65 212.12 212.30
(ii) 9.9998 24.993 49.883 98.135 187.79 196.98 197.08

500 (i) 10.000 24.999 49.988 99.813 242.72 395.30 424.25
(ii) 10.000 24.999 49.985 99.767 240.91 375.57 393.97

1000 (i) 10.000 25.000 49.999 99.977 249.09 485.45 790.59
(ii) 10.000 25.000 49.998 99.971 248.86 481.82 751.14

106 (i) 10.000 25.000 50.000 100.00 250.00 500.00 1000.0
(ii) 10.000 25.000 50.000 100.00 250.00 500.00 1000.0

Table 3. Maximum radial distances (rm/RE; (i) h = 90° and (ii)
h = 39° 13¢ 53¢¢, 140° 46¢ 07¢¢) of selected magnetic ®eld lines, for
various values of the radius of the perfectly conducting spherical
magnetopause (RM/RE), in the case of an axial octupole (n = 3).

The value of the parameter r3/RE speci®es indirectly (see Sect. 6.1)
the corresponding maximum radial distance of each selected ®eld
line in the absence of the spherical magnetopause (RM/RE ® ¥)
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�n � 1� and indirectly �2 � n � 4� in the captions to
Tables 1±4. However, with the present de®nition, the
values in each of the ®nal columns �RM=RE � 1000� of
Tables 1±4 are good approximations to the correspond-
ing limiting values of the parameter rm=RE as
RM=RE !1 if rn=RE � RM=RE �1 � n � 4�. The radial
compression of magnetic ®eld lines arises from the
presence of the term �1ÿ �r=RM�2n�1�1=n in Eq. (14).

The numerical values of rm=RE presented in Tables 1±
4 illustrate several important physical properties of a
zonal magnetic multipole �1 � n � 4� con®ned by a
perfectly conducting (concentric) spherical magneto-
pause. Magnetic ®eld lines that would extend to very
large distances (i.e. rn=RE � 106) in the absence of the
magnetopause �RM=RE !1� do indeed lie extremely
close to the spherical magnetopause for a large, but
®nite, range of magnetopause radii
�10 � RM=RE � 1000�. This particular subset of the
numerical results presented in Tables 1±4 corroborates
the theoretical argument advanced at the end of Sect. 3.
Moreover, magnetic ®eld lines in the outer magneto-
sphere are greatly compressed by the presence of the
perfectly conducting spherical magnetopause, as is
intuitively obvious on physical grounds. Similarly,
magnetic ®eld lines in the inner magnetosphere are not
greatly compressed by the presence of the magneto-
pause.

The use of terms such as ``inner'' and ``outer'', to
describe regions of the compressed magnetosphere,
requires some clari®cation. For present purposes, the
outer magnetosphere can be de®ned accurately by the
condition rn=RE � RM=RE and approximately by
the condition rn=RE � RM=RE. Likewise, the inner mag-
netosphere can be de®ned accurately by the condition
rn=RE � RM=RE and approximately by the condition
rn=RE < RM=RE. These two approximate conditions are

adequately accurate for the actual values of the two
parameters (i.e. rn=RE and RM=RE) presented in Tables
1±4.

The relative compression of a zonal magnetic ®eld,
caused by the presence of the perfectly conducting
spherical magnetopause, decreases as n increases. The
relative compression is de®ned by the ratio �rn ÿ rm�=rn
for the particular ®eld line that satis®es the (``initial'')
condition rn � RM. With this de®nition, the percentage
compressions are as follows �1 � n � 4�: 31.8% �n � 1�;
27.2% �n � 2�; (i) 20.9%, (ii) 24.9% �n � 3�; (i) 18.6%,
(ii) 23.1% �n � 4�.

