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Abstract. A ®lter method is presented which allows a
qualitative and quantitative identi®cation of wave modes
observed with plasma experiments on satellites. Hitherto
existing mode ®lters are based on the MHD theory and
thus they are restricted to low frequencies well below the
ion cyclotron frequency. The present method is general-
ized to cover wave modes up to the characteristic ion
frequencies. The spectral density matrix determined by
the observations is decomposed using the eigenvectors of
the linearized Hall-MHD equations. As the wave modes
are dispersive in this formalism, a precise determination
of the~k-vectors requires the use of multi-point measure-
ments. Therefore the method is particularly relevant to
multi-satellite missions. The method is tested using
simulated plasma data. The Hall-MHD ®lter is able to
identify the modes excited in the model plasma and
to assign the correct energetic contributions. By com-
parison with the former method it is shown that the
simple MHD ®lter leads to large errors if the frequency is
not well below the ion cyclotron frequency. Further the
range of validity of the linear theory is examined rising
the simulated wave amplitudes.

Key words. Magnetospheric physics (MHD waves and
instabilities; plasma waves and instabilities).

1 Introduction

Satellite measurements of plasma characteristics such as
the magnetic ®eld, the velocity and density of the plasma
or plasma composition are important to understand the
di�erent plasma wave modes which may occur. How-
ever, wave analysis requires further information and
special tools in order to be able to identify which set of
modes is contributing to observed wave features.

Analysis of the measurements has therefore the aim to
identify plasma wave modes contributing to the signal,
to decide if the signal consists of more than one mode,
and to determine the contributions of the di�erent wave
modes to the total wave energy. This kind of analysis
requires a ®lter to perform ``pattern recognition'', that is
detecting the di�erent kinds of modes that may prop-
agate in the plasma and to determine their contributions
to the wave energy.

Such mode ®lters do already exist for the magneto-
hydrodynamics (MHD) approximation and are based
on the following principle (Glassmeier et al., 1995): the
spectral amplitudes of plasma parameters such as the
magnetic ®eld vector, the mass density, and the velocity
vector are collected in a state vector. The set of all state
vectors forms a state space. The spectral amplitudes of
the di�erent possible linear wave modes of the under-
lying plasma model are collected in vectors in the same
way. These vectors describe the polarizations of the
modes and are therefore called polarization vectors.
These polarization vectors form a basis of the state
space (Samson and Olson, 1980; Samson, 1983). Any
measured state vector may be decomposed in this basis
in a unique way. Thus, it is possible to determine the
contributions of the di�erent wave modes to the
measured signal as long as the wave modes to be
analysed can be treated as linear perturbations.

In case of the MHD the state space is 7-dimensional.
Disregarding entropy variations reduces the number of
dimensions to six. The e�ect of this neglect of the
entropy coordinate is discussed later in this paper. The
polarization vectors of the fast, AlfveÂ n and slow mode,
each forward and backward propagating, then form a
basis of the state space. The mode ®lter using this basis
allows the investigation of any measured MHD signal
for the contributions of these modes. It should be
mentioned that due to the linear dispersive behaviour of
the MHD wave modes the polarization vectors and
phase velocities of the MHD wave modes are indepen-
dent of the wave number and frequency. This does not
hold for the Hall-MHD mode ®lter to be described here.Correspondence to: C. Vocks
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The MHD formalism is a plasma model which
neglects the ion inertia. Therefore it is only applicable
to frequencies well below the ion cyclotron frequency Xi
(Spitzer, 1962; Stix, 1962; Siscoe, 1983; Swanson, 1989).
The aim of the work presented here is to remove this
limitation and to develop a mode ®lter which is also
applicable at higher frequencies. As the mode ®lter is
based on the use of polarization vectors resulting from a
particular plasma model the ®lter is model-dependent.
Expansion of the mode ®lter concept to higher frequen-
cies thus requires a di�erent plasma model, applicable to
higher frequencies.

Multi-¯uid theories are plasma models whose validity
does not exhibit any frequency limit (Holter et al., 1973).
However, expansion of the mode ®lter concept by
employing a multi-¯uid theory leads to a very high
dimension of the state space. In the case of a two-¯uid
theory it was found to be 13-dimensional. Therefore, it
seems to be of great advantage to use a plasma model
that is not limited to low frequency x� Xi and that
does not increase the dimension of the state space in this
way. An important step in expanding the frequency
range that ful®lls this requirement is the change from the
MHD to the Hall-MHD.

The Hall-MHD mode ®lter presented here provides a
method for analysing the energetic composition of the
measured signal and allows a determination of the wave
modes contributing to it. This is performed by a joint
interpretation of the data of a single satellite on the
plasma parameters magnetic ®eld, density and velocity.
This kind of interpretation can be regarded as an ``intra-
spacecraft-analysis'' of the data from di�erent instru-
ments onboard the satellite. Since the Hall-MHD wave
modes are dispersive, the application of the Hall-MHD
mode ®lter requires not only the determination of the
plasma background parameters, but also of the wave
number k. The wave analyzer of Motschmann et al.
(1996) provides this k using an ``inter-spacecraft anal-
ysis'' of the magnetic ®eld data of four satellites, but it
cannot determine the composition of the measured
signal with respect to the di�erent wave modes. Thus,
the Hall-MHD mode ®lter expands the frequency range
in comparison with standard MHD theory and com-
pletes the analysis of multi-spacecraft data.

2 The model

Hall-MHD has been extensively studied, e.g. Hassam
and Huba (1988) and Huba (1995), and allows the
description of the dispersion characteristics of the
di�erent plasma wave modes for small as well as large
wave numbers. The Hall-MHD formulation treats the
plasma as a single ¯uid much as the MHD does, but it
considers the ®nite ion inertia. In this way it is possible
to describe waves with frequencies up to x � Xi.
Because the model still neglects the electron mass, it is
limited to frequencies well below the lower hybrid
frequency: x� xLH . The use of Hall-MHD instead of
MHD will extend the frequency range in which the
mode ®lter can operate.

