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Abstract. A quantitative model of the magnetospheric
magnetic ®eld is developed using poloidal vector ®elds.
This formalism is applied to the ring current region, the
distant ®eld and the return currents. The tail model is
similar to the unwarped model of Tsyganenko. Several
sets of coe�cients are obtained for di�erent Kp through
a ®t of the NSSDC data base. Experimental DB contours
and theoretical distributed currents contours are cor-
rectly described and are Kp-dependent. Field line
topology problems and poor ring current description
observed in models of similar complexity are avoided.
Computer time has been kept reasonable and makes this
model particularly adapted to intensive-type calcula-
tions.

Key words. Magnetospheric physics (magnetospheric
con®guration and dynamics).

1 Introduction

In the last two decades several magnetic ®eld models
have been developed, using di�erent mathematical
approaches and with di�erent goals. The models of
Alekseev and Shabansky (1972), Voigt (1972), Hilmer
and Voigt (1995), Stern (1985) or Schulz and McNab
(1996) used a prescribed magnetopause, parabolic, semi-
spherical or more realistic. Some models had a self-
consistent calculated magnetopause, (Olson and P®tzer,
1974; Choe and Beard, 1974). Only a few of them were
based on magnetic ®eld data (Mead and Fair®eld, 1975;
Tsyganenko and Usmanov, 1982; Tsyganenko, 1987,
1989) or tentatively described the magnetic ®eld topol-
ogy in some regions of the magnetosphere (Olson and
P®tzer, 1974; Kosik, 1989). This spread in the modelling
approaches arose from the di�culty in describing the
distant regions or the local deformations created by
currents (®eld aligned currents, ring current). These

approaches are in fact complementary, the quantitative
models showing their weaknesses when associated to the
data, and the theoretical models bringing to light
possible mathematical tools. In this respect the works
of Schulz and McNab (1987) and Tsyganenko (1996) are
particularly instructive. The present study is another
example of an old technique used for the modelling of
the Earth's dynamo, brought to light by Stern (1976).

The magnetic ®eld is described by a sum of poloidal
vector ®elds and the magnetic ®eld is therefore diver-
gence-free per construction. The ring current region is
described by three poloidal functions (Kosik, 1989). The
more distant ®eld uses a vector spherical harmonics
expansion and the tail model is the 1982 tail model of
Tsyganenko and Usmanov (1982). The return currents
along the magnetopause are modelled by two axisym-
metric cylindrical vector ®elds. In these equations the
coe�cients of the distant ®eld are adjusted through a
least squares ®t of the NSSDC magnetic ®eld data base
developed by Fair®eld et al. (1994). The coe�cients
which describe the ring current region are chosen to
approximate the DB contours of Sugiura and Poros
(1973) and depend on the Kp index. Modelling with a
data base through a least squares ®t of the data is always
a di�cult task when past results are examined. Quite
often the ring current region was inadequately described
and several models exhibited incomplete dayside shield-
ing which produced dayside ®eld line escape. Night side
¯aring of the ®eld lines is quite often observed. As a
consequence a shielding procedure like that developed
by Schulz and McNab (1987, 1996) appears almost
necessary. In our model we ®nally adjust a few coe�-
cients in order to obtain perfect shielding in the dayside
and approach the Sibeck magnetopause. This method is
rather cumbersome but gives interesting results despite a
relatively simple model.

2 The model

Our model is constructed with poloidal and toroidal
vector ®elds and the magnetic ®eld can be expressed as a
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sum of two terms, the toroidal part T and the poloidal
part P (Stern, 1976):

B � r� T �r�r� P �1�
This equation can be expressed in cartesian, spherical or
cylindrical coordinate systems. In this study we will use
only poloidal vector ®elds which generate toroidal
currents (Wolf-Gladrow, 1987). We apply the poloidal
vector ®eld description to the ring current region, to the
magnetic ®eld of the distant regions and to the return
currents along the magnetopause. For sake of simplicity
the magnetic ®eld of the tail is the tail model of
Tsyganenko (1982).

2.1 Description of the ring current magnetic ®eld

The poloidal vector ®eld which describes the ring
current is derived from the general equation expressed
in spherical coordinates (Kosik, 1989):

B � r� �W1r� � r �r� �W2r� �2�
where W1 and W2 are the toroidal and poloidal
generating functions and r is the radius vector. From
this expansion we retain only the poloidal vector term
W2 which is expanded in spherical harmonics:

W2 �
XN

n�1

Xn

m�1
Sn�r�P m

n �h��cnm cosm/� dnm sinm/� �3�

where Sn�r� is a general scalar function of r, the
generating function and the P m

n �h� are the associated
Legendre polynomials. This equation is expressed in
solar magnetic coordinates, h;/ are respectively the
colatitude and the longitude. Substituting Eq. (3) into
Eq. (2) we obtain the three components of B for the 0-tilt
condition:

Br �
XN

n�1

Xn

m�0

Sn�r�
r

n�n� 1�P m
n �h�

�cnm cosm/� dnm sinm/� �4a�

Bh �
XN

n�1

Xn

m�0

Sn�r�
r
� @Sn�r�

@r

� �
� @P m

n �h�
@h

�cnm cosm/� dnm sinm/� �4b�

Bu �
XN

n�1

Xn

m�0
m

Sn�r�
r
� @Sn�r�

@r

� �
� P m

n �h�
sin h

�dnm cosm/ÿ cnm sinm/� �4c�

The ring current region is characterized by negative DB
contours (Sugiura and Poros, 1973). The DB is the scalar
di�erence between the total magnetic ®eld measured by
the spacecraft and the magnetic ®eld of internal origin
given by a model like IGRF:

DB � BT ÿ BI �5�

where BT is the total ®eld measured by the spacecraft
and BI is the IGRF magnetic ®eld. For the ring current
region a satisfactory description was obtained with two
scalar functions for 0-tilt conditions (Kosik, 1989):

Br � 2c10
S1�r�

r
cos h

� 6c21
S2�r�

r
cos h sin h cos/ �6a�

Bh � ÿc10
S1�r�

r
� @S1�r�

@r

� �
sin h

�
���
3
p

c21
S2�r�

r
� @S2�r�

@r

� �
cos 2h cos/ �6b�

B/ � ÿ
���
3
p

c21
S2�r�

r
� @S2�r�

@r

� �
cos h sin/ �6c�

where S1�r� � r3 exp ÿk1r2
ÿ �

and S2�r� � r3 exp ÿk2r2
ÿ �

give a good description of the near-Earth distortion of
the magnetic ®eld through the combination of a
monomial and an exponential. To take into account
the tilt e�ects, three tilt components must be added:

Br �
XN

n�1

Xn

m�0

ST
n �r�
r

n�n� 1�P m
n �h�

� �cnm cosm/� dnm sinm/� sin T �7a�

Bh �
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Xn

m�0

ST
n �r�
r
� @ST

n �r�
@r

� �
@P m

n �h�
@h

� �cnm cosm/� dnm sinm/� sin T �7b�

Bu �
XN

n�1

Xn

m�0
m

ST
n �r�
r
� @ST

n �r�
@r

� �
P m
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� �dnm cosm/ÿ cnm sinm/� sin T �7c�
We retain only one generating function and obtain:

BT
r � c20

ST
2

r
�9 cos2 hÿ 3� sin T �8a�

BT
h � ÿc20

ST
2

r
� @ST

2

@r

� �
3 sin h cos h sin T �8b�

BT
/ � 0 �8c�

where ST
2 � r3 exp ÿkT

2 r2
ÿ �

and T is the tilt angle. The
coe�cients c10 � ÿ1:5; c21 � 0:11; k1 � 0:04; k2 � 0:01;
kT
2 � 0:005 were chosen in order to reproduce DB
contours. The coe�cient c20 can be adjusted. The
magnetic ®eld for the ring current is thus the sum of
eqs. (6) and (8).

2.2 The magnetic ®eld of the distant regions
of the magnetosphere

For the magnetic ®eld contribution of the distant
regions we use also the spherical harmonics series
(Eq. 4a,b,c) but in this case functions Sn�r� are mono-
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mials in rn. In the solar magnetospheric coordinate
system the components of the magnetic ®eld are
expressed as:

Br �
XN

n�1

Xn

m�0
n�n� 1� r

rb

� �nÿ1

� P m
n �h�f�anm cosm/� bnm sinm/� cos T

� �a�nm cosm/� b�nm sinm/� sin Tg �9a�

Bh �
XN

n�1

Xn

m�0
�n� 1� r

rb

� �nÿ1

� @P m
n �h�
@h

f�anm cosm/� bnm sinm/� cos T

� �a�nm cosm/� b�nm sinm/� sin Tg �9b�

B/ �
XN

n�1

Xn

m�0
�n� 1� r

rb

� �nÿ1 m
sin h

� P m
n �h�f�bnm cosm/ÿ anm sinm/� cos T

� �b�nm cosm/ÿ a�nm sinm/� sin Tg �9c�
where h is the colatitude, / the longitude and r the radial
distance. These equations are similar to the usual
spherical harmonics expansions derived from a scalar
potential. They di�er only by the factors n� 1, cos T
and sin T and powers of r

rb
and classical routines

developed for inner ®eld calculations can be partially
re-used. The three components take into account the
amount of tilt and are multiplied by cos T and sin T . The
best results were obtained retaining only terms in cos T .
Symmetry conditions should be taken into account. In
the case of 0 tilt, when /! ÿ/ we have
Br ! Br;Bh ! Bh;B/ ! ÿB/. When the tilt is di�erent
from zero for T ! ÿT and h! pÿ h; we have

Br�ÿT �!ÿBr�T �;Bh�ÿT �! Bh�T �;B/�ÿT � ! ÿB/�T �.
Applying these conditions to expression (9a,b,c) the
coe�cients bnm vanish. The remaining coe�cients anm
multiplied by cos T vanish when n� m is even. The ®nal
formulae for the components of the distant ®eld are:

Br �
XN

n�1

Xn

m�0
n�n� 1� r

rb

� �nÿ1

� P m
n �h�anm cosm/ cos T �10a�

Bh �
XN

n�1

Xn

m�0
�n� 1� r

rb

� �nÿ1

� @P m
n �h�
@h

anm cosm/ cos T �10b�
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XN

n�1

Xn

m�0
�n� 1� r

rb

� �nÿ1

� m
sin h

P m
n �h�anm sinm/ cos T �10c�

The coe�cients a10; a21; a30; a32; a41; a43; a50; a52; a54 are
given in Table 1 for di�erent Kp intervals.

2.3 The return currents

The representation of return currents should take into
account the cylindrical shape of the tail. Therefore
poloidal vector ®elds expressed in cylindrical coordinates
are particularly adapted. The cylindrical coordinate
system should follow the tilt of the dipole near the Earth
and the upward motion of the neutral sheet. We choose
for the solution a sumof poloidal vector ®elds of the form:

Bc �
X

i

r�r� �êzwi� �11�

where the unit vector êz is along the axis xgsm in the Sun
direction, or parallel to this axis. The poloidal functions
have the following form:

Table 1. Various coe�cients and their Kp relationships

iopt 1 2 3 4 5

Kp 1ÿ; 1� 2; 2ÿ 3ÿ; 3; 3� 4ÿ; 4; 4� 5ÿ; 5�
a10 10.98617 9.91009 12.37934 10.32178 3.03703
a21 14.72302 16.17999 18.53984 62.21787 )0.61821
a30 )3.35283 )4.20870 )4.67247 )63.52502 )0.31021
a32 4.81772 5.52585 6.68590 74.90408 )2.19368
a41 )1.71353 )2.40256 )2.91884 )127.25317 )0.56961
a43 0.89381 0.98896 1.24239 41.8594 )0.74172
a50 0.16678 0.22109 0.20900 27.08902 )0.03409
a52 )0.09963 )0.18175 )0.28215 )41.93544 )0.12372
a54 0.07181 0.07170 0.09359 8.13140 )0.07406
rb 12.0 12.0 12.0 36.0 10.0
xN )7.0 )7.0 )7.0 )7.0 )7.0
BN 50.0 40.0 40.0 40.0 50.0
BT 45.0 30.0 30.0 30.0 40.0
S 70.0 70.0 70.0 70.0 70.0
facrc 1.0 1.3 1.5 1.8 2.0
c20 )0.4 )0.4 )0.2666 )0.2666 0.1333
b 25.0 30.0 35.0 50.0 60.0
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wi � Jm�q��ami cosmk� bmi sinmk�ekz �12�
where Jm�q� is the Bessel function of order m and k is
counted from the ygsm axis (solar magnetospheric
coordinate system) and q is counted from the associated
x axis. The solution will contain vector ®elds linked to
the upward motion of the neutral sheet and vector ®elds
associated to the tilt of the dipole. The characteristic
radius of the Bessel functions, Ro, is chosen in accor-
dance with the radius of the tail, (Ro � 30 Re) and the
constant k in the exponential is set to 0.05 for all the
Bessel expansions. In the following part of the text we
will omit the subscript i and the summation sign for the
clarity of the mathematical expressions but a general
solution can always be obtained as a sum of the
elementary solutions with various constants ami; bmi.

We can rewrite Eq. (11) as Bc � r� B1 with

B1 � r� êzw � rw� êz �13�
we get:

B1q � m
Jm

q
fbm cosmkÿ am sinmkgekz �14a�

B1u � ÿ dJm

dq
fam cosmk� bm sinmkgekz �14b�

B1z � 0 �14c�
Taking the curl of B1; Bc � r� B1 we obtain

Bcq � k
dJm

dq
�am cosmk� bm sinmk�ekz �15a�

Bck � km
Jm

q
�bm cosmkÿ am sinmk�ekz �15b�

Bcz � Jm�am cosmk� bm sinmk�ekz �15c�
In the last equation we have taken into account the
de®nition of the Bessel function through its di�erential
equation:

q2 d
2Jm

dq2
� q

dJm

dq
� �q2 ÿ m2�Jm � 0 �16�

We take into account the properties of the Bessel
functions:

2
m
q

Jm � Jmÿ1 � Jm�1 �17a�

2
dJm

dq
� Jmÿ1 ÿ Jm�1 �17b�

We rewrite Eq. (15) as:

Bcq � k
2
�Jmÿ1 ÿ Jm�1��am cosmk� bm sinmk�ekz �18a�

Bck � k
2
�Jmÿ1 � Jm�1��bm cosmkÿ am sinmk�ekz �18b�

Bcz � Jmfam cosmk� bm sinmkgekz �18c�
The currents are obtained by taking the curl of
Eq. (15a,b,c). We obtain:

jcq � m
Jm

q
�bm cosmkÿ am sinmk��1ÿ k2�ekz �19a�

jck � ÿ dJm

dq
�am cosmk� bm sinmk��1ÿ k2�ekz �19b�

jcz � 0 �19c�
These equations can be rewritten as:

jcq � 1
2 �Jmÿ1 � Jm�1�
� �bm cosmkÿ am sinmk��1ÿ k2�ekz �20a�

jck � ÿ 1
2 �Jmÿ1 ÿ Jm�1�

� �am cosmk� bm sinmk��1ÿ k2�ekz �20b�
jcz � 0 �20c�
For our modelling problem we have used only two such
elementary solutions. One solution describes the ®elds
from the subsolar region down to the earthward
boundary of the neutral sheet xn. This component is
subject to the dipole tilt. The other solution describes the
®elds from the earthward boundary of the neutral sheet
xn down to xgsm � ÿ40Re. The tail component will
follow the upward or the downward motion of the
neutral sheet when the dipole tilts. The tilt and non-tilt
components join at xgsm � xn � cos�T � where xn is the
Earthward boundary of the tail neutral sheet. T is the tilt
angle and xn is set to ÿ7 Re.

For 0 tilt the Bessel functions of the two components
have the same x axis which coincides with the xgsm axis.
When the tilt is di�erent from zero the axis of the tail
Bessel functions moves upward and coincides with the
neutral sheet, while the axis of the other component is
tilted as shown in Fig. 1. Up to this point the form of
Eq. (18) and (20) has not been de®ned. The physics
implies an azimuthal ¯ow of the currents in opposite
directions (Fig. 1). In Eq. (20) the trigonometric

Fig. 1. The return currents can be represented by two poloidal vector
®elds expressed in a cylindrical coordinate system. These cylindric
functions join at the edge of the neutral sheet. One cylinder tilts while
the other moves upward. The characteristic radius of the Bessel
functions is 30 Re
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expansion should be of the form sin�2n� 1�k. We have
m � 2n� 1 and for n � 0 the expansion reduces to sin k
The components for the magnetic ®eld are:

Bcq � k
2
�J0 ÿ J2�b sin k ekz �21a�

Bck � ÿ k
2
�J0 � J2�b cos k ekz �21b�

Bcz � J1b sin k ekz �21c�
For the return currents we have:

jcq � 1
2 �J0 ÿ J2�b cos k ekz�1ÿ k2� �22a�

jck � ÿ 1
2 �J0 ÿ J2�b sin k ekz�1ÿ k2� �22b�

jcz � 0 �22c�
In our model the subsolar and the tail components have
the same form previously de®ned. For the calculation of
the magnetic ®eld or the currents at a given point it is
only necessary to take into account the location of the
point with respect to the Earthward boundary of the
neutral sheet xn.

2.4 The tail ®eld model

For sake of simplicity we use the model developed by
Tsyganenko and Usmanov (1982) which does not have
warping. We recall his equations in the gsm coordinate
system:

Btx �
"

z

p�z2 � D2�12
BN ÿ xN ÿ x

S
BT

� �
F �x; z�:

� BT

2pS
zG�x; z�

#
f �y� �23a�

Bty � 0 �23b�

Btz �
"

BN ÿ xN ÿ x
S

BT

� �G�x; z�
2p

:

� BT

p
1ÿ �z

2 � D2�12
S

F �x; z�
 !#

f �y� �23c�

where

F �x; z� � tanÿ1
xN ÿ x

�z2 � D2�12
ÿ tanÿ1

xN ÿ xÿ S

�z2 � D2�12
�24�

G�x; z� � Ln
�xN ÿ x�2 � z2 � D2

�xN ÿ xÿ S�2 � z2 � D2
�25�

f �y� � 1� y
Dy

� �2
" #ÿ1

and S � xN ÿ xF �26�

In these equations xN and xF are the positions of the
inner and outer edges of the current sheet, D is the half
thickness of each ®lament in the tail current sheet. S is
the width of the sheet in the x direction, f �y� is an
attenuation function. Typical values are D � 2Re;

Dy � 10Re; xn � ÿ7Re. S; BN ; BT are the parameters
we have chosen to adjust.

When the tilt is di�erent from zero, the neutral sheet
moves upwards or downwards and the location of the
point of gsm coordinates (xgsm, ygsm, zgsm) is located at
a distance z de®ned as z � zgsmÿ kxNk sin T from the
neutral sheet where T is the tilt angle.

3 The use of the database

A large database (more than 79 000 records) has been
built up by Fair®eld et al. (1994). The magnetic ®eld
measurements extend to )70 Re in the tail, but there is
no data inside a sphere of 4 Re. Figures 2 and 3 display
the whole set of data for all the tilt angles for Kp = 1
and Kp = 5 respectively in the xgsm; ygsm and
xgsm; zgsm planes, where xgsm; ygsm; zgsm are the solar
magnetospheric coordinates. Several models have been
built using this database or part of this data base (Mead
and Fair®eld, 1975; Tsyganenko, 1987, 1989). For high-
tilt angles ®eld line escape in the day side is quite often
observed in these models as well as night side ®eld line
¯aring. This phenomenon is also obtained in our ®rst
tentative uses of the database and we have tried to ®nd
the origin of this phenomenon. The database was
divided in subsets for each Kp interval and a double
®ltering was made on both the tilt angle and the
location. Data was selected for tilt values in the range
(30±35�) and near the magnetopause using the model of
Sibeck et al. (1991) within ygsm values between ÿ5 Re
and �5 Re. Results are plotted in Figs. 4 and 5 for
Kp = 1 and Kp = 5 respectively. These ®gures show
clearly the lack of data near the boundary for high-tilt
angles and above the dipole poles. This has important
consequences as a least squares ®t of the data will
incorporate almost no information at high latitudes and
high-tilt angles indicating the presence of a boundary in
these regions and for these tilt conditions. As a
consequence the coe�cients of the model will not
contain this information and ®eld line escape will be
observed. The lack of data near the Earth results in a
poor description of the ring current region in the
absence of an ``ad-hoc'' ring current model (Mead and
Fair®eld, 1975). In Tsyganenko (1987, 1989) models the
ad-hoc ring current could not describe the eastward and
westward components of the ring current. This can be
noticed in his Fig. 6 (Tsyganenko, 1989) compared to
Fig. 5 (Hilmer and Voigt, 1995).

However the introduction of a better ring current
description increases the ®eld line escape: the creation of
a negative DB bay in the ring current region counteracts
the magnetic ®eld compression in the day side. To avoid
this problem theoretical models previously developed
used a prede®ned magnetopause, spherical (Voigt,
1972), parabolic (Alekseev and Shabansky, 1972; Stern,
1985) or with a more realistic shape (Schulz and
McNab, 1996). In these models the following equation
should be ful®lled for any point of the magnetopause:

�~Bd �~Be� � n̂ � 0 �27�
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where ~Bd is the dipole ®eld, ~Be the magnetospheric
magnetic ®eld and n̂ is the normal to the magnetopause
at that point. Since the shape of the magnetopause is
given and the dipole ®eld known, the external ®eld inside
the magnetosphere must ful®ll the stated condition on
the boundary. Schulz and McNab (1996), and Tsyga-
nenko (1995) have applied the constraint in a least
squares sense:Z

mp
�n̂ � B�2 dS �28�

where the integral is calculated over the magnetopause
surface. In the present work we have adopted a di�erent
approach using an iterative process. The NSSDC
database is divided into several subsets for di�erent
Kp values from 0, 0� to 5ÿ, 5, 5�. Least squares are
performed on these data sets using the tail model with
coe�cients BT � 10, BN � 20, S=70, the ring current
contribution is set to zero, as well as the return currents.
The subsolar distance is adjusted for the various data
subsets. The least squares give the coe�cients anm. In the
second step the ring current is switched on and its

Fig. 3. Similar to Fig. 2 but for a high
geomagnetic activity level (Kp = 5). A lack
of measurements is observed over the polar
regions where ®eld line escape usually occur

Fig. 2. In these two plots the location of the
data points for a low geomagnetic activity
level (Kp = 1) are displayed in the solar
magnetospheric coordinate system planes
xgsm-ygsm and xgsm-zgsm. Notice the ab-
sence of points near xgsm � 0 and for zgsm
values greater than 14 Re or below ÿ10 Re.
Notice also the lack of points for distances
less than 4 Re
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intensity adjusted with a multiplying factor, facrc, in
order to approximate the experimental DB contours
obtained by Sugiura and Poros (1973). This factor
equals 1 for Kp = 1 and 2 for Kp = 5. At this stage of
the work, the tracing of the ®eld lines usually give poor
results, with a ®eld line escape in the dayside for high-tilt
angles.

In the third step the return currents and the tilt part
of the ring current are introduced and the corresponding
coe�cients b and c20 can be adjusted. A careful choice of
these two parameters eliminates the ®eld line escape in
the dayside for tilt angles up to 35�. Our tentatives
indicate that a change as small as 0.01 in one key

coe�cient induces dayside ®eld line escape. In a ®nal
step the tail parameters BN , BT are modi®ed in order to
approach the Sibeck magnetopause boundary. In the
present model we use only one component of the
spherical harmonics expansion, in cos T , with 9 coe�-
cients. Other tentatives with a higher number of

Fig. 6. Field lines are plotted for colatitudes lower than 28� or higher
than 162� with a 2� step for Kp = 1 and tilt = 35�. The diameter of
the tail for xgsm � ÿ40 Re is approximately 46 Re. The subsolar
point distance is around 12 Re

Fig. 4. The data set for Kp = 1 has been ®ltered to retain points
located over the polar regions. Retained points have a ygsm
coordinate lower than 5 Re and have a zgsm coordinate higher than
zmin. zmin is the local zgsm coordinate of the Sibeck magnetopause
minus 2 Re. The lack of data along the magnetopause boundary even
within a thickness of 2 Re can be noticed

Fig. 5. Same as Fig. 4. The data set for Kp = 5 has been ®ltered in
the same conditions with the Sibeck magnetopause model adapted to
Kp = 5. The lack of data points is even more important

Fig. 7. DB contours are obtained for Kp = 1 and tilt = 35� with a
10 nanoteslas step. In the ring current region the depression is around
ÿ30 nanoteslas in the day side and ÿ50 nanoteslas in the night side.
Negative bays are obtained near the cusps while positive contours are
observed near the subsolar point
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coe�cients gave poor results, with an important uncer-
tainty for the higher order coe�cients. The coe�cients
are given in Table 1 and are discontinuous with
Kp values.

4 The results

In Figs. 6 and 7 the magnetic ®eld lines and the DB
contours have been plotted for Kp = 1 and tilt = 35�.
The DB contours are in good agreement with the
experimental results of Sugiura and Poros (1973)
(Fig. 8). Figures 9 and 10 give the ®eld line topology
and the DB contours for Kp� 5 and tilt = 35�. DB
contours show higher depressions in the ring current
region and ®eld lines are more compressed and the ®eld
line escape is avoided. These results are Kp-dependent
and should be compared to the corresponding models
of Tsyganenko (1987, 1989). However the ®eld line
topology and the near-Earth region description make
our model similar to the latest model of Tsyganenko
1996_V1 (Tsyganenko, 1996) with the following set of
parameters: imf = 0, dst = 0, pdyn = 2 for Kp = 1
and imf = 0, dst = 20 , pdyn = 6 for Kp = 5. The
complexity of our analytical formulation is far less
important compared to this last model, even if the ®eld
aligned currents are not described. As a consequence
the computing time for ®eld lines and DB contours
requires 60 s versus 12 s for the Tsyganenko 1989 model
and 480 seconds for the Tsyganenko 1996_V1 model on
a Sun Sparc 5 workstation. We have calculated the
distributed currents, J � r� B. The results for the
ygsm component are plotted in Figs. 11 and 12 for Kp
= 1 and Kp = 5 for a 35� tilt angle. In these plots
positive values correspond to current ¯ow in the
direction of the positive ygsm axis and negative values
correspond to current ¯ow in the direction of the
negative ygsm axis.

The current ¯ow bends with the tilt of the dipole axis
in the ring current region. In this region the two
components of the ¯ow are present, an eastward ¯ow
near the Earth and a westward ¯ow in the outer region
and can be compared to the self-consistent results of
Sozou and Windle (1969) and the model of Hilmer and
Voigt (1995). This feature was absent in the earlier
models of Tsyganenko (Fig. 6, 1989). The increase in
geomagnetic activity results in an increase of the
intensity of the currents. In the tail, positive values
indicate the dawn dusk ¯ow of currents in the neutral
sheet.

Fig. 8. The experimental DB contours have
been plotted for Kp = 1. DB is the scalar
di�erence between the total ®eld and the
internal ®eld of the Earth. These contours
are averaged over the tilt. The step between
two contours is 10 nanoteslas

Fig. 9. Same as Fig. 6 but for Kp = 5. The ®eld lines are more
compressed. The diameter of the tail is around 40 Re and the subsolar
point is located at 10 Re
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5 Conclusions

The present results indicate that the poloidal vector ®eld
formalism can be applied to the modelling of almost all

the regions of the magnetosphere to good e�ect. The
ring current region and the distant ®eld are described
with vector spherical harmonics but the generating
function is adapted to each particular topology. The
ring current region is described by the product of a
monomial and an exponential while the distant ®eld is
described by a monomial. The return currents are
described with vector cylindrical harmonics and their
adequate choice is guided by the topology of the
currents to be described. Vector ®eld formalism can
lead to very complex models by simply adding more and
more contributions, but the simpler the construction,
the more e�cient the model will be. The tail model
resisted our e�orts and was borrowed from the
Tsyganenko and Usmanov (1982) model. It is not
warped and is the single non-poloidal part of this model
presently. This model did not use a prescribed magne-
topause nor the mathematical technique employed
elsewhere to satisfy the boundary conditions. As a
consequence the obtention of a series of models with no
®eld line escape in the day side and without night side
¯aring of the ®eld lines required several iterations and
was rather cumbersome. This iteration process was only
possible with a rather simple mathematical model. The
lack of data over the dipole poles near the magneto-
pause lead to a ®eld line shape somehow di�erent from
the Sibeck magnetopause model. Incorporating our
previous model of the ring current enabled a good
description of this region in accordance with the
experimental results of Sugiura and Poros (1973).

Using di�erent data sets several series of coe�cients
have been derived for di�erent Kp. In this respect our
model belongs to the series of the earlier Tsyganenko
models, 1982 to 1989 (Tsyganenko and Usmanov 1982;
Tsyganenko, 1987, 1989). However some problems
encountered in these models have been corrected, in

Fig. 11. The Jy component of the current density contours is plotted
for Kp = 1. Positive values correspond to current ¯ow in the
direction of the positive ygsm axis. Positive ygsm axis is perpendicular
to the xgsmÿ zgsm plane and points out of the ®gure. Negative values
correspond to current ¯ow in the direction of the negative ygsm axis.
There is an eastward ¯ow near the Earth and a westward ¯ow in the
outer region. In the night side the westward current merges smoothly
with the dawn-dusk current ¯ow of the neutral sheet. Quantities
should be multiplied by 1:2 � 10ÿ10 A=m2

Fig. 12. Same as Fig. 11 but for a geomagnetic activity level Kp = 5.
Eastward and westward currents are enhanced by a factor two

Fig. 10. The DB contours are obtained for Kp = 5 and tilt = 35�.
The ring current depression reaches ÿ50 nanoteslas in the day side
and is lower than ÿ60 nanoteslas in the night side. The step between
two contours is 10 nanoteslas
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particular a good description of the near-Earth magnetic
®eld has been obtained. Our model does not include ®eld
aligned currents nor a warped tail as in the most recent
model of Tsyganenko (Tsyganenko, 1996). Its simplicity
and its ease of use makes it particularly suited for a ®rst
approach in the interpretation of particle data or
intensive type calculations.
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