
(24) and (25); expressions for the kernels in these equa-
tions were given in a later paper (Storey and Lefeuvre,
1980), which will be called Paper II.

Wave distribution function analysis is a set of proce-
dures for determining the WDFs from measurements of
the electromagnetic field. So far, it has been developed
only for measurements of different field components, all
made over the same brief interval of time at the same (pos-
sibly moving) point, as for instance on an artificial satel-
lite; only this case will be considered here. At least three
EM field components are needed. These may be all
electric, all magnetic, or one of one kind and two of the
other. At most, measurements of all three electric and three
magnetic field components can be made and analysed.
Thus the basic data are simultaneous measurements of 
N field components versus time, where N can be any num-
ber from 3 to 6.

In a preliminary step, these N time series are processed
to yield the best possible estimates of their N auto-spectra
and N (N–1) cross-spectra, a total of N 2 power spectra;
precisely how these spectra are defined will be discussed
in a moment. They are the input to the actual analysis, for
which purpose it is convenient to arrange them in an N ×N
matrix known as the spectral matrix. Then, in this main
part of the procedure, the spectral matrix is analysed to de-
termine the WDFs. The analysis involves the inversion of
equation (24) or (25) of Paper I, which is a badly posed
inverse problem.

From here on, in discussing WDF analysis, the partic-
ular case where N = 6 will be taken. The generalisation to
other values of N should be obvious.

The basic equations of WDF analysis comprise, firstly,
the expression for the spectral matrix in terms of the field
components, and secondly, the equations that relate the
WDFs to the spectral matrix. All of them were stated cor-
rectly in Paper I, but in forms that are now seen to be awk-
ward in some respects. The purpose of the present note is
to restate them in more serviceable forms, which will be
done by changing the definitions of some of the variables.

In deciding on the exact form of the spectral matrix, the
problem is that the electric and magnetic field components
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Abstract. The basic equations of wave distribution func-
tion analysis are rewritten in forms that treat the electric
and magnetic fields of the waves in a more symmetrical
way than the original equations do, and are slightly better
for computing.

Key words. Radio science (electromagnetic metrology) ·
Electromagnetics (plasmas; signal processing and adap-
tive antennas)

This note revises a set of equations first published in two
papers in the now defunct Geophysical Journal of the
Royal Astronomical Society. The corrections, however, are
made to the form of the equations rather than to their con-
tent, i.e., they concern errors of presentation, not of mate-
rial fact.

For a linear random field of electromagnetic (EM)
waves in a magnetoplasma, and for each of the EM wave
modes that this medium supports, the wave distribution
function (WDF) describes how the energy density at a
given time t and position r is distributed with respect to
the wave number vector k, or, more conveniently, with re-
spect to the frequency and to the direction of propagation.
In this latter form, the WDF is the function Fm (t, r, ω, k)
such that

Fm (t, r, ω, k) d 3r dω dσ

is the average energy in the mode m at the time t, in the
volume element d3r at the position r, due to waves with
their angular frequencies in the range from ω to ω + dω
and their normal directions in the element of solid angle
dσ centred on the unit vector k (which is k/|k |). This def-
inition was first given in a paper by Storey and Lefeuvre
(1979), hereinafter referred to as Paper I. Their main find-
ings were embodied in two integral equations, numbered
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have different physical dimensions, whereas, to simplify
the analysis, it is desirable that the matrix elements should
all have the same dimensions. To this end, the electric or
the magnetic components or both must be transformed in
some way so as to make their dimensions the same, before
using them to estimate the spectral matrix. In Paper I, the
authors chose to transform the magnetic field H of the
wave into an equivalent electric field, by multiplying it by
the wave impedance Z0 of free space; this factor is
Z0 = (µ0/ε0)1/2, where µ0 and ε0 are the permeability and
permittivity of free space, respectively. Using a right-
handed Cartesian coordinate system Oxyz with its z-axis
parallel to the static magnetic field, as shown in Fig. 1 of
that paper, a 6-component generalized electric field vec-
tor %% was defined as follows:

(1)

This was equation (6) in Paper I. From measurements of
these 6 field components, the 6 auto-spectra and 30 cross-
spectra that form the elements of the 6 ×6 spectral 
matrix S, all of which had the dimensions of (electric
field)2, were to be estimated by the usual means; see, for
instance, Priestley (1981).

This way of giving the electric and magnetic field com-
ponents the same dimensions before defining the spectral
matrix is inelegant, because it treats the two kinds of field
differently. A better way to make their dimensions the
same was devised by Suchy and Altman (1975). In the
present context, it involves multiplying the right-hand
sides of the six equations in the set (1) by the factor ε0

1/2,
thus replacing those definitions of the components of %
by the following ones:

(2)

Unlike the previous set, these definitions are symmetrical
with respect to the electric and magnetic fields: each field
component is multiplied by the square root of its related
free-space parameter.