To develop the Hall-MHD mode ®lter in analogy to
the MHD mode ®lter as described by Glassmeier et al.
(1995), it is necessary to determine the polarizations of
the wave modes. To do so, we start with the basic
equations of the ideal Hall-MHD:
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This set of equations is completed by:

r �~B � 0 �4�
r �~B � l0

~j �5�
These equations are nearly identical with the basic
equations of the MHD, except for the Hall-term
1

eNr� �~j�~B� in Eq. (1). However, this term leads to
important di�erences with respect to the MHD mode
®lter, because it gives rise to the nonlinear dispersive
behaviour of the Hall-MHD plasma wave modes. The
current density ~j can be eliminated using the Maxwell
Eq. (5). The basic equations are linearized around the
undisturbed state ~B0, q0, ~v 0 and ~j 0 � 0. These back-
ground parameters are temporally and spatially con-
stant, the plasma background system considered is
homogenous. For the e�ect of an inhomogeneity see
Kingsep et al. (1990) or Huba (1991). After the
linearization a Fourier transformation is performed:
r ! ik, @

@t ! ÿix.
The linearized, Fourier transformed equations for the

disturbances ~B1, q1, ~v 1 and ~j 1 are:

x~B1 � ÿ~k � ~v 0 �~B1
ÿ �ÿ~k � ~v 1 �~B0
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� 1

eN 0
~k � ~j 1 �~B0

ÿ � �6�

q0x~v 1 � q0�~v 0 �~k�~v 1 � i~j 1 �~B0 � c2s~kq1
�7�

xq1 � �~v 0 �~k�q1 � q0~k �~v 1
�8�

where vA � B0�������
l0q0
p is the AlfveÂ n speed and cs the sound

speed.
Eqs. (6)±(8) are rewritten in matrix form, using the

coordinate system de®ned in Fig. 1.
The x-axis points into the direction of the wave vector

~k, and the background magnetic ®eld ~B0 lies in the x-z-
plane, including an angle h with the x-axis: ~B0 �
B0�cos h; 0; sin h�T .

From Eq. (4) it follows that the x-component of
the perturbation magnetic ®eld vanishes: B1

x � 0. Equa-
tions (6)±(8) can be summarized introducing the state
vector

~u � 1
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v1y ;
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y����������

l0q0
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1
z ;
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l0q0
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This state vector and therefore the state space is
6-dimensional. It is the same state space as in case of
the MHD mode ®lter. Thus, changing from the MHD to
the Hall-MHD plasma model keeps the dimension of the
state space unchanged. Rearranging the components of
Eqs. (6)±(8) yields the following system of equations:

kZ �~u � x~u �10�
The system matrix Z is de®ned as:

where d is given as d � vA
Xi
. This d can be identi®ed as

the ion inertial length: d � c
xpi
. Eq. (10) can be written as

an eigenvalue equation:

Z �~u � x
k
~u �12�

The eigenvalues correspond to the phase velocities of the
di�erent wave modes and the eigenvectors denote their
polarizations. The system matrix Z is a Hermitian 6 by 6
matrix. This guarantees the existence of six real
eigenvalues and six orthogonal eigenvectors. So it is
always possible to calculate the phase velocities vph;i and
polarizations~ei of the six Hall-MHD wave modes.

The system matrix Z presented here depends not only
on the direction of the wave propagation, given by the
parameter h, but also on the wave number k. This
dependence on k is introduced by two elements of the
matrix, which originate from the Hall-term in Eq. (1).
Since this Hall-term is the only di�erence between the
basic equations of MHD and Hall-MHD, the system
matrix Z of the Hall-MHD mode ®lter and the
corresponding matrix of the MHD mode ®lter di�er
only in these two elements. In the case of MHD they are
missing, and the system matrix is independent of the
wave number k, and so are their eigenvalues and
eigenvectors. MHD exhibits a linear dispersion behav-
iour, and the polarizations of the MHD modes are

constant. This is not the case for Hall-MHD. The
polarizations of the modes depend on k, and the phase
velocities are no longer constant. This is expected for a
plasma model which is valid for frequencies x � Xi
because phenomena like the ion cyclotron resonance
(Gurnett et al., 1965) are impossible to describe with a
linear dispersion.

In Hassam and Huba (1988) and Huba (1995) the
dispersion characteristics and the eigenmodes of the
Hall-MHD plasma model were discussed for small wave
numbers kvA � Xi as well as large ones kvA � Xi. To
develop the mode ®lter, solutions of the eigenvalue
Eq. (12) are required for any wave number k. The ®rst
step in solving this problem is the determination of the
eigenvalues. This is performed by setting the character-
istic polynomial of the system matrix Z equal to 0. The
resulting equation is a condition for the frequency x and
wave number k. Thus, the eigenvalue equation leads to
the dispersion relation of the Hall-MHD, determination
of the zeroes of the characteristic polynomial of the
system matrix corresponds to the investigation of the
dispersive nature of the plasma model.

The system matrix Z in Eq. (11) is 6-dimensional. Its
characteristic polynomial has the degree 6 in x and 8 in

k. For polynomials of the degree 4 or less analytic
formulae for their zeroes do exist, but for higher degrees
no general analytic formula has been found. Thus, it
seems impossible to give an analytic expression for the
eigenvalues of Z. In that case the eigenvalue equation
must be solved numerically. However, we derived an
analytic expression for the solutions x�k� of the disper-
sion relation. The derivation of this formula is a little
lengthy and is therefore summarized in the appendix.
Here only the result is presented:
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where the following abbreviations have been introduced:

X1 :� c2s � v2A � cos2 hv2A � cos2 hd2k2v2A
X2 :� 2c2s � c2s d2k2 � v2A

a :� ÿX12 � 3 cos2 hv2AX2

b :� 27 cos4 hc2s v4A � 2X13 ÿ 9 cos2 hv2AX1X2

�14�

Fig. 1. The coordinate system for the Hall-MHD mode ®lter

Z�k� �

v0x ÿvA cos h 0 0 0 0
ÿvA cos h v0x 0 0 ÿikdvA cos h 0

0 0 v0x 0 vA sin h cs

0 0 0 v0x ÿvA cos h 0
0 ikdvA cos h vA sin h ÿvA cos h v0x 0
0 0 cs 0 0 v0x

0BBBBBB@

1CCCCCCA �11�
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This formula allows the determination of the eigenval-
ues without any numerical solution of a system of
equations.