6.2 Symmetric sectorial multipoles (m � n)

Figure 3a±d shows the magnetic-®eld-line con®gurations
in one quadrant of the Northern Hemisphere
�0 � h � p=2� for the ®rst four low-degree symmetric
sectorial magnetic multipoles (see Sect. 5.2); namely, a
dipole �m � n � 1�, a quadrupole �m � n � 2�, an
octupole �m � n � 3� and a sedecimupole �m � n � 4�,
each of which lies in the equatorial plane. These four
magnetic-®eld-line con®gurations have been calculated
using Eqs. (27), (28) and (29) for the illustrative case in
which RM � 10RE. The numerical procedure employed
to determine these magnetic-®eld-line con®gurations is
an obvious extension of the numerical procedure
described in detail for zonal multipoles (see Sect. 6.1).
In practice, this procedure depends on the selection of
suitable sets of values of the parameters rn

n, Kn
n and �rn

n�0,
which occur in Eqs. (27), (28) and (29), respectively.

The bold (thick) continuous curves depict magneto-
pause ®eld lines lying on the idealized spherical magne-
topause surface �r � RM�, whereas the faint (thin)
continuous curves and dotted curves depict planar

r4/RE RM/RE

10 25 50 100 250 500 1000

5 (i) 4.2471 4.2475 4.2475 4.2475 4.2475 4.2475 4.2475
(ii) 3.9395 3.9398 3.9398 3.9398 3.9398 3.9398 3.9398

10 (i) 8.1402 8.4950 8.4951 8.4951 8.4951 8.4951 8.4951
(ii) 7.6878 7.8795 7.8795 7.8795 7.8795 7.8795 7.8795

25 (i) 9.9454 20.350 21.235 21.238 21.238 21.238 21.238
(ii) 9.9262 19.220 19.698 19.699 19.699 19.699 19.699

50 (i) 9.9966 24.667 40.701 42.471 42.475 42.475 42.475
(ii) 9.9954 24.550 38.439 39.395 39.398 39.398 39.398

100 (i) 9.9998 24.979 49.334 81.402 84.950 84.951 84.951
(ii) 9.9997 24.972 49.100 76.879 78.795 78.795 78.795

250 (i) 10.000 25.000 49.983 99.454 203.50 212.35 212.38
(ii) 10.000 24.999 49.977 99.262 192.20 196.98 196.99

500 (i) 10.000 25.000 49.999 99.966 246.67 407.01 424.71
(ii) 10.000 25.000 49.999 99.954 245.50 384.39 393.95

1000 (i) 10.000 25.000 50.000 99.998 249.79 493.34 814.02
(ii) 10.000 25.000 50.000 99.997 249.72 491.00 768.78

106 (i) 10.000 25.000 50.000 100.00 250.00 500.00 1000.0
(ii) 10.000 25.000 50.000 100.00 250.00 500.00 1000.0

Table 4. Maximum radial distances (rm/RE; (i) h = 70° 07¢ 27¢¢,
109° 52¢ 33¢¢ and (ii) h = 30° 33¢ 20¢¢, 149° 26¢ 40¢¢) of selected
magnetic ®eld lines, for various values of the radius of the perfectly
conducting spherical magnetopause (RM/RE), in the case of an

axial sedecimupole (n = 4). The value of the parameter r4/RE

speci®es indirectly (see Sect. 6.1) the corresponding maximum
radial distance of each selected ®eld line in the absence of the
spherical magnetopause (RM/RE ® ¥)
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magnetospheric ®eld lines lying in the equatorial plane
and in one of the special meridional planes, respec-
tively (see Sect. 5.2). Similar magnetic-®eld-line con®g-
urations exist in each quadrant of both the Northern
and Southern Hemispheres. Thus the four magnetic-
®eld-line con®gurations presented in Fig. 3a±d illus-
trate the fact that the polar axis �h � 0; p� is a neutral
line if n > 1, as noted in Sect. 5.2. Therefore, if n > 1,
neutral points inevitably exist on the spherical magne-
topause surface at the two poles. In addition, the four
magnetic-®eld-line con®gurations presented in Fig. 3a±
d imply that 2n equatorial neutral points exist on the
spherical magnetopause surface, as also noted in
Sect. 5.2. Table 5 lists, for the ®rst four symmetric
sectorial multipoles, the precise positions of the neutral
points that lie on the spherical magnetopause surface.
In this table, a distinction is made between an
``isolated'' neutral point �P � and a ``non-isolated''

neutral point �L� arising from the intersection of a
(magnetospheric) neutral line with the spherical mag-
netopause. A network of magnetic ®eld lines lying on
the spherical magnetopause surface links all these
neutral points and this network clearly becomes
increasingly complex as n increases.

In general, the idealized spherical magnetosphere
comprises a ``northern'' portion separated from a
``southern'' portion by the equatorial plane �h � p=2�,
as illustrated in Fig. 3a±d. However, the distinction
between ``northern'' and ``southern'' portions of the
magnetosphere is spurious in the degenerate case
m � n � 1 (Fig. 3a), which corresponds to a magnetic
dipole with its axis lying in the equatorial plane. The
magnetic ®eld lines are locally parallel to the equatorial
plane for all values of n, as is clear from Fig. 3a±d (see
Sect. 5.2). Moreover, the magnetosphere is essentially
divided into 2n azimuthal ``segments'' if n > 1.

Type of multipole Degree of multipole

n = 1 n = 2 n = 3 n = 4

Zonal or axisymmetric P(0) P(0) P(0) P(0)
P(p) R(p/2) R(arccos

��������
1=5

p
) R(arccos

��������
3=7

p
)

P(p) R(pÿ arccos
��������
1=5

p
) R(p/2)

P(p) R(pÿ arccos
��������
3=7

p
)

P(p)
Symmetric sectorial P(p/2, 0) L(0) L(0) L(0)

P(p/2, p) P(p/2, 0) P(p/2, 0) P(p/2, 0)
P(p/2, p/2) P(p/2, p/3) P(p/2, p/4)
P(p/2, p) P(p/2, 2p/3) P(p/2, p/2)
P(p/2, 3p/2) P(p/2, p) P(p/2, 3p/4)
L(p) P(p/2, 4p/3) P(p/2, p)

P(p/2, 5p/3) P(p/2, 5p/4)
L(p) P(p/2, 3p/2)

P(p/2, 7p/4)
L(p)

Antisymmetric sectorial P(0) P(p/4, 0) L(0) L(0)
P(p) P(p/4, p) P(arctan

���
2
p

, 0) P(p/3, 0)
L(p/2, p/2) P(arctan

���
2
p

, p/2) P(p/3, p/3)
L(p/2, 3p/2) P(arctan

���
2
p

, p) P(p/3, 2p/3)
P(3p/4, 0) P(arctan

���
2
p

, 3p/2) P(p/3, p)
P(3p/4, p) L(p/2, p/4) P(p/3, 4p/3)

L(p/2, 3p/4) P(p/3, 5p/3)
L(p/2, 5p/4) L(p/2, p/6)
L(p/2, 7p/4) L(p/2, p/2)
P(pÿ arctan

���
2
p

, 0) L(p/2, 5p/6)
P(pÿ arctan

���
2
p

, p/2) L(p/2, 7p/6)
P(pÿ arctan

���
2
p

, p) L(p/2, 3p/2)
P(pÿ arctan

���
2
p

, 3p/2) L(p/2, 11p/6)
L(p) P(2p/3, 0)

P(2p/3, p/3)
P(2p/3, 2p/3)
P(2p/3, p)
P(2p/3, 4p/3)
P(2p/3, 5p/3)
L(p)

Table 5. Positions of all neutral points (P) and neutral rings (R)
on the spherical magnetopause surface (r = RM) for the three
special types of magnetic multipole. These are: (1) zonal, or
axisymmetric, multipoles (m = 0); (2) symmetric sectorial multi-
poles (m = n); and (3) antisymmetric sectorial multipoles
(m = n ) 1). The positions of neutral points and rings are de®ned
by co-latitude (h) in the case of axisymmetric multipoles. The
positions of neutral points are de®ned by both co-latitude and

longitude (h, /) in the case of non-axisymmetric multipoles.
Longitude / is measured relative to the appropriate phase angle
(/n

n; /nÿ1
n ), as for Figs. 3 and 4. A preceding italic letter is used to

distinguish between neutral points (P) and rings (R). For complete
clarity, a further distinction is made between an ``isolated'' neutral
point (P) on the spherical magnetopause surface and a ``non-
isolated'' neutral point (L) arising from the intersection of a neutral
line with the spherical magnetopause
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As noted in Sect. 5.2, the magnetic ®eld of a
symmetric sectorial multipole is purely meridional
�B/ � 0� in the 2n meridional planes / � /n

n � kp=n
�k � 0; 1; 2; . . . ; 2nÿ 1�. In deriving Figs 3a±d, the
values of the phase angle /n

n�1 � n � 4� have been
chosen conveniently to give planar ®eld lines in the plane
y � 0 of a system of Cartesian axes O�x; y; z�. These axes
have origin O at the centre of the Earth and z-axis
coincident with the polar axis of the set of spherical
polar coordinates �r; h;/� de®ned in Sect. 2. The ®eld
lines in the plane y � 0 are shown as dotted curves in
Fig. 3a±d.

6.3 Antisymmetric sectorial multipoles (m � nÿ 1)

Figure 4a±d shows the magnetic-®eld-line con®gurations
in one quadrant of the Northern Hemisphere
�0 � h � p=2� for the ®rst four low-degree antisymmetric
sectorial magnetic multipoles (see Sect. 5.3); namely, a
dipole �m � 0; n � 1�, a quadrupole �m � 1; n � 2�, an
octupole �m � 2; n � 3� and a sedecimupole
�m � 3; n � 4�, each of which is aligned with the polar
axis. These four magnetic-®eld-line con®gurations have
been calculated using Eqs. (37) and (39) for the
illustrative case in which RM � 10RE. As in the case of
symmetric sectorial multipoles, the numerical procedure
employed to determine these magnetic-®eld-line con®g-
urations is an obvious extension of the numerical
procedure described in detail for zonal multipoles (see
Sect. 6.1). In practice, this procedure depends on the
selection of suitable sets of values of the parameters rnÿ1

n
and Knÿ1

n , which occur in Eqs. (37) and (39), respectively.

Once again, the bold (thick) continuous curves depict
magnetopause ®eld lines lying on the idealized spherical
magnetopause surface �r � RM�, whereas the dotted
curves depict planar magnetospheric ®eld lines lying in
one of the special meridional planes. Contrary to the
case of a symmetric sectorial multipole �m � n�, no ®eld
lines lie in the equatorial plane of an antisymmetric
sectorial multipole �m � nÿ 1�, apart from the set of
2�nÿ 1� equatorial neutral lines (see Sect. 5.3). As in
Fig. 3a±d, similar magnetic-®eld-line con®gurations
exist in each quadrant of both the Northern and
Southern Hemispheres. Thus the four magnetic-®eld-
line con®gurations presented in Fig. 4a±d illustrate the
fact that 2�nÿ 1� neutral lines exist in the equatorial
plane and they also illustrate the fact that the polar axis
�h � 0; p� is a neutral line if n > 2, as noted in Sect. 5.3.
Therefore, if n > 2, neutral points inevitably exist on the
spherical magnetopause surface at the two poles and
also at the intersections of the 2�nÿ 1� neutral lines in
the equatorial plane with this surface. In addition, the
four magnetic-®eld-line con®gurations presented in
Fig. 4a±d also implies that a further 4�nÿ 1� neutral
points exist on the two circles de®ned by the intersec-
tions of the circular conical surface h � arctan
��nÿ 1�1=2�, h � pÿ arctan��nÿ 1�1=2� with the spherical
magnetopause surface, as also noted in Sect. 5.3. In this
case there are 2�nÿ 1� neutral points in each hemi-
sphere. Table 5 lists, for the ®rst four antisymmetric
sectorial multipoles, the precise positions of the neutral
points that lie on the spherical magnetopause surface.
Once again, a network of magnetic ®eld lines lying on
the spherical magnetopause surface links all these
neutral points and this network again becomes increas-
ingly complex as n increases.

Fig. 3a±d. Illustrative magnetic-®eld-line con®gurations for low-
degree symmetric sectorial magnetic multipoles �m � n�: a dipole
�n � 1�, b quadrupole �n � 2�, c octupole �n � 3�, and d sedecimu-
pole �n � 4�. The bold (thick) continuous curves depict magnetopause
®eld lines lying on the idealized spherical magnetopause surface
�r � RM�, the faint (thin) continuous curves depict magnetospheric
®eld lines lying in the equatorial plane and the dotted curves depict
magnetospheric ®eld lines lying in one of the special meridional planes

Fig. 4a±d. Illustrative magnetic-®eld-line con®gurations for low-
degree antisymmetric sectorial magnetic multipoles �m � nÿ 1�: a
dipole �n � 1�, b quadrupole �n � 2�, c octupole �n � 3�, and d
sedecimupole (n � 4). The bold (thick) continuous curves depict
magnetopause ®eld lines lying on the idealized spherical magneto-
pause surface �r � RM�, and the dotted curves depict magnetospheric
®eld lines lying in one of the special meridional planes
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In general, the idealized spherical magnetosphere
comprises an ``equatorial'' portion separated from
northern and southern ``polar'' portions by the circular
conical surface h � arctan��nÿ 1�1=2�, h � pÿ arctan
��nÿ 1�1=2�, as illustrated in Fig. 4a±d. However, the
``polar'' portions of the magnetosphere vanish in the
degenerate case m � 0, n � 1 (Fig. 4a), which corre-
sponds to a magnetic dipole aligned with the polar axis
(see Fig. 2a). Moreover, all magnetic ®eld lines that
de®ne the ``equatorial'' portion of the magnetosphere
are locally perpendicular to the equatorial plane
�h � p=2� if they cross it at a point where the magnetic
®eld does not vanish (i.e. jBj 6� 0�, as is also clear from
Fig. 4a±d (see Sect. 5.3).

As noted in Sect. 5.3, the magnetic ®eld of an
antisymmetric sectorial multipole is purely meridional
�B/ � 0� in the 2�nÿ 1� meridional planes
/ � /nÿ1

n � kp=�nÿ 1��k � 0; 1; 2; . . . ; 2nÿ 3�. In deriv-
ing Fig. 4a±d, the values of the phase angle
/nÿ1

n �1 � n � 4� have again been chosen conveniently
to give planar ®eld lines in the plane y � 0 of a system of
Cartesian axes O�x; y; z�. The ®eld lines in the plane
y � 0 are shown as dotted curves in Fig. 4a±d.

7 Conclusions

The main goal of this study is to consider possible, albeit
ideal, con®gurations of the magnetic ®eld in the outer
magnetosphere during geomagnetic polarity reversals.
This goal is achieved by considering the idealized
problem of a magnetic multipole of order m and degree
n located at the centre of a spherical cavity surrounded
by a boundless perfect diamagnetic medium, as illus-
trated schematically in Fig. 1. In this idealization, the
®xed spherical (magnetopause) boundary layer behaves
as a perfectly conducting surface that shields the
external diamagnetic medium from the compressed
multipole magnetic ®eld within the spherical (magneto-
sphere) cavity. The scienti®c reason for investigating
such highly idealized models of the transitional magnetic
®eld is to provide a sound theoretical framework for
detailed studies of the nature of magnetospheric,
ionospheric, auroral and cosmic-ray physics during
geomagnetic polarity reversals.

The characteristic con®gurations of magnetic ®eld
lines in the outer magnetosphere are investigated for
three special cases of an individual magnetic multipole
con®ned by a perfectly conducting (concentric) spherical
magnetopause. These special cases are (1) zonal multi-
poles �m � 0�; (2) symmetric sectorial multipoles
�m � n�; and (3) antisymmetric sectorial multipoles
�m � nÿ 1�. Figure 2a±d shows the magnetic-®eld-line
con®gurations for the ®rst four zonal magnetic multi-
poles �1 � n � 4�. In these (and subsequent) illustrative
con®gurations, the radius of the spherical magnetopause
is taken to be ten times the radius of the Earth (i.e.
RM � 10RE). However, Tables 1±4 illustrate the relative
compression of representative magnetic ®eld lines for a
wide range of magnetopause radii �10 � RM=
RE � 1000�. In addition, Table 5 lists the precise

positions of the neutral points and neutral rings that
lie on the spherical magnetopause surface.

It is clear from the magnetic-®eld-line con®gurations
presented in Fig. 2a±d that the idealized magnetosphere
associated with a con®ned zonal magnetic multipole of
arbitrary degree n comprises n separate (``self-con-
tained'') magnetic regions. A detailed discussion of
auroral, ionospheric and magnetospheric physics in such
``generalized magnetospheres'', which might conceivably
occur during the transition interval of a geomagnetic
polarity reversal, is well beyond the intended scope of
the present work. It should be noted brie¯y, however,
that the actual existence of such idealized magneto-
spheres would necessarily imply multiple �n� 1�
``magnetospheric cusps'', and hence multiple �n� 1�
``auroral-precipitation regions'', as well as multiple �n�
``ring currents''. Even more complex magnetospheres
might well arise in the case of a linear combination of
zonal multipoles (see Appendix B).

Figure 3a±d shows the magnetic-®eld-line con®gura-
tions in one quadrant of the Northern Hemisphere for
the ®rst four symmetric sectorial magnetic multipoles
�m � n; 1 � n � 4; RM � 10RE�. Table 5 lists the precise
positions of the neutral points that lie on the spherical
magnetopause surface. In the case of a symmetric
sectorial sedecimupole �m � n � 4�, there are 10 neutral
points on the magnetopause surface. Two neutral points
arise from the intersection of the polar neutral line with
this surface and eight equally spaced neutral points lie in
the equatorial plane. For both symmetric and antisym-
metric sectorial magnetic multipoles (Figs. 3, 4), a
network of magnetic ®eld lines lying on the spherical
magnetopause surface links all the neutral points. This
network clearly becomes increasingly complex as n
increases.

Figure 4a±d shows the magnetic-®eld-line con®gura-
tions in one quadrant of the Northern Hemisphere for
the ®rst four antisymmetric sectorial magnetic multi-
poles (m � nÿ 1; 1 � n � 4; RM � 10RE�. Table 5 lists
the precise positions of the neutral points that lie on the
spherical magnetopause surface. In the case of an
antisymmetric sectorial sedecimupole �m � 3; n � 4�,
there are 20 neutral points on the magnetopause surface.
Eight neutral points arise from the intersection of polar
and equatorial neutral lines with this spherical surface;
two are at the poles and six are equally spaced in the
equatorial plane. Six equally spaced neutral points lie on
each of the two circles de®ned by the intersection of the
circular conical surface h � 60�, 120� with the spherical
magnetopause.

The existence of such an idealized (and possibly
hypothetical) ``antisymmetric sedecimupole magneto-
sphere'' during the transition interval of a geomagnetic
polarity reversal would almost inevitably result in a rich
variety of auroral, ionospheric and magnetospheric
phenomena. Moreover, in the case of both symmetric
and antisymmetric sectorial multipoles, detailed re-
search would be required to investigate the novel
magnetospheric processes that are likely to arise from
the existence of magnetic neutral lines that extend from
the magnetopause to the surface of the Earth.
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A completely general property of the magnetic ®eld
just inside the spherical magnetopause in the case of a
general magnetic multipole of degree n (see Appendix A)
may be stated as follows. The non-radial components of
magnetic induction �Bh;B/� just inside the perfectly
conducting spherical magnetopause �r � RM� are in-
creased by the factor f1� ��n� 1�=n�g relative to their
corresponding values in the absence of the perfectly
conducting spherical magnetopause �RM !1�. In the
case n � 1 (m � 0 or m � 1), the non-radial components
of magnetic induction �Bh;B/� are trebled by the
presence of the perfectly conducting spherical magneto-
pause, as noted implicitly by Wu and Cole (1984a) for
the case m � 0. In the limit, as n!1, the non-radial
components of magnetic induction are doubled.

Finally, mention should be made of two properties of
magnetic multipoles that remain totally unchanged by
the introduction of the perfectly conducting (concentric)
spherical magnetopause. First, magnetic ®eld lines that
are con®ned to special meridional planes or the equa-
torial plane, when the multipole is in free space,
continue to be con®ned to these same planes when the
perfectly conducting magnetopause is introduced. Al-
though this result is axiomatic for the magnetic ®elds of
axisymmetric (zonal) multipoles, it is perhaps slightly
less obvious that the magnetic ®elds of non-axisymmet-
ric multipoles are compressed by the perfectly conduct-
ing spherical magnetopause in such a way that planar
®eld lines experience no torsion. Second, magnetic ®eld
lines that are perpendicular to certain meridional planes
or the equatorial plane (everywhere except possibly at a
set of neutral lines), when the multipole is in free space,
continue to be perpendicular to these same planes when
the perfectly conducting magnetopause is introduced.

Therefore, there exist classes of planar charged-
particle trajectories, which are con®ned to those planes
(either meridional or equatorial) that are everywhere
perpendicular to the magnetic ®eld (B). StoÈ rmer (1955)
obtained an exact equation for the radius of curvature of
the trajectory of a charged particle whose orbital motion
is con®ned to the equatorial plane of a magnetic dipole
in free space. He found that every equatorial trajectory
has the remarkable geometrical property that its radius
of curvature at any point is proportional to the cube of
its (equatorial) distance from the magnetic dipole.
Moreover, Willis et al. (1997) extended StoÈ rmer's
(1955) result by deriving equally remarkable exact
equations for the radii of curvature of all possible
planar charged-particle trajectories in an individual
static magnetic multipole of arbitrary degree �n� and
order �m�, which is located in free space. An important
conclusion of the present study is that these earlier
results could be extended still further by deriving exact
equations for the radii of curvature of all possible planar
charged-particle trajectories in an individual static
magnetic multipole con®ned by a concentric perfectly
conducting spherical magnetopause. However, a
detailed investigation of planar charged-particle trajec-
tories in compressed multipole magnetic ®elds is beyond
the intended scope of the present work, which is
concerned exclusively with the magnetospheric magnet-

ic-®eld-line con®gurations of con®ned magnetic multi-
poles.
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Appendix A

The general magnetic multiple of degree n

It follows from Eq. (5) that the magnetic scalar potential
� ~Vn� of the general magnetic multipole of degree n can be
expressed in the form

~Vn � RE�RE=r�n�1f1� ��n� 1�=n��r=RM�2n�1gYn�h;/� ;
�A1�

where

Yn�h;/� �
Xn

m�0
�gm

n cosm/� hm
n sinm/�P m

n �cos h� : �A2�

The function Yn�h;/� denotes an arbitrary linear
combination of spherical harmonics of degree n. As
noted in Sect. 2.2, the presence (absence) of the tilde is
used as a convenient abbreviation that signi®es the
presence (absence) of the perfectly conducting spherical
magnetopause. With this nomenclature,

Vn � RE�RE=r�n�1Yn�h;/� �A3�
represents the corresponding potential of the same
multipole in free space �RM !1�.

For brevity, the following de®nitions are introduced:

qn�r� � 1ÿ �r=RM�2n�1
h i

�A4�
and

sn�r� � f1� ��n� 1�=n��r=RM�2n�1g : �A5�
It is then straightforward to show that

@ ~Vn=@r � ÿ�n� 1��RE=r�n�2qnYn � qn@Vn=@r ; �A6�
@ ~Vn=r@h � �RE=r�n�2sn@Yn=@h � sn@Vn=r@h ; �A7�
and

@ ~Vn=r sin h@/ � �RE=r�n�2�sn= sin h�@Yn=@/

� sn@Vn=r sin h@/ : �A8�
Therefore, the relationships between the magnetic-®eld
components � ~Br;n; ~Bh;n; ~B/;n� and �Br;n; Bh;n; B/;n� are
as follows �B � ÿgrad V �:
~Br;n � qnBr;n � �1ÿ �r=RM�2n�1�Br;n ; �A9�

D. M. Willis et al.: The outer magnetosphere during polarity reversals 25



~Bh;n � snBh;n � 1� ��n� 1�=n��r=RM�2n�1
n o

Bh;n ;

�A10�
~B/;n � snB/;n � 1� ��n� 1�=n��r=RM�2n�1

n o
B/;n :

�A11�
Consequently, Eqs. (6), (7) and (8) are valid for the
general magnetic multipole of degree n (which involves
summation over m; 0 � m � n) and not just for an
individual zonal, symmetric sectorial or antisymmetric
sectorial multipole of degree n.

Appendix B

Exact equation for the magnetic ®eld lines
of a linear combination of zonal multipoles

As noted brie¯y in Sect. 3, it is possible to generalize Eq.
(14) to the case of an arbitrary linear combination of
zonal, or axisymmetric, multipoles. This generalization
can be derived elegantly by analogy with an equivalent
problem in hydrodynamics (Lamb, 1945). The analogy
depends on the fact that exact stream-line equations for
incompressible irrotational ¯uids correspond to exact
®eld-line equations for current-free magnetic ®elds (for
which curl B � 0;B � ÿgradV and r2V � 0, using the
nomenclature introduced in Sect. 2).

For an incompressible irrotational ¯uid, the velocity
potential, U, satis®es the continuity equation r2U � 0
(Lamb, 1945). An important method of solving this
equation is the one based on the use of spherical
harmonics; this method is especially suitable if the
boundary conditions have to be applied at spherical
surfaces. The classical problem in hydrodynamics of a
multiple source (multipole) at the origin has been
considered by Lamb (1945; Section 95). The appropriate
equations for an individual zonal multipole in free space
are

Un � rÿnÿ1P 0
n �l�; Wn � ÿ�rÿn=n��1ÿ l2�dP 0

n �l�=dl ;

�B1�
where Un denotes the velocity potential (magnetic scalar
potential) of the zonal multipole of degree n; P 0

n �l� is the
corresponding Legendre polynomial, l � cos h and Wn
denotes the associated stream function. The stream
(®eld) lines are then given by W � constant (in all
meridional planes).

Exact stream (®eld) lines in the case of an arbitrary
linear combination of zonal multipoles can be deter-
mined easily with the aid of the stream function concept.
If the velocity potential is of the general form

U �
X

n

anUn ; �B2�

the corresponding stream function is given by

W �
X

n

anWn �B3�

and the exact stream (®eld) line equation is
W � constant. This result was ®rst published by Backus
(1988).

The results presented by Lamb (1945; Section 95)
also provide an ingenious means of deriving exact ®eld-
line equations for both a single zonal multipole and an
arbitrary linear combination of zonal multipoles in the
presence of a perfectly conducting spherical surface. In
particular, Lamb also considered inverse zonal multi-
poles of arbitrary degree n. The corresponding equations
for the velocity potential and stream function of an
inverse zonal multipole are

~Un � rnP 0
n �l�;

~Wn � �rn�1=�n� 1���1ÿ l2�dP 0
n �l�=dl : �B4�

Therefore, if the velocity potential is of the following
general form

U �
X

n

anUn �
X

n

~an ~Un ; �B5�

the general exact equation for stream (®eld) lines
becomes

W �
X

n

anWn �
X

n

~an
~Wn � constant : �B6�

The combined magnetic scalar potential of a single
multipole of degree n and its inverse counterpart is
de®ned by Eq. (9) in Sect. 3. However, it should be
noted that Eqs. (9) and (14) can be derived directly from
Eqs. (B5) and (B6), respectively, by making the substi-
tutions an � g0

nRn�2
E and ~an � g0

n��n� 1�=n��Rn�2
E =R2n�1

M �.
More generally, Eq. (B6) provides an exact expression
for the ®eld lines of an arbitrary linear combination of
zonal magnetic multipoles, con®ned by a perfectly
conducting (concentric) spherical surface.
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