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Abstract. This paper provides a complete generalization
of the classic result that the radius of curvature (q) of a
charged-particle trajectory confined to the equatorial
plane of a magnetic dipole is directly proportional to the
cube of the particle’s equatorial distance (-) from the
dipole (i.e. q ∝ -3). Comparable results are derived for
the radii of curvature of all possible planar charged-
particle trajectories in an individual static magnetic
multipole of arbitrary order m and degree n. Such
trajectories arise wherever there exists a plane (or
planes) such that the multipole magnetic field is locally
perpendicular to this plane (or planes), everywhere apart
from possibly at a set of magnetic neutral lines.
Therefore planar trajectories exist in the equatorial
plane of an axisymmetric (m � 0), or zonal, magnetic
multipole, provided n is odd: the radius of curvature
varies directly as -n�2. This result reduces to the classic
one in the case of a zonal magnetic dipole (n � 1).
Planar trajectories exist in 2m meridional planes in the
case of the general tesseral (0 < m < n) magnetic
multipole. These meridional planes are defined by the
2m roots of the equation cos[m(/ ÿ /m

n )] � 0, where
/m

n � (1/m) arctan (hm
n =gm

n ); gm
n and hm

n denote the
spherical harmonic coefficients. Equatorial planar tra-
jectories also exist if (n ÿ m) is odd. The polar axis
(h � 0,p) of a tesseral magnetic multipole is a magnetic
neutral line if m > 1. A further 2m(n ÿ m) neutral lines
exist at the intersections of the 2m meridional planes
with the (n ÿ m) cones defined by the (n ÿ m) roots of
the equation P m

n �cos h� � 0 in the range 0 < h < p,
where P m

n �cos h� denotes the associated Legendre
function. If (n ÿ m) is odd, one of these cones coincides
with the equator and the magnetic field is then
perpendicular to the equator everywhere apart from
the 2m equatorial neutral lines. The radius of curvature
of an equatorial trajectory is directly proportional to
-n�2 and inversely proportional to cos�m�/ÿ /m

n )].
Since this last expression vanishes at the 2m equatorial

neutral lines, the radius of curvature becomes infinitely
large as the particle approaches any one of these neutral
lines. The radius of curvature of a meridional trajectory
is directly proportional to rn�2, where r denotes radial
distance from the multipole, and inversely proportional
to P m

n (cos h)/sin h. Hence the radius of curvature
becomes infinitely large if the particle approaches the
polar magnetic neutral line (m > 1) or any one of the
2m(n ÿ m) neutral lines located at the intersections of
the 2m meridional planes with the (n ÿ m) cones.
Illustrative particle trajectories, derived by stepwise
numerical integration of the exact equations of particle
motion, are presented for low-degree (n � 3) magnetic
multipoles. These computed particle trajectories clearly
demonstrate the ‘‘non-adiabatic’’ scattering of charged
particles at magnetic neutral lines. Brief comments are
made on the different regions of phase space defined by
regular and irregular trajectories.

1 Introduction

In his book The Polar Aurora, Störmer (1955) drew
attention to an important property of the trajectories of
those charged particles whose orbital motion is confined
to the equatorial plane of a magnetic dipole. Every
equatorial trajectory has the remarkable geometrical
property that its radius of curvature at any point is
proportional to the cube of its radial distance from the
magnetic dipole. The prime purpose of this paper is to
show that Störmer’s result can be extended to planar
charged-particle trajectories in general axisymmetric and
non-axisymmetric multipole magnetic fields.

Mathematical investigations of charged-particle tra-
jectories in an individual multipole magnetic field have
important applications in studies of geomagnetically
trapped radiation, the geographical distribution of
precipitating auroral particles and the trajectories of
cosmic rays near the Earth. Theoretical understanding
of these three topics has been advanced significantly
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through detailed investigations of the motion of an
isolated charged particle in a dipole magnetic field
(Störmer, 1955; Vallarta, 1961; Alfvén and Fälthammar,
1963; Hess, 1968; Roederer, 1970; Walt, 1994; Walker
and Russell, 1995). In fact, a dipole magnetic field has
been used extensively in geomagnetism and magneto-
spheric physics as a first-order approximation to the
contemporary geomagnetic field (Chapman and Bartels,
1940; Akasofu and Chapman, 1972). The dipole
approximation to the geomagnetic field is often ade-
quately accurate in the inner magnetosphere, where the
distortion of the geomagnetic field by the flow of solar-
wind plasma is negligible. Extensions of the theory to
the case of an isolated charged particle moving in an
individual, non-dipolar, multipole magnetic field are
important because such extensions have possible analo-
gous applications during geomagnetic polarity reversals.

2 Transitional-field models
of geomagnetic polarity reversals

Experimental studies of palaeomagnetic records span-
ning various polarity reversals have resulted in the
development of several semi-quantitative models of the
geomagnetic field during the transition interval, which
typically lasts several thousand years (Fuller et al., 1979;
Hoffman, 1982, 1983, 1985; Merrill and McElhinny,
1983; Jacobs, 1984; Clement and Kent, 1984 a,b, 1985;
Bogue and Hoffman, 1987; Bogue and Merrill, 1992;
McFadden and Merrill, 1995). However, palaeomag-
netic evidence pertaining to one particular polarity
reversal implies the existence of brief episodes of
extraordinarily rapid field change of about six degrees
per day (Coe et al., 1995). Initially, the experimental
observations were interpreted as implying axisymmetric
(or zonal), but non-dipolar, transitional magnetic fields,
and many of the early models attempted to synthesize
the observed transitional fields in terms of low-degree
linear (or axial) multipoles. In most of the initial
investigations (Hoffman, 1977, 1979; Dodson et al.,
1978; Hoffman and Fuller, 1978; Fuller et al., 1979) it
was claimed that the predominant component of the
transitional magnetic field would be either a linear
(axial) quadrupole or a linear (axial) octupole. Subse-
quently, Williams and Fuller (1981) developed a model
of the transitional magnetic field based on the
dominance of low-degree zonal harmonics or axial
multipoles.

Although the initial interpretation of transition
records did not exclude the possibility of non-axisym-
metric magnetic-field components (Hoffman, 1979,
1981), several of the authors cited above maintained
that the geomagnetic field was predominantly axisym-
metric, but non-dipolar, during at least part of the
Matuyama-Brunhes (R → N) transition interval. More
recent palaeomagnetic evidence has been interpreted as
implying that the geomagnetic field was probably non-
axisymmetric, rather than axisymmetric, during at least
some, if not all, polarity reversals (Clement and Kent,
1985, 1991; Hoffman, 1985; Prévot et al., 1985 a,b;

Theyer et al., 1985; Herrero-Bervera and Theyer, 1986;
Bogue and Hoffman, 1987; Roperch and Chauvin, 1987;
Valet et al., 1988, 1989, 1992; Laj et al., 1988; Weeks
et al., 1988; Clement and Kent, 1991; Clement, 1991;
Bogue and Merrill, 1992; McFadden and Merrill, 1995).
Nevertheless, whenever there is some evidence for axial
symmetry, as in the case of the Matuyama-Brunhes
transition interval, its existence is sometimes more
apparent during the initial (or decay) phase of the
reversal process than the recovery phase (Hoffman,
1982, 1986; Mankinen et al., 1985; Prévot et al., 1985
a,b; Bogue and Hoffman, 1987; Roperch and Chauvin,
1987; Roperch and Duncan, 1990; Chauvin et al., 1990;
Bogue and Merrill, 1992). This empirical evidence is in
agreement with certain theoretical ideas on polarity
reversals (Hide, 1981, 1982).

3 Solar-terrestrial physics
during geomagnetic polarity reversals

Large changes in the geomagnetic field, over either
historical or geological time-scales, would have pro-
duced significant changes in the nature of magneto-
spheric and solar-terrestrial conditions. Some of the
more important possible changes have been explored in
a series of pioneering papers by G. L. Siscoe and co-
workers (Siscoe, 1976 a,b,c, 1979; Siscoe and Chen,
1975; Siscoe and Christopher, 1975; Siscoe and Crooker,
1976; Siscoe, Chen and Harel, 1976; Siscoe and Sibeck,
1980). Most of these investigations have been concerned
primarily with the solar-terrestrial conditions that might
be expected to arise during geomagnetic reversals or
excursions. Similarly, Rishbeth (1985) has discussed the
principal features that might exist in the terrestrial
‘‘palaeo-ionosphere’’ if the geomagnetic field were to
assume either an axisymmetric or a non-axisymmetric
quadrupolar form during a geomagnetic polarity
reversal.

As a useful theoretical preliminary to a detailed study
of magnetospheric, ionospheric and cosmic-ray physics
during geomagnetic polarity reversals, Willis and Young
(1987) derived an exact equation for the magnetic field
lines of a general axisymmetric magnetic multipole of
arbitrary degree (n). Subsequently, Jeffreys (1988)
presented an alternative, and somewhat simpler, math-
ematical derivation of the equation for the field lines of a
single axisymmetric multipole and Backus (1988) gen-
eralized this result to the case of an arbitrary linear
combination of axisymmetric multipoles. In a special
extension to non-axisymmetric magnetic fields, Willis
and Gardiner (1988) derived exact equations for the
magnetic field lines of both symmetric sectorial (m � n)
and anti-symmetric sectorial (m � n ÿ 1) magnetic
multipoles of arbitrary degree (n).

As implied in the Introduction, major changes in the
configuration of the geomagnetic field during polarity
reversals would almost certainly lead to dramatic
changes in geomagnetically trapped radiation, the
geographical distribution of precipitating auroral parti-
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cles and the distribution of cosmic rays impinging on the
Earth’s upper atmosphere. Willis and Gardiner (1988)
inferred that planar (two-dimensional) charged-particle
trajectories would exist for both symmetric sectorial
(m � n) and anti-symmetric sectorial (m � n ÿ 1) multi-
pole magnetic fields. This inference was based entirely
on the geometrical configuration of the magnetic field
lines for such multipoles. The purpose of this paper is to
prove rigorously that planar trajectories exist for
charged-particle motion in most individual axisym-
metric and non-axisymmetric multipole magnetic fields.
Therefore, the theory developed here provides a
complete generalization of the classic result for
charged-particle motion in the equatorial plane of a
magnetic dipole (Störmer, 1955). However, it should be
emphasized at the outset that the discussion is restricted
to two-dimensional (planar) trajectories, and no attempt
is made in this paper to determine the allowed and
forbidden regions for full three-dimensional particle
motion.

4 The magnetic field of a general multipole

Following the procedure adopted in previous papers
(Willis and Young, 1987; Willis and Gardiner, 1988), it
is convenient to derive the equations that define the
magnetic field of a general magnetic multipole from the
general spherical harmonic expansion of the Earth’s
main magnetic field.

At any given instant of time (epoch) the external
scalar potential, V (r, h, /), of the Earth’s main
magnetic field, which is of internal origin, can be
expressed in the following form (Chapman and Bartels,
1940; Roederer, 1972; Stern, 1976):

V �r; h; /� �
X1

n�1

Vn �r; h; /�; �1�

where

Vn�r; h; /� � RE�RE=r�n�1

�

Xn

m�0

cm
n cos�m�/ÿ /m

n �� P m
n �cos h�; �2�

cm
n � j��gm

n �
2
� �hm

n �
2
�

1=2
j; c0

n � g0
n �h

0
n � 0� �3�

and

/m
n � �1=m� arctan �hm

n =gm
n � � �1=m� arcsin �hm

n =cm
n �: �4�

In this representation of the geomagnetic field, positions
on the surface of the Earth are specified in terms of
spherical polar coordinates (r, h, /) with origin O at the
centre of the Earth; r is the radial distance (r�RE), h is
the geographic colatitude with the north geographic pole
at h � 0, and / is the geographic longitude measured
east from Greenwich. The radius of the reference sphere,
r � RE, is taken to be the mean radius of the Earth
(6371.2 km); Pn

m (cos h) is Schmidt’s partially (or quasi-)
normalized associated Legendre function of order m and
degree n (where m and n are integers); gm

n and hm
n are the

spherical harmonic (or Schmidt) coefficients for the
particular epoch considered; and all physical quantities
are measured in SI units. In this paper the definition of
(magnetic) scalar potential (V ) is such that the spherical
harmonic coefficients gm

n and hm
n have the dimensions of

magnetic induction (i.e. B � ÿgrad V).
The total scalar potential defined by Eqs. 1 and 2 is

just a double summation over all scalar potentials of the
form

V m
n � cm

n RE�RE=r�n�1 cos �m�/ÿ /m
n ��P

m
n �cos h�; �5�

each of which defines an individual magnetic multipole
of order m and degree n (0 � m � n). The parameter cm

n
represents the ‘‘total strength’’ of this multipole and the
parameter /m

n denotes the phase angle (with respect to
the reference meridian / � 0). In the special case of an
axisymmetric (zonal) magnetic multipole, m � 0, and it
then follows from Eqs. 3 and 4 that Eq. 5 reduces to the
form

V 0
n � g0

n RE�RE=r�n�1P 0
n �cos h�: �6�

The magnetic-field components of the general mag-
netic multipole can be found from the equation B �

ÿgrad (Vn
m), with Vn

m defined by Eq. 5. In spherical polar
coordinates, the three magnetic-field components are

Br � �n � 1� cm
n �RE=r�n�2 cos�m�/ÿ /m

n �� P m
n �cos h�; �7�

Bh � ÿcm
n �RE=r�n�2 cos�m�/ÿ /m

n ��
dP m

n �cos h�
dh

; �8�

B/ � m cm
n �RE=r�n�2 sin�m�/ÿ /m

n ��
P m

n �cos h�
sin h

: �9�

In the special case of a zonal magnetic multipole,
m � 0, c0

n � g0
n�h

0
n � 0� and dP 0

n �cos h�=dh � ÿ�n�n � 1�
=2�1=2P 1

n �cos h� this last equation is presented by Chap-
man and Bartels (1940; Chap. XVII, Eq. 55). Equations
7–9 then reduce to the pair of equations

Br � �n � 1� g0
n �RE=r�n�2 P 0

n �cos h� �10�

and

Bh � �n�n � 1�=2�1=2 g0
n �RE=r�n�2 P 1

n �cos h�: �11�

The magnetic-field-line configuration of this general
axisymmetric magnetic multipole has been considered in
detail by Willis and Young (1987). Moreover, in the
special cases m � n and m � n ÿ 1, the series expansion
for Pn

m(cos h) given by Chapman and Bartels (1940;
Chap. XVII, Eqs. 10 and 20) can be used to reduce the
magnetic-field components to purely trigonometric
forms. Then Eqs. 7–9 simplify to the two sets of three
equations considered by Willis and Gardiner (1988) in
their discussion of the magnetic-field-line configurations
of symmetric sectorial (m � n) and anti-symmetric
sectorial (m � n ÿ 1) magnetic multipoles.

In the following discussion of the motion of an
isolated charged particle in an individual multipole
magnetic field, it is advantageous to refer the particle
motion to a right-handed system of rectangular Carte-
sian coordinates O(x, y, z), with origin O at the centre of
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the Earth and z-axis coincident with the polar axis
(h � 0,p) of the system of spherical polar coordinates.
The magnetic-field components in Cartesian coordinates
are related to those in spherical polar coordinates by the
three equations

Bx � Br sin h cos / � Bh cos h cos / ÿ B/ sin /; �12�

By � Br sin h sin / � Bh cos h sin / � B/ cos /; �13�

Bz � Br cos h ÿ Bh sin h: �14�

5 Motion of a charged particle in a general magnetic field

It is convenient to define in this section certain general
results for the motion of an isolated charged particle in a
magnetic field. The general results presented in this and
the previous sections can then be used to consider planar
charged-particle trajectories in particular multipole
magnetic fields.

If radiation losses are neglected, the relativistic
equation of motion of an isolated charged particle of
rest mass m0, charge Qe (where e denotes the magnitude
of the charge on an electron) and velocity v moving in a
static magnetic induction B is (Alfvén and Fälthammar,
1963; Northrop, 1963)

d
dt
�cm0v� � Qe�m � B�; �15�

where c � (1 ÿ |v|2/c2)ÿ1/2 and c denotes the speed of
light. It is clear from the form of Eq. 15 that the speed V
( � |v|) of the particle remains constant, and hence it is
possible to write

s � Vt; �16�

where s denotes arc length along the particle trajectory,
measured from a fixed point.

Referred to the right-handed system of rectangular
Cartesian coordinates O(x, y, z) introduced in Sect. 4,
the three components of Eq. 15 can then be expressed in
the form (Störmer, 1955; Sandström, 1965)

d2x
ds2 �

Qe
cm0V

� �
Bz

dy
ds
ÿ By

dz
ds

� �
; �17�

d2y
ds2 �

Qe
cm0V

� �
Bx

dz
ds
ÿ Bz

dx
ds

� �
; �18�

d2z
ds2 �

Qe
cm0V

� �
By

dx
ds
ÿ Bx

dy
ds

� �
; �19�

where B � (Bx, By, Bz), v � (u; v;w) and u � dx/dt �
Vdx/ds, etc. Since the constant speed V of the particle is
given by

V 2
� u2

� v2
� w2

� �dx=dt�2
� �dy=dt�2

� �dz=dt�2
; �20�

it follows that

�dx=ds�2
� �dy=ds�2

� �dz=ds�2
� 1: �21�

The general equation for the radius of curvature, q, of
the trajectory of an isolated charged particle is given by

1=q2
� �d2x=ds2

�

2
� �d2y=ds2

�

2
� �d2z=ds2

�

2
: �22�

For any specific multipole magnetic field (Bx, By, Bz),
Eqs. 17–19 can be substituted into Eq. 22 to yield the
corresponding specific expression for the radius of
curvature of the particle trajectory.

6 Equatorial trajectories
in zonal multipole magnetic fields

For a zonal (m � 0), or axisymmetric, multipole
magnetic field, B/ � 0 and the other two magnetic-field
components, Br and Bh, are defined by Eqs. 10 and 11,
respectively. In the equatorial plane (h � p/2), Schmidt’s
partially normalized associated Legendre functions Pn

0

(cos h) and P 1
n (cos h) can be expressed in the following

trigonometric forms (Erdélyi et al., 1953; Vol. I, Sect.
3.4, amended Eq. 20)

P 0
n �0� � pÿ1=2 cos�np=2�C�n=2 � 1=2�=C�n=2 � 1� �23�

and

P 1
n �0� � ÿ 2�2=n�n � 1��1=2pÿ1=2

� cos��n � 1�p=2�C�n=2 � 1�=C�n=2 � 1=2�;�24�

where Γ denotes the gamma function. It is clear from
Eqs. 10, 11, 23 and 24 that Br � 0, Bh 6� 0 in the
equatorial plane if n is odd, whereas Br 6� 0, Bh � 0 in
the equatorial plane if n is even. Therefore, the magnetic
field lines of an axisymmetric magnetic multipole are
locally perpendicular to the equatorial plane if n is odd
and lie in the equatorial plane if n is even. This
theoretical result is completely consistent with the
illustrative magnetic-field-line configurations for low-
degree (1 � n � 4) axisymmetric magnetic multipoles
presented in Fig. 1 of the paper by Willis and Young
(1987).

From the foregoing discussion, it is intuitively clear
on physical grounds that (planar) equatorial trajectories
exist in zonal multipole magnetic fields if the degree (n)
of the multipole is odd. This result can be proved rigo-
rously as follows. If n is odd (Br � 0, Bh 6� 0 if h � p/2
and B/ � 0), substituting Eqs. 10 and 11 into Eqs. 12–
14, and using Eqs. 23 and 24, yields the following
equations for the Cartesian components of the magnetic
field in the equatorial plane (h � p/2) of an axisym-
metric multipole

Bx � By � 0 �25�

and

Bz � ÿ�n�n � 1�=2�1=2g0
nRn�2

E P 1
n �0�=�x

2
� y2

�

�n�2�=2
; �26�

since z � 0 if h � p/2 and Pn
0 (0) � 0 if n is odd. If Eqs.

25 and 26 are substituted into Eqs. 17–19, the three
differential equations that define the motion of a
charged particle in the equatorial plane of an axisym-
metric magnetic multipole become
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d2x
ds2 � ÿ

Qe
cm0V

� �
�n�n � 1�=2�1=2g0

nRn�2
E P 1

n �0�

�x2
� y2

�

�n�2�=2

" #
dy
ds

; �27�

d2y
ds2 � �

Qe
cm0V

� �
�n�n � 1�=2�1=2g0

nRn�2
E P 1

n �0�

�x2
� y2

�

�n�2�=2

" #
dx
ds

; �28�

d2z
ds2 � 0: �29�

Equation 29 confirms that the charged particle remains
in the equatorial plane if dz/ds � 0, that is if w � 0.

If Eqs. 27–29 are now substituted into Eq. 22, the
radius of curvature of the equatorial particle trajectory
is given by

1
q2 �

� Qeg0
n

cm0V

�2
�n�n � 1�=2��P 1

n �0��
2

��x2
� y2

�=R 2
E �

n�2

" #

�

h� dx
ds

�2
�

� dy
ds

�2i
: �30�

Writing -2
� x2

� y2 (z � 0) and remembering that
(dx/ds)2

� (dy/ds)2
� 1 (dz/ds � 0) from Eq. 21, and

P 1
n (0) is defined by Eq. 24, this last equation can be

simplified to the form

q �
cm0V
Qeg0

n

� �
p1=2C�n=2 � 1=2�

C�n=2 � 1�

� �
-
RE

� �n�2

; �31�

provided the degree (n) of the axisymmetric multipole is
odd so that cos2[(n � 1)p/2] � 1. For a dipole magnetic
field (n � 1), Eq. 31 reduces to the form

q �
cm0V
Qeg0

1

� �
-
RE

� �3

; �32�

since Γ (1) � 1 and Γ(3/2) � (1/2) p1/2.
It follows from Eq. 32 that the radius of curvature of

the trajectory of a charged particle moving in the
equatorial plane of a magnetic dipole (n � 1) is
proportional to the cube of the equatorial distance of
the particle from the dipole (q ∝ -3). This result is
essentially the same as that given by Störmer (1955; cf.,
his Eq. 8.6). Equation 31 is the extension of Störmer’s
result to the case of a charged particle moving in the
equatorial plane of an axisymmetric magnetic multipole
of odd degree n, so that q is directly proportional to
-n�2 in the general case.

7 Meridional trajectories
in sectorial multipole magnetic fields

The magnetic-field configurations of both symmetric
sectorial (m � n) and anti-symmetric sectorial
(m � n ÿ 1) magnetic multipoles have been considered
in detail by Willis and Gardiner (1988). As shown by
these authors, the magnetic-field components of a
symmetric sectorial (m � n) magnetic multipole can be
expressed in the trigonometric form

Br � �n � 1� Cn
n rÿ�n�2� sinn h cos�n�/ÿ /n

n��; �33�

Bh � ÿn Cn
n rÿ�n�2� sinnÿ1 h cos h cos�n�/ÿ /n

n��; �34�

B/ � n Cn
n rÿ�n�2� sinnÿ1 h sin�n�/ÿ /n

n��; �35�

where the parameter Cn
n is defined by the equation

Cn
n �

�2�2n�!�1=2

2nn!
cn

nRn�2
E �36�

and cn
n is defined by Eq. 3.

As noted by Willis and Gardiner (1988), the magnetic
field of a symmetric sectorial (m � n) multipole is locally
perpendicular to the 2n meridional planes / � /n

n
�

(2k � 1)p/2n � /k
*, where k � 0, 1,..., 2n ÿ 1; that is, Br

� Bh � 0, B/ 6� 0 everywhere in these planes apart from
the polar axis (h � 0, p), which is a neutral line if n > 1.
The magnetic-field components in these 2n meridional
planes are given by.7

Br � Bh � 0 �37�
and

B/ � �ÿ1�knCn
nrÿ�n�2� sinnÿ1 h: �38�

Substituting these components into Eqs. 12–14 yields
the following equations for the Cartesian components
of the magnetic field in the 2n meridional planes/ � /�

k :

Bx � ÿ�ÿ1�knCn
nrÿ�n�2� sinnÿ1 h sin /�

k ; �39�

By � ��ÿ1�knCn
nrÿ�n�2� sinnÿ1 h cos /�

k ; �40�

Bz � 0: �41�

If Eqs. 39–41 are substituted into Eqs. 17–19, the
three differential equations that define the motion of a
charged particle in one of the 2n meridional planes
/ � /k

* become

d2x
ds2 �ÿ

Qe
cm0V

� ��
�ÿ1�knCn

nrÿ�n�2� sinnÿ1 h
�

� cos /�

k
dz
ds

; �42�

d2y
ds2 �ÿ

Qe
cm0V

� ��
�ÿ1�knCn

nrÿ�n�2� sinnÿ1 h
�

� sin /�

k
dz
ds

; �43�

d2z
ds2 ��

Qe
cm0V

� ��
�ÿ1�knCn

nrÿ�n�2� sinnÿ1 h
�

� cos /�

k
dx
ds
� sin /�

k
dy
ds

� �
: �44�

It follows from Eqs. 42 and 43 that

cos /�

k d2y=ds2
ÿ sin /�

k d2x=ds2
� 0; �45�

which implies that the particle remains in the plane
/ � /k

* if

cos /�

k dy=ds ÿ sin /�

k dx=ds � 0: �46�

If Eqs. 42–44 are substituted into Eq. 22, and Eq. 46
is used to simplify the resulting expression, it follows
that q is given by
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1
q2 �

Qe
cm0V

� �2�
�ÿ1�knCn

nrÿ�n�2� sinnÿ1 h
�2

�

h� dx
ds

�2
�

� dy
ds

�2
�

� dz
ds

�2
�
: �47�

Using Eqs. 21 and 36, the expression for the radius of
curvature of a charged particle moving in one of the 2n
meridional planes, / � /n

n
� (2k � 1)p/2n � /k

*, where
k � 0, 1, 2, ..., 2n ÿ 1, becomes

q �

cm0V
Qecn

n

� �
2n
�n ÿ 1�!

�2�2n�!�1=2

" #

�

��x2
� y2

� z2
�=R2

E�
�2n�1�=2

��x2
� y2

�=R2
E�
�nÿ1�=2

; �48�

since r2
� x2

� y2
� z2 and sin h � (x2

� y2)1/2/(x2
� y2

� z2)1/2.
It follows from Eq. 48 that the radius of curvature of

a charged particle moving in one of the 2n special
meridional planes / � /k

* (k � 0, 1, 2, ..., 2n ÿ 1) of a
symmetric sectorial magnetic multipole is directly pro-
portional to r2n�1 and inversely proportional to -n-1,
where r denotes radial distance from the multipole and -
denotes perpendicular distance from the polar axis (h �
0, p). The polar axis is a neutral line if n > 1 (Willis and
Gardiner, 1988) and in this case Eq. 48 implies that q →
∞ as - � (x2

� y2)1/2 → 0. This result confirms the
physically intuitive conclusion that the radius of
curvature becomes infinitely large as the particle
approaches the polar neutral line (n > 1).

In the degenerate case m � n � 1, which corresponds
to a dipole lying in the equatorial plane (Roederer, 1972;
Willis and Gardiner, 1988), Eq. 48 reduces to the form

q �
cm0V
Qec1

1

� � 
r

RE

!3

; �49�

where the equality c1
1 � ��g1

1�
2
� �h1

1�
2
�

1=2 specifies the
strength of the dipole. This equation is the same as
Eq. 32 apart from the value of the spherical harmonic
coefficient (i.e. c1

1 replaces g0
1). In this degenerate case the

two special meridional planes / � /1
1
� p/2 and

/ � /1
1 � 3p=2 �k � 0; 1� define the dipole magnetic

equatorial plane in which the particle trajectory lies,
which accounts for the essential equivalence of Eqs. 32
and 49.

8 Planar trajectories in tesseral multipole magnetic fields

8.1 Equatorial and meridional magnetic-field components

The magnetic-field components of the general tesseral
(0 < m < n) magnetic multipole are defined by Eqs. 7–9.
It follows from the form of these three Equations, and
Eq. 7 in the paper by Willis and Gardiner (1988), that
the polar axis (h � 0, p) is a neutral line (Br � Bh � B/

� 0) if m > 1. In addition, neutral lines exist at the
intersections of the 2m meridional planes / � /m

n �

�2k � 1�p=2m � /k, where k � 0, 1, 2,..., 2m ÿ 1, with

the (n ÿ m) cones h � hi, where hi (1 � i � nÿ m) denote
the (n ÿ m) different roots of the equation Pn

m (cos h) � 0
in the range 0 < h < p (Chapman and Bartels, 1940;
Chap. XVII, Sect. 17.6). Therefore, in the general case
there are 2m(n ÿ m) neutral lines apart from the polar
axis. If (n ÿ m) is odd, one of the (n ÿ m) zeros of Pn

m

(cos h) occurs at the equator (h � p/2), so that there are
then 2m equatorial neutral lines.

It follows from the preceding discussion that if
(n ÿ m) is odd the magnetic field of a tesseral magnetic
multipole is locally perpendicular to the equatorial
plane (h � p/2); that is Br � B/ � 0, Bh 4 0
everywhere in the equatorial plane apart from the 2m
equatorial neutral lines. Similarly, the magnetic field of
a tesseral magnetic multipole is locally perpendicular to
the 2m meridional planes / � /n

m
� (2k � 1)p/2m � /k

*

(k � 0, 1, 2,..., 2m ÿ l); that is Br � Bh � 0, B/ 4 0
everywhere in these planes apart from the 2m(n ÿ m)
neutral lines lying on the (n ÿ m) cones h � hi (i � 1,
2, 3, ..., n ÿ m) and also the polar axis, which is a
neutral line if m > l. Therefore, if (nÿm) is odd, the
magnetic-field components in the equatorial plane
(h � p=2 are given by

Br � B/ � 0 �50�

and

Bh �ÿ cm
n �RE=r�n�2 cos�m�/ÿ /m

n ��

� �dP m
n �cos h�=dh�h�p=2; �51�

whereas the magnetic-field components in the 2m
meridional planes / � /k

* are given by

Br � Bh � 0 �52�

and

B/ � �ÿ1�kmcm
n �RE=r�n�2

�P m
n �cos h�= sin h�: �53�

Substituting Eqs. 50 and 51 into Eqs. 12–14 yields the
following equations for the Cartesian components of the
magnetic field in the equatorial plane (h � p/2, z � 0,
-2

� x2
� y2):

Bx � By � 0 �54�

and

Bz � cm
n �RE=-�

n�2 cos�m�/ÿ /m
n ��

� �dP m
n �cos h�=dh�h�p=2: �55�

Similarly, substituting Eqs. 52 and 53 into Eqs. 12–14
yields the following equations for the Cartesian
components of the magnetic field in the 2m meridional
planes / � /k

* (k � 0, 1, 2,..., 2m ÿ 1):

Bx�ÿ�ÿ1�kmcm
n �RE=r�n�2

�P m
n �cos h�= sin h� sin /�

k ; �56�

By���ÿ1�kmcm
n �RE=r�n�2

�P m
n �cos h�= sin h� cos /�

k ; �57�

Bz � 0: �58�
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8.2 Equatorial particle trajectories

Consider first the case for which (n ÿ m) is odd and
there exists a class of particle trajectory that is confined
to the equatorial plane. If Eqs. 54 and 55 are substituted
into Eqs. 17–19, the three differential equations that
define the motion of a charged particle in the equatorial
plane become

d2x
ds2 ��

Qe
cm0V

� �
cm

n �RE=-�
n�2 cos�m�/ÿ /m

n ��

h

� �dP m
n �cos h�=dh�h�p=2

i dy
ds

; �59�

d2y
ds2 �ÿ

Qe
cm0V

� �
cm

n �RE=-�
n�2 cos�m�/ÿ /m

n ��

h

� �dP m
n �cos h�=dh�h�p=2

i dx
ds

; �60�

d2z
ds2 � 0: �61�

Equation 61 confirms that the charged particle remains
in the equatorial plane (z � 0) if dz/ds � 0, that is if
w � 0.

If Eqs. 59–61 are substituted into Eq. 22, the radius
of curvature (q) of an equatorial particle trajectory is
given by

1
q2 �

Qe
cm0V

� �2

cm
n �RE=-�

n�2 cos�m�/ÿ /m
n ��

h

� �dP m
n �cos h�=dh�h�p=2

i2 � dx
ds

�2
�

� dy
ds

�2
� �

: �62�

Remembering that dz/ds � 0 for equatorial trajectories,
and using Eq. 21, the expression for the radius of
curvature becomes

q �
cm0V
Qecm

n

� �
1

j�dP m
n �cos h�=dh�h�p=2j

" #

�

�-=RE�
n�2

j cos�m�/ÿ /m
n ��j

: �63�

In the limiting case of an axisymmetric, or zonal,
magnetic multipole, m � 0, n is odd, c0

n � g0
n �h0

n � 0�
and �dP 0

n �cos h�=dhh�p=2 � ÿ�n�n � 1�=2�1=2, as noted in
Sect. 4. If these expressions, together with Eq. 24, are
used to simplify Eq. 63, the radius of curvature in the
equatorial plane of a zonal (m � 0) magnetic multipole
becomes

q �
cm0V
Qeg0

n

� �
p1=2C�n=2 � 1=2�

2C�n=2 � 1�

� �
-
RE

� �n�2

; �64�

since |cos(n � 1)p/2| � 1 if n is odd. This equation is
identical to Eq. 31, and hence Eq. 63 reduces to the
correct form in the limiting case of a zonal magnetic
multipole (m � 0).

For all non-axisymmetric magnetic multipoles, m > 0
and Eq. 63 can be simplified by using the following

relation (Erdélyi et al., 1953; Vol. I, Sect. 3.4, adapted
Eq. 23)

j�dP m
n �cos�=dh�h�p=2j �2m�1pÿ1=2 2�n ÿ m�!

�n � m�!

� �1=2

�

C�1 � n=2 � m=2�
C�1=2 � n=2 ÿ m=2�

: �65�

This form of the relation is valid for Schmidt’s partially
normalized associated Legendre function Pn

m (cos h) in
the case for which m > 0, (n ÿ m) is odd and hence
|sin [(n � m) p/2] | � 1. If Eq. 65 is substituted into Eq.
63, the radius of curvature of a charged particle confined
to the equatorial plane of the general tesseral (0 < m < n)
magnetic multipole becomes

q �
cm0V
Qecm

n

� �
p1=2

2m�1

�n � m�!
2�n ÿ m�!

� �1=2 C�1=2 � n=2 ÿ m=2�
C�1 � n=2 � m=2�

" #" #

�

�-=RE�
n�2

j cos�m�/ÿ /m
n ��j

; �66�

subject only to the restriction that (n ÿ m) must be odd.
It is not possible to derive Eq. 31, which specifies the
radius of curvature of a charged-particle trajectory
confined to the equatorial plane of an axisymmetric
multipole (m � 0), simply by putting m � 0 in Eq. 66,
because this latter equation has been derived on the
assumption that m > 0. As noted by Willis and Gardiner
(1988), the series expansion for the Schmidt-normalized
form of Pn

m (cosh) yields a value of Pn
0(cosh) that is too

large by a factor 21/2 in the degenerate case m � 0;
consequently, the value on the right-hand side of Eq. 65
is too large by 21/2 if m � 0.

It follows from this last equation that the radius of
curvature of a charged particle moving in the equatorial
plane (h � p/2) of a tesseral (0 < m < n) magnetic
multipole, for which (n ÿ m) is odd, is directly propor-
tional to -n�2 and inversely proportional to | cos[m(/ ÿ

/n
m)] |. Therefore, q → 1 as | cos[m(/ ÿ /n

m)] | → 0,
which confirms the physically intuitive conclusion that
the radius of curvature becomes infinitely large as the
particle approaches any one of the 2m neutral lines in
the equatorial plane (i.e. h � p/2, / � /n

m
� (2k � 1)/2m

for k � 0, 1, 2, ..., 2m ÿ 1).
Another particular case of special interest is that of a

charged particle moving in the equatorial plane of an
anti-symmetric sectorial (m � n ÿ1) magnetic multipole.
The magnetic-field-line configuration in this case has
been discussed in detail by Willis and Gardiner (1988).
Since n ÿ m � 1, which is odd, the magnetic field of an
anti-symmetric sectorial magnetic multipole is locally
perpendicular to the equatorial plane everywhere apart
from the 2(n ÿ 1) equatorial neutral lines defined by
/ � /nÿ1

n � �2k � 1�p=2�n ÿ 1�, where k � 0, 1, 2,..., 2n
ÿ 3. Using the expression Γ(n � 1/2) � (2n)! p1/2/22nn!
(Abramowitz and Stegun, 1972; Chap. 6, Eqs. 6.1.8 and
6.1.12), Eq. 66 reduces to the following form in the
particular case m � n ÿ 1
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q �
cm0V

Qecnÿ1
n

� �
2nn!

�2n�!
�2n ÿ 1�!

2

� �1=2
" #" #

�

�-=RE�
n�2

j cos��n ÿ 1��/ÿ /nÿ1
n ��j

: �67�

As in the general case (0 < m < n) defined by Eq. 66, the
radius of curvature of a charged particle moving in
the equatorial plane of an anti-symmetric sectorial
(m � n ÿ 1) magnetic multipole is directly proportional
to -n+2 and inversely proportional to |cos[(n ÿ 1) (/ ÿ

/n
nÿ1]|. Since q → 1 as |cos[(n ÿ 1)(/ ÿ /n

nÿ1]| → 0, the
radius of curvature becomes infinitely large as the
particle approaches any one of the 2(n ÿ 1) neutral
lines in the equatorial plane.

In the degenerate case n � 1 (m � 0), which corre-
sponds to a magnetic dipole coincident with the polar axis
(Willis and Gardiner, 1988), Eq. 67 reduces to the form

q �
cm0V

Qe21=2g0
1

� �
-
RE

� �3

: �68�

This equation is the same as Eq. 32 apart from the
introduction of the spurious factor 21/2. Once again, the
discrepancy arises because Eq. 66 is strictly valid only if
m > 0. In the degenerate case m � 0, n � 1, the
Schmidt-normalized form of Pn

m (cosh) that is used in
the derivation of Eq. 66 for the case m > 0 is actually too
large by a factor 21/2, as noted in Sect. 3 of Willis and
Gardiner (1988).

8.3 Meridional particle trajectories

Consider next the case of particle trajectories that are
confined to one of the 2m meridional planes / � /n

m
�

(2k � 1)p/2m � /k
*, where k � 0, 1, 2,..., 2m ÿ 1. If Eqs.

56–58 are substituted into Eqs. 17–19, the three
differential equations that define the motion of a
charged particle in one of the 2m meridional planes
become

d2x
ds2 �ÿ

Qe
cm0V

� ��
�ÿ1�kmcm

n �RE=r�n�2
�P m

n �cos h�= sin h�
�

� cos /�

k
dz
ds

; �69�

d2y
ds2 �ÿ

Qe
cm0V

� ��
�ÿ1�kmcm

n �RE=r�n�2
�P m

n �cos h�= sin h�
�

� sin /�

k
dz
ds
; �70�

d2z
ds2 ��

Qe
cm0V

� ��
�ÿ1�kmcm

n �RE=r�n�2
�P m

n �cos h�= sin h�
�

�

"

cos /�

k
dx
ds
� sin /�

k
dy
ds

#

: �71�

It follows from Eqs. 69 and 70 that

cos /�

k
d2y
ds2 ÿ sin /�

k
d2x
ds2 � 0; �72�

which implies that the particle remains in the plane
/ � /k

* if

cos /�

k
dy
ds
ÿ sin /�

k
dx
ds
� 0: �73�

If Eqs. 69–71 are substituted into Eq. 22, and Eq. 73 is
used to simplify the resulting expression, it follows that
q is given by

1
q2 �

Qe
cm0V

� �2�
�ÿ1�kmcm

n �RE=r�n�2
�P m

n �cos h�= sin h�
�2

�

"� dx
ds

�2
�

� dy
ds

�2
�

� dz
ds

�2
#

: �74�

Using Eq. 21, the expression for the radius of curvature
of a charged particle moving in one of the 2m meridional
planes / � /n

m
� (2k � 1) p/2m � /k

*, where k � 0, 1, 2,
..., 2m ÿ 1, becomes

q �
cm0V
Qecm

n

� �
�r=RE�

n�2

jmP m
n �cos h�= sin hj

: �75�

It follows from Eq. 7 of Willis and Gardiner (1988) that
the relation mPn

m (cosh)/sinh ∝ sinmÿ1h holds for small
values of sinh (sin h < 1). Therefore, as noted in Sect.
8.1, the polar axis (h � 0,p) is a neutral line if m > 1 and
in this case Eq. 75 indicates that the radius of curvature
becomes infinitely large as the particle approaches this
polar neutral line; that is, q → 1 as h → 0 or h → p.
Likewise, if m > 0, Eq. (75) implies that q → 1 as the
particle approaches any one of the 2m(n ÿ m) neutral
lines located at the intersections of the 2m meridional
planes / � /n

m
� (2k � 1)p/2m � /k

*, where k � 0, 1,
2,..., 2m ÿ 1, with the (n ÿ m) cones h � hi, where hi
(1 � i � n ÿ m) denote the (n ÿ m) roots of the equation
Pn

m (cosh) � 0 in the range 0 < h < p. Therefore, the
radius of curvature of a planar charged-particle
trajectory, confined to one of the 2m meridional planes
/ � /k

*, becomes infinitely large as the particle
approaches any one of the (n ÿ m) neutral lines in that
particular meridional plane. Moreover, if (n ÿ m) is odd,
there are 2m equatorial neutral lines, as noted in Sect.
8.1. In this case, it follows from the results derived in the
present section and the previous one that the radius of
curvature becomes infinitely large as the particle
approaches any equatorial neutral line in either an
equatorial or a meridional (planar) trajectory.

In the limiting case of a symmetric sectorial (m � n)
magnetic multipole, it follows from Eq. 7 in Willis and
Gardiner (1988) that

nP n
n �cos h�
sin h

�

�2�2n�!�1=2

2n
�n ÿ 1�!

sinnÿ1 h : �76�

If Eq. 76 is substituted into Eq. 75, the radius of
curvature in the limiting case m � n becomes

q �
cm0V
Qecn

n

� �
2n
�n ÿ 1�!

�2�2n�!�1=2

" #
�r=RE�

n�2

sinnÿ1 h
: �77�

204 D. M. Willis et al.: Planar charged-particle