Figure 2 shows the dispersion characteristics of a
plasma in its rest frame. The parameter b is here

de®ned as b :� �c2s=v2A�. A ¯ow ~v 0 would only lead to a

Doppler shift x! x� kv0x , as is shown in the appendix.
The three forward propagating modes are plotted;
altogether there are six dispersion branches.

For small wave numbers k, the plasma models of
Hall-MHD and MHD coincide, since their only di�er-
ence, the Hall-term in Eq. (6), contains a factor k. This
can be seen in Fig. 2. For small k, the three modes
display a linear dispersion, as expected for the MHD
regime. The fast, AlfveÂ n and slow mode can be
identi®ed. However at higher wave numbers, deviations
from MHD behaviour occur. The fast mode exhibits a
higher phase velocity x=k and turns into a whistler
mode, and the slow mode becomes an ion cyclotron
wave. The AlfveÂ n mode ®rst stays near the ion cyclotron
frequency Xi and then turns into a sound wave. In this
paper we decide on the convention to name the branches
fast mode, AlfveÂ n mode and slow mode also beyond the
MHD limit x=Xi � 1, kvA=Xi � 1.

Using Eq. (13) it is possible to ®nd six solutions x for
any given k. The converse, however, is not true. The plot
in Fig. 2 is an example of this. For frequencies
x < Xi cos h there are three values of k satisfying the
dispersion relation. The backward propagating waves
also provide three solutions, so that six solutions for k
can be identi®ed for any x < Xi cos h. However, this is
not the case for x > Xi cos h. For these x, Fig. 2 shows
that there are only two solutions for k, so that there is a
total of only four solutions for k. This is due to the slow
mode/ion cyclotron wave not reaching these frequencies.
In the case of a moving plasma the situation would be
even more complicated, since the Doppler shift term kv0x
would lead to local extremes of the x�k� ± curves which
prevents one from ®nding the inverse functions. There-
fore, no functional dependence k�x� can be given which
is valid for all frequencies x.

Due to the complicated structure of the solutions
x�k� presented in Eq. (13) we have not been able to ®nd
analytical expressions for their corresponding eigenval-
ues. However, numerical determination is straightfor-
ward.

Figure 3 displays the six components of the polar-
ization vectors of the forward propagating modes as
functions of the wave number for the same plasma
background parameters as in Fig. 2. For any given k it is
thus not only possible to determine the frequencies of
the modes, but also their polarizations. For the limit of
small wave numbers k ! 0 the transition to the MHD
can be studied. The only mode having components B1

y
and v1y is the AlfveÂ n wave, and this mode does not
have contributions from other components. Since both
B1

y and v1y carry the same phase factor i in Fig. 3, the
linear polarization of the AlfveÂ n mode (dotted line) is
reproduced in the correct manor. The other components
v1x , v1z , B1

z and q1 have no phase factors, so that the fast
and slow mode are also linearly polarized.

For higher wave numbers, the modes change their
polarizations. The fast mode (solid line) and the slow
mode (dashed line) gain contributions from B1

y and v1y ,
and the AlfveÂ n mode develops contributions from the
other four components. Thus, the clear distinction
between these modes in MHD is lost in the Hall-
MHD framework. For very large wave numbers, the
fast mode is dominated by contributions from B1

y and
B1

z . B1
y has the phase factor i, so this wave is elliptically

polarized. The contributions from B1
y and B1

z are of the
same size, the wave is even circularly polarized. The fast
mode turns into a whistler mode. The slow mode which
behaves in a similar way, contains mainly contributions
from v1z and i � v1y of the same magnitude, and it too
changes into a circularly polarized wave. This is an ion
cyclotron wave, as mentioned above in the discussion of
the dispersion relation in Fig. 2. The AlfveÂ n wave shows
a di�erent characteristic in the limit of large k. It consists
mainly of variations in v1x and q1, and it turns into a
sound wave.

We have found the eigenvalues of Eq. (12), i.e. we
solved for the dispersion relation. We are further able to
determine the eigenvectors corresponding to these
eigenvalues, i.e. we can determine the polarizations of
the di�erent wave modes. Thus, the necessary prepara-
tions are accomplished, and we are able to set up the
Hall-MHD mode ®lter.

We have demonstrated that for any ®xed wave
number k six solutions of the dispersion relation exist
for x with six corresponding eigenvectors. However, for
a ®xed frequency x the existence of six solutions k is not
guaranteed. Because of this we start with a wave number
k with a measured state vector ~u�k� and determine the
eigenvectors of Eq. (12), ~ei (i � 1; . . . ; 6). These eigen-
vectors form a basis of the 6-dimensional state space,
and we use this basis to expand ~u�k�. One has the
decomposition:

~u�k� �
X6
i�1

gi~ei�k� �15�
Fig. 2. The dispersion relations of the Hall-MHD. Plasma back-
ground parameters: h � 20�, b � 0:01, v0x � 0. In the low frequency
limit (x� Xi) the branches correspond to the fast mode (solid line),
AlfveÂ n mode (dotted line) and slow mode (dashed line)
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The coe�cients gi can easily be determined due to the
orthogonality of the~ei:

gi �~u �~ei i � 1; . . . ; 6 �16�
The total wave energy density can be calculated from the
state vector ~u:

w � 1
2 q0v2Au2 �17�

From Eq. (9) we see that w is the sum of the kinetic
energy 1

2 q0v2, the magnetic energy �B2=2l0� and the

pressure energy 1
2 c2s

�q1�2
q0 . Thus the relative contributions

of the di�erent modes to the total wave energy are:

wi � jgij2P6
j�1 jgjj2

�18�

The mode ®lter is able to provide an analysis for any
measured state vector ~u, the contributions of the Hall-
MHD modes to each particular measurement can be

determined, and therefore the contributions of the
various modes to the total wave energy.

3 Test of the mode ®lter with simulated data

Before the mode ®lter can be used, some information
about the plasma has to be known. First, the plasma
background parameters ~B0, q0 and ~v 0 are needed to set
up the model. These are necessary to determine the
dispersion and polarization of the wave modes and to
obtain the system matrix Z. The plasma background
parameters can easily be determined from measurements
of the temporal variations of ~B, q and~v by taking their
mean values. Knowledge of the direction of wave
propagation is also needed to calculate the eigenmodes
of the model. This direction is represented by the angle h
in Fig. 1. This h is necessary since the dispersion and
polarization characteristics of the wave modes usually
depend on h: indeed the system matrix Z depends on h.

Fig. 3. The eigenvectors of Hall-MHD. Plasma
background parameters: h � 20�, b � 0:01,
v0x � 0. Shown are the fast mode (solid line),
AlfveÂ n mode (dotted line) and slow mode (dashed
line)
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The direction of the wave propagation can be deter-
mined by a minimum variance analysis, for example.
For this analysis the data from a single satellite in the
plasma are su�cient.

Furthermore, the spectral amplitudes of the varia-
tions ~B1, q1 and ~v 1 have to be known. As was discussed
in the previous section, a ®xed value for k is taken, and
the amplitudes ~B1�k�, q1�k� and ~v 1�k� have to be
determined. These amplitudes can be collected in a state
vector ~u�k� using Eq. (9). Since the wave number k
appears in the system matrix Z, see Eq. (11), its value
must also be known.

If the measured data are time series, the frequency x
and the spectrum with respect to x can be estimated
using a Fourier transform. The wave vector k is not as
easily determined. This requires a spatial resolution of
the measurement. In space plasmas, this can be accom-
plished by a multi-satellite mission such as the CLUS-
TER mission and using a wave analyzer much as
suggested by Motschmann et al. (1996). In laboratory
plasmas, measurements at di�erent points may be taken.
In a numerical simulation, the determination of k and
~u�k� is much easier. Here, ~B, q and~v are known at any
point of the simulation box, and a Fourier transform
can be performed, both in space and time.

If the above information is available, the polarization
vectors ~ei�k� can be calculated and the measured state
vector~u�k� can be analysed using Eqs. (15) and (16). To
test the mode ®lter it is now applied to simulated data.
These data were computed using a 2 1

2-D hybridcode
simulation as described in Motschmann et al. (1997). In
the middle of the simulation box which is sketched in
Fig. 4 we place the emitting antenna radiating the
assumed plasma waves. This wave source is constructed
as a line along which the temporally changing values of
~B1, ~v 1 and q1 are given as boundary conditions. These
values correspond to the polarization and frequency of
the desired wave mode or polarizations and frequencies
of a superposition of di�erent modes. Since the antenna
is oriented along the y-axis, waves propagating in the x-
direction are excited.

Wave polarizations and frequencies are calculated
using the Hall-MHD model by solving the eigenvalue
problem in Eq. (12) for given plasma background
parameters and wave number k. The amplitudes of the

waves are chosen as B1=B0 � 0:05: that is the distur-
bances are small compared with the background values
to ensure the validity of the linear theory.

In our simulation the antenna emits signals with the
prescribed polarizations and frequencies into the model
plasma which then propagate through the simulation
box. After some simulation time, but before the wave
front reaches the end of the simulation box, the resulting
wave ®elds can be analysed. A portion of the simulation
box between the antenna and the wave front in which
the plasma waves are well developed is taken for the
analysis.

Now the wave number k and the state vector~u�k� are
to be determined. First a Fourier analysis is performed
to determine the ~k-spectrum. Since a single wave mode
or di�erent wave modes with the same wave number
vector~k are excited, these spectra should show only one
peak at the location of this wave number. In all
simulations presented here this single peak in the spectra
can be clearly observed. The values of the spectral
amplitudes of the parameters ~B1, ~v 1 and q1 at this peak
yield the state vector~u that can be analysed by the mode
®lter, and the wave number k is known from the position
of the peak. The background parameters are known too,
so the mode ®lter can be applied.

At ®rst, the propagation of a fast mode in the model
plasma is simulated. A wave number of k � vA=Xi � 0:611
is assumed, and the plasma background parameters are
chosen as:

h � 20�; b � 10ÿ4; v0x � 0 �19�
The frequency of the wave is x � 0:7944 � Xi, which
excludes the use of an MHD mode ®lter. The analysis
extends over a region of the simulation box that lies
``right'' of the emitting antenna, so that a forward
propagating wave has to be registered. Figure 5 shows
the power spectrum of the component B1

y in this region.
It exhibits a single peak, as expected. The position of the
peak indicates that the y-component of ~k vanishes,
the wave propagation is directed along the x-axis, as it is
to expect from the geometry of the simulation box. This
peak can be found in the spectra of the other compo-
nents as well. The location of the peak is
k � vA=Xi � 0:626. Considering the spatial discretization
of the simulation box this result coincides with the value
used for the calculation of the frequency and polariza-
tion of the wave.

The mode ®lter yields the following result for the
forward propagating wave:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:9997 0:0000 0:0002 0:0000 0:0000 0:0001

�20�

This table shows the relative contributions w of the fast
(F), AlfveÂ n (A) and slow mode (S), each forward (�)
and backward (ÿ) propagating, to the total wave
energy. The Hall-MHD mode ®lter assigns more than
99.9% of the wave energy to the correct mode, the
forward propagating fast mode. This demonstrates the
power of the ®lter, at least when applied to simulated
data.Fig. 4. The geometry of the simulation box
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It is of interest to check if the mode ®lter is able to
analyse a wave ®eld consisting of di�erent modes and to
®nd the right contributions to the total wave energy.
This situation is tested using a superposition of a fast
and an AlfveÂ n mode excited in the model plasma. The
amplitudes are chosen in such a way that the ratio of
the wave energies of the fast and AlfveÂ n mode is 2:1. The
frequencies of the two wave modes are xF � 0:7944 � Xi
and xA � 0:4416 � Xi. The ®lter result of this simulation
is:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:6879 0:0033 0:3085 0:0001 0:0001 0:0001

�21�

Again excellent agreement between the simulated wave
parameters and those resulting from the mode ®lter
analysis is achieved. There is only a minor deviation,
that is the contribution of the fast mode is a little too
high. This can be explained by the higher phase velocity
of the fast mode. After the start of the simulation, this
mode propagates faster through the simulation box, so
that the fast mode is a little better developed in the
region that is analysed.

The mode ®lter is based on a linear theory, which
implies that the applicability of this ®lter is limited to
low amplitudes of the plasma waves. To estimate how
``low'' the amplitudes need to be to allow a useful and
practical application of the mode ®lter, a series of
simulations with rising amplitudes is performed. The
numerical code used here is able to handle nonlinear
plasma waves. The propagation of an AlfveÂ n mode is
simulated, the plasma background parameters are kept
unchanged except the plasma b which is raised to 0.1 for
this series as higher amplitudes lead to numerical
instabilities for the very low b that was used in the
previous simulations.

The series of simulations starts with a low amplitude
for which the mode ®lter yields good results. Then the
amplitude is raised from simulation to simulation. If the
mode ®lter assigns wave energy to other modes, this is
regarded as a sign for the beginning breakdown of the
linear theory, with the limit of the applicability of the
mode ®lter being reached. The frequency of the AlfveÂ n
mode is x � 0:4451 � Xi. The series of simulations is
started with an amplitude of B1=B0 � 0:12 for which the

mode ®lter assigns more than 99% of the wave energy to
the AlfveÂ n mode. The limit for the applicability of the
mode ®lter is reached at amplitudes B1=B0 � 0:3. For
higher amplitudes, application of the mode ®lter ceases
with less than 95% of the wave energy being assigned to
the AlfveÂ n mode.

This amplitude of B1=B0 � 0:3 is however only a
rough estimate for the limit of the applicability of the
mode ®lter based on a linear theory. A similar series of
simulations of the fast mode showed no sign of a
deterioration of the function of the mode ®lter. So this
limit depends on the wave mode and probably also on
the plasma background parameters. There may be cases
in which the limit is even less than B1=B0 � 0:3.

We conclude that the Hall-MHD mode ®lter yields
very good results in analysing the simulated data. The
correct modes are clearly identi®ed with correct contri-
butions of di�erent modes to the total wave energy
having been determined. The simulations with rising
amplitudes show that this mode ®lter may be used for
wave amplitudes up to the order of B1=B0 � 10ÿ1.

4 MHD versus Hall-MHD mode ®lter

Application of the Hall-MHD mode ®lter requires
knowledge of the wave vector ~k, while for application
of the MHD mode ®lter only the direction of wave
propagation needs to be known. Thus, despite its
increased frequency range the Hall-MHD mode ®lter
is more di�cult to use. Consequently we have studied
which errors may occur if the MHD mode ®lter is
applied to situations where use of the Hall-MHD mode
®lter is required. Such a study allows us to develop a rule
to select in which situation either of the mode ®lters may
be used.

We have constructed the polarizations of various
plasma wave modes using the Hall-MHD model. Using
these modes as input for the Hall-MHD mode ®lter
would result in the detection of pure modes. Using these
as input for the MHD mode ®lter would give us
expansion coe�cients di�erent from using the Hall-
MHD ®lter. Deviations of the expansion coe�cients
may thus be used as a measure of the applicability of the
MHD mode ®lter.

To set up the system matrix Z, we have to choose
plasma background parameters. We take a plasma
consisting of protons and electrons and the following
background:

h � 20�; b � 0:01; v0x � 0 �22�
First a very small wave number k is chosen:
k � vA=Xi � 0:00611. The frequencies of the fast, AlfveÂ n
and slow mode are:

xF � 0:0061 � Xi; xA � 0:0057 � Xi; xS � 0:0006 � Xi

The application of the MHD mode ®lter to the Hall-
MHD polarization vector of the forward propagating
fast mode yields:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:9978 0:0000 0:0022 0:0000 0:0000 0:0000

Fig. 5. The power spectrum of By in arbitrary units
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The analysis of the AlfveÂ n mode leads to:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:0022 0:0000 0:9978 0:0000 0:0000 0:0000

And the slow mode is decomposed in this way:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:0000 0:0000 0:0000 0:0000 1:0000 0:0000

The MHD ®lter clearly detects the proper modes with
only small fractions of the total wave energy being
assigned to other modes.

Now a higher wave number k is used: k � vA=Xi �
0:611. The frequencies of the di�erent modes are:

xF � 0:794 � Xi; xA � 0:442 � Xi; xS � 0:057 � Xi

The frequencies of the fast and AlfveÂ n modes are still
less than the ion cyclotron frequency, but they are not
much smaller as before. The analysis of the Hall-MHD
polarization vectors by the MHD mode ®lter yields:

fast mode:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:5412 0:0092 0:4381 0:0114 0:0001 0:0000

Alfv�en mode:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:4382 0:0113 0:5411 0:0092 0:0001 0:0001

slow mode:

wF ;� wF ;ÿ wA;� wA;ÿ wS;� wS;ÿ
0:0000 0:0000 0:0001 0:0001 0:9998 0:0000

The table shows that the MHD ®lter is not able to
detect the fast and AlfveÂ n mode, but superpositions of
these two modes are detected. The slow mode, however,
is not a�ected at all because its frequency is still small
compared with Xi. As real data may contain superposi-
tions of fast and AlfveÂ n modes, the study indicates that
the conditionx� Xi needs to be veri®ed carefully before
the MHD mode ®lter is used. Otherwise the Hall-MHD
mode ®lter should be the preferred method to determine
wave energy contributions to particular modes.

Applicability of both mode ®lters, MHD and Hall-
MHD ®lter, also depends on the numerical values of the
system matrix Z. Errors in determining the plasma
background parameters could a�ect the results of these
®lters. To check this, a similar analysis to the above
comparison between MHD and Hall-MHD has been
performed. The polarizations of the Hall-MHD modes
have been calculated for a given set of plasma back-
ground parameters, and the resulting state vectors have
been analysed by a Hall-MHD mode ®lter with back-
ground parameters di�ering from the real values used.
Deviations of the plasma background parameters of up
to 25% from the original values lead to errors of
approximately 1% in the determination of the contri-
butions of the di�erent modes to the total wave energy.
Thus we conclude that the mode ®lter is very robust
against errors in determining the plasma background
parameters.

5 Entropy waves and tangential structures

The mode ®lter is able to analyse any Hall-MHD signal
with spectral peak power at given wave number k. The
results obtained are unique and there are no residuals,
that is the state vector is completely decomposed into
the contributions of the di�erent modes. A full error
analysis is an enormous task, but a ®nite signal-to-noise
ratio of the measurement enters the determination of the
state vector~u�k� and thus in¯uences the contributions to
the total wave energy assigned to the di�erent wave
modes. Thus, the signal-to-noise ratio limits the accu-
racy of the mode ®lter.

The question arises what happens if a phenomenon is
observed which cannot be described by the underlying
plasma model, such as the passage of a satellite through
a stationary structure in the plasma. In the satellite
frame the movement through a spatially periodic,
stationary structure would be recognized as a wave
passing by. In these cases one could suspect that the
mode ®lter misinterpretates the observations as Hall-
MHD waves.

This illustrates that the assumptions of the Hall-
MHD have to be checked carefully: The plasma
background system has to be homogeneous, the fre-
quencies considered have to be much smaller than the
lower hybrid frequency, and the temperature has to be
low enough to justify the neglect of kinetic e�ects in the
Hall-MHD. For a detailed comparison between Hall-
MHD and kinetic waves see Krauss-Varban et al. (1994).
Furthermore, the observed wave trains have to be long
enough, since the Fourier transform performed in the
development of the mode ®lter corresponds to a plane
wave setup, and the amplitude of the signal has to be
small enough to render linear theory applicable.

If these conditions are not ful®lled, the Hall-MHD
mode ®lter may yield erroneous results. It is always
possible to calculate the polarization vectors of the Hall-
MHD model which form a basis of the state space, so
any measured state vector can be developed into this
basis. But if the Hall-MHD model is not valid, these
Hall-MHD polarization vectors deviate from the real
polarization vectors of the corresponding wave modes.
Thus, projecting the measured state vector on the
eigenvectors of the Hall-MHD model yields wrong
contributions of the modes to the total wave energy.

The comparison between Hall-MHD and MHD
mode ®lter in Sect. 4 illustrates this e�ect for the
MHD mode ®lter. If the MHD condition x� Xi is not
met, the polarization vectors of the MHD model di�er
largely from the vectors yielded by the Hall-MHD
model which is still valid, leading to large errors of the
MHD mode ®lter. Violating the Hall-MHD conditions
will cause errors of the Hall-MHD mode ®lter in the
same way. Furthermore, additional wave modes may
exist not modelled by the Hall-MHD. Interpreting their
polarizations as combinations of Hall-MHD modes is
senseless, of course.

Thus, care has to be taken that the above Hall-MHD
conditions are valid, the mode ®lter can be used only
within the scope of its underlying plasma model.
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Our basic Eqs. (1)±(3) neglect any changes of the
entropy s which is treated as temporally and spatially
constant. Therefore, entropy waves are structures which
cannot be described by the Hall-MHD as used here.
Regarding entropy as a further parameter describing
variations in the plasma adds another equation to the
basic Eqs. (1)±(3): the adiabatic equation ds=dt � 0.
With this equation the dimension of the state space is
expanded by the entropy coordinate to seven, and since
the eigenvalue problem becomes 7-dimensional, a new
wave mode exists: the entropy wave. The polarization of
this entropy wave can be described following Akhiezer
et al. (1975) using a 2-dimensional state vector

~~u � �q1; s1�T �23�
with the following polarization vector:

~e7 � ÿ @p
@q

� �
s
; @p

@s

� �
q

� �T

�24�

From this it follows that the entropy wave only consists
of a variation of the density and entropy, which may
also be described as a variation of the density and
temperature. The pressure p stays constant throughout
this variation. The phase velocity of the entropy wave
vanishes in the plasma rest frame, that is the entropy
wave is a stationary structure. This variation does not
need to have a special direction or wave number. If there
is a spatially periodic entropy variation with the wave
number k, and if a satellite crosses it with a speed of v0x ,
then the resulting measurement might be given to the
mode ®lter as input state vector.

The mode ®lter presented here only takes into account
the variation of the density q when the entropy wave is
crossed. Thus the ®lter interprets any crossing of an
entropy wave as a superposition of the six Hall-MHD
wave modes where the contributions to the other
parameters ~v 1 and ~B1 cancel each other. This erroneous
interpretation can be avoided using the frequency infor-
mation available. The measured data usually consist of
time series, and a Fourier-analysis yields the spectrum. If
the satellite crosses with a speed of v0x a periodic structure
with wave number k, the spectrum would show peak
power at x � k � v0x . However, if the interpretation as a
superposition of 6 Hall-MHD modes would be correct,
the spectrum should exhibit six power spectral peaks at
the respective frequencies of these modes in the satellite
frame reference. In this way a resulting decomposition of
the mode ®lter can be checked for false results based on
the presence of entropy waves.

The entropy wave is a stationary structure in the
plasma. The question arises whether there are any other
stationary structures within the scope of Hall-MHD,
which may lead to misinterpretations by the mode ®lter.
To examine this, we look for stationary solutions of the
basic Eqs. (1)±(3). If these basic equations for the
plasma rest frame are written in components using
the coordinate system presented earlier in this paper
and under consideration of the stationarity condition
@=@t � 0, one can easily ®nd that any disturbances ~v 1,
~B1 and q1 can only exist if cos h � 0, h � 90�.

In this case, the background magnetic ®eld ~B0 points
in the z-direction. So we can say that stationary
structures have to be tangential structures. Furthermore,
Eq. (2) yields ~j 1 �~B0 � rp1, such that the Hall-term
1

eN 0r� �~j 1 �~B0� is equal to zero, since r�rp � 0.

There is no di�erence between MHD and Hall-MHD in
this discussion of stationary structures. This can also be
deduced from the structure of the system matrix Z in
Eq. (11). Both Hall-terms contain the factor cos h, and
vanish here.

The solutions of the stationary basic equations are
independent variations of v1y , v1z and B1

y and a variation
of the pressure p1 and B1

z so that the sum of kinetic
and magnetic pressure p � �B2=2l0� stays constant.

Only the fast mode can propagate for h � 90�, the
other MHD-modes, the AlfveÂ n and slow modes, can't
(their phase velocities tend to 0 for h! 90�). A
disappearing phase velocity vph � x=k means that
x! 0 for a ®nite wave number k. So it corresponds
to a stationary structure.

For the polarizations of the MHD modes as they are
given in (Glassmeier et al., 1995) the limit h! 90� can
be calculated. The polarizations of the AlfveÂ n and slow
mode, whose phase velocities are 0, correspond to the
solutions of the stationary basic equations: The forward
and backward propagating AlfveÂ n waves lead to the
variations of v1y and B1

y , the slow modes yield the
variations of v1z and the kinetic and magnetic pressure.

These calculated polarization vectors correspond to
the eigenvectors which result from the eigenvalue
problem [Eq. (12)] in the case presented here (v0x � 0,
cos h � 0). So all solutions of the stationary basic
equations can be described by the polarization vectors
which result from the eigenvalue problem on which
the mode ®lter is based. This means that the mode
®lter is able to handle the signatures of stationary
structures.

From this it follows that the mode ®lter is able to
analyse the signals resulting from the passage of the
satellite through a stationary structure. Due to the
satellite's speed the system matrix Z now contains a
plasma ¯ow component v0x 6� 0, but from the structure
of Z as it is given in Eq. (11) it follows that this v0x is only
a constant which is added to the eigenvalues, and it
doesn't a�ect the eigenvectors (see also Appendix). So
the movement of the satellite has no e�ect on the
function of the mode ®lter.

Thus we may conclude that there is no danger of
erroneous analyses when a stationary structure, as it is
described here, is traversed.

6 Conclusions and summary

The plasma model of MHD is restricted to low
frequencies x� Xi, and so is the MHD mode ®lter.
The extension of this mode ®lter to higher frequencies
requires a generalization of the plasma model.

The use of the Hall-MHD instead of the MHD
relaxes the frequency limit x� Xi. The Hall-MHD is
only limited by x� xLH , which is a rather large
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expansion of the frequency range since xLH ��������������
mi=me

p � Xi. A mode ®lter based on the Hall-MHD is
constructed analogous to the MHD mode ®lter. The
spectral amplitudes of the magnetic ®eld, bulk velocity
and density are collected in a state vector, and any
measured state vector is decomposed into the contribu-
tions of the di�erent wave modes in a unique way. In
contrast to the MHD case, the Hall-MHD mode ®lter
requires not only the knowledge of the plasma back-
ground parameters but also of the wave number k, as the
Hall-MHD modes display dispersion. A precise deter-
mination of k may be realized by multi-point measure-
ments as it is foreseen in the Cluster II mission.

The range of validity of the Hall-MHD has no limit
at low frequencies. In the limit x! 0, MHD and Hall-
MHD coincide. The mode ®lters based on these plasma
models operate on the same state space, and therefore
these ®lters also coincide in the limit x! 0.

Thus at x � 0 a direct comparison of their results is
possible. For frequencies x � Xi, however, the use of
the MHD can lead to large errors in determining the
composition of plasma wave data. This demonstrates
that the mode ®lter can only be applied when its
underlying plasma model is valid. This applies as well to
the Hall-MHD mode ®lter, the assumptions of the Hall-
MHD have to be checked carefully before the mode
®lter is used.

An application of the Hall-MHD mode ®lter to
simulated plasma wave ®elds shows its ability to identify
the modes excited in the simulation box. If more than
one wave mode is present in the model plasma the
correct energetic contributions are assigned to the
individual wave modes.

As the basic equations of the Hall-MHD were used in
a linear approach the mode ®lter is only able to handle
linear plasma waves, i.e. waves with small amplitudes. A
series of simulations with rising amplitudes showed a
limit of B1=B0 � 0:3 for the applicability of the mode
®lter. Thus the linear theory is restricted to amplitudes
up to the order of B1=B0 � 10ÿ1.

Extension of the mode ®lter to frequencies x � xLH
or even higher requires a further generalization of the
plasma model, e.g. a multi-¯uid-theory without any
frequency limit, or even a kinetic approach. The dimen-
sion of the state space is strongly increased and therefore
these approaches will be the subject of future work.

Since the development of a mode ®lter, like the one
presented here, starts with the basic equations of the
plasma model, the mode ®lter can only detect those
plasma wave modes which are described by the under-
lying plasma model. In general, only those wave modes
can be found that are searched for.

Appendix

The eigenvalues of the system matrix Z

In this appendix the derivation of the analytic solutions
x�k� of the dispersion relation of theHall-MHD is shown
in more detail. It has already been discussed that solving

the dispersion relation corresponds to ®nding the eigen-
values of the system matrix Z as it is given in Eq. (11).

The eigenvalues of a matrix are determined by
®nding the zeroes of its characteristic polynomial. For
the system matrix Z it follows from the eigenvalue
Eq. (10) that the eigenvalues correspond to the phase
velocities x=k and the eigenvectors to the polarizations
of the di�erent wave modes. The matrix Z is a function
of the wave number k, and so the eigenvalues and
eigenvectors will depend on k, too.

Since the matrix Z is 6-dimensional, its characteristic
polynomial has the degree 6. The structure of the system
matrix Z and the calculation of the characteristic
polynomial appears to indicate that it is not possible
to write this polynomial as a product of polynomials
with lower degrees. There is no analytic formula for the
zeroes of a polynomial of the degree 6, and so it appears
to be impossible to ®nd analytic expressions for the 6
eigenvalues of Z.

However, in case of a plasma at rest (v0x � 0), the
characteristic polynomial of Z contains only even
powers of x=k. So this polynomial can be regarded as
a cubic polynomial in x=k� �2. The formula of Cardani
which yields the zeroes of a cubic polynomial then
allows the determination of analytic expressions for the
eigenvalues of the system matrix for v0x � 0.

The assumption v0x � 0 seems to be a strong restric-
tion for the analytic solution of the eigenvalue equation,
but this is not the case. For a moving plasma analytic
expressions for the eigenvalues can also be found.

This can be seen from the structure of the system
matrixZ as it is given inEq. (11). The backgroundplasma
¯ow speed v0x occurs only on the principal diagonal of Z.
The matrix can be decomposed in this way:

Z � ~Z� v0x � 16 �25�
Here ~Z is the system matrix for v0x � 0 and 16 the 6-
dimensional unity matrix.

This decomposition of the system matrix Z enables us
to determine its eigenvalues. If x

k is an eigenvalue of ~Z
and ~u the corresponding eigenvector, then:

~Z �~u � x
k~u, ~Z �~u� v0x �~u � x

k � v0x
ÿ �

~u,
Z �~u � x

k � v0x
ÿ �

~u

So Z and ~Z have the same eigenvectors, and thus the
polarizations of the wave modes are independent of the
plasma ¯ow speed. The eigenvalues which represent
their phase velocities are yielded for a moving plasma
simply by adding the ¯ow speed component v0x to the
values calculated in the plasma rest frame. This is simply
Doppler shifting of the frequencies of the waves.

So the eigenvalues of the system matrix Z for a
moving plasma can be easily obtained from the solutions
for the plasma rest frame v0x � 0.

These solutions for the plasma rest frame are now
determined. For v0x � 0 the characteristic polynomial of
Z has, as already mentioned, the degree 3 in x=k� �2, and
analytic expressions for its zeroes can be found.

But before these solutions are presented, some
abbreviations have to be introduced:
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X1 :� c2s � v2A � cos2 h v2A � cos2 h d2k2v2A
X2 :� 2c2s � c2s d2k2 � v2A
a :� ÿX12 � 3 cos2 h v2AX2

b :� 27 cos4 h c2s v4A � 2X13 ÿ 9 cos2 h v2AX1X2

�26�

Using these abbreviations, the following results in the
plasma rest frame can be obtained using the formula of
Cardani:

x2

k2

� �
1

�X1

3
ÿ 2

1
3a

3 b� �����������������
4a3 � b2
pÿ �1

3

� b� �����������������
4a3 � b2
pÿ �1

3

3 � 21
3

�27�
x2

k2

� �
2

�X1

3
� �1� i

���
3
p �a

3 � 21
3 b� �����������������

4a3 � b2
pÿ �1

3

ÿ �1ÿ i
���
3
p � b� �����������������

4a3 � b2
pÿ �1

3

6 � 21
3

�28�
x2

k2

� �
3

�X1

3
� �1ÿ i

���
3
p �a

3 � 21
3 b� �����������������

4a3 � b2
pÿ �1

3

ÿ �1� i
���
3
p � b� �����������������

4a3 � b2
pÿ �1

3

6 � 21
3

�29�

These expressions seem to be complex. But the system
matrix Z is Hermitian, so its eigenvalues are real. Using
this, we can show that 4a3 � b2 � 0 and consequently
a � 0. The imaginary parts in Eqs. (27)±(29) cancel each
other, and these expressions can be transformed into a
real form:

x
k

��
����������������������������������������������������������������������������������������������������
X1

3
� 2

3

�������ÿa
p

cos
1

3
arctan

�������������������
ÿ1ÿ 4a3

b2

r !
� 2m

3
p

 !vuut ;

m� 0;1;2 �30�
The eigenvalues of the system matrix Z for a moving
plasma (v0x 6� 0) are simply given by:

x
k
� v0x

�
�������������������������������������������������������������������������������������������������������
X1

3
� 2

3

�������ÿa
p

cos
1

3
arctan

�������������������
ÿ1ÿ 4a3

b2

r !
� 2m

3
p

 !vuut ;

m � 0; 1; 2 �31�
The double sign denotes the forward and backward
propagating wave modes. A positive and negative
value for x=k occurs because the zeroes of a polynomial
in x=k� �2 were determined.

The complex structure of these solutions together
with the abbreviations introduced above prevents the

®nding of analytic expressions for the eigenvectors
corresponding to these eigenvalues. So the polarizations
of the Hall-MHD modes have to be calculated numer-
ically.
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