When redefined in this way, the vector %% is no longer
a generalized electric field: its components %i all have the
dimensions of (energy density)1/2. None the less, since this
6-component vector still represents both the electric and
the magnetic wave fields, here it will be called the elec-
tromagnetic field vector, or EM field vector for short.

With this new definition of %%, the elements Sij of the
spectral matrix S are ε0 times the ones given by the previ-
ous definition. They now have the dimensions of energy
density.

The abandonment of the definition (1) for %% leads to
the redefinition of other quantities besides S in Papers I 
and II, and it also affects some, though not all, of the other
equations in these papers. In Paper I, the only other quan-
tities that need redefining are, firstly, the generalized
electric field vector εε of an elementary monochromatic
plane wave, and secondly, its complex amplitude vector e,
both of which are introduced in equation (10) of that paper.
Both should now be redefined as EM field vectors in the
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same way as %% was redefined by equation (2) above. With
these changes made, all of the equations other than (6) in
Paper I remain valid, in particular the definition (18) of
the quantities aij which are the kernels of the integral equa-
tions (24) and (25):

(3)

On the right-hand side, ei and ej are components of the 
vector e, the asterisk denotes the complex conjugate, and
ρ is the energy density of the elementary plane wave. Ev-
idently, as a consequence of the redefinition of e, these
kernels now have ε0 times their former values.

Broader changes are needed in Paper II, where expres-
sions are obtained for the kernels aij (ω, k) in terms of the
plasma parameters, albeit through the intermediary of an-
other set of kernels named bij . These are the kernels of two
integral equations analogous to (24) and (25) of Paper I,
but which apply if the electric and magnetic wave fields
are represented, not in the Cartesian coordinate system
used in that paper, but in a complex principal axis coordi-
nate system. The latter system is described in the appen-
dix to Paper II, where equations are given relating the com-
ponents of the same vector in the two systems. The vec-
tors %% and e in the Cartesian system have, as their respec-
tive counterparts in the complex principal axis system, two
vectors named FF and f, which are defined by equations
(7) and (9) of Paper II. To begin with, these vectors must
be redefined in the same way, i.e., by giving them ε0

1/2 times
their former values. The kernels  bij are then defined by
equation (10) of Paper II, which is similar to equation (18)
of Paper I – reproduced as equation (3) above – except that
the product ei ej* is replaced by fi fj* where fi and fj are
components of f:

(4)

This equation is unchanged, but with the new definition of
the vector f the kernels bij , like the aij , have ε0 times their
former values.

Because of the change in the definition of f, some equa-
tions need to be modified in section 5, where an expres-
sion is derived for ρ, the wave energy density. Thus, in the
intermediate equations (39) and (40), the quantity Z0
should be replaced by ε0 Z0 = c–1, where c is the speed of
light; in other words, Z0 in the denominator should be re-
placed by c in the numerator. The same modification
should be made in the final expression (45), but here one
can go further and replace the product Z0 Vg in the denom-
inator by ng in the numerator, where Vg is the modulus of
the component of the group velocity in the direction of the
wave normal and ng is the corresponding refractive index,
given by equation (31) of Paper II.

Likewise, in equation (46) at the outset of section 6, the
factor  Z0 Vg should be replaced by ng

–1. This equation is
the general expression for the kernels bij in the complex
principal axis coordinate system.

In the rest of section 6, expressions are derived for these
36 kernels individually, in the case of a cold magneto-
plasma with no collisions. Here the most convenient place

b
f f

ij
i j( , ) .

*

ω
ρ

k ≡

α ω
ρij

i je e
( , ) .

*

k ≡

652 L.R.O. Storey: Revision of the basic equations of wave distribution function analysis



at which to take account of the above changes is in the def-
inition of the quantity ξ , which is equation (49). The new
definition is 

ξ ≡ 8 [νg (λ + µ)]–1 (5)

which makes ξ dimensionless, whereas previously it had
the dimensions of ε0

–1. The individual kernels are given by
the expressions (50a) through (50u), in all of which ξ ap-
pears as a multiplier. An error in the expression for b55 has
been corrected by Lefeuvre et al. (1986). With the new def-
initions of the 6-component field vector, of the spectral
matrix, and of ξ , these expressions remain valid and the
kernels all become dimensionless also.

In section 7, the expressions (55a) through (56u) are
approximations to the kernels bij for the whistler wave
mode. As they stand, they all contain ε0

–1 as a factor, but
this goes away when the new definitions are used.

None of the other equations in Paper II need to be al-
tered. In particular, equations (12a) through (12f), which
relate the set of the kernels aij to the set of the bij , still ap-
ply. 

Besides being more elegant than the originals, the re-
vised equations are preferable for numerical calculations.
Given that ε0 ≈ 10–11 F m–1, the disappearance of the fac-
tor  ε0

–1 from the expressions for the kernels generally
brings their values closer to unity. Thus the equations may
no longer need to be scaled as a precaution against over-

flow or underflow, in which case the calculations would
run slightly faster. For these reasons I intend always to use
the revised equations in the future, and I urge others to do
the same.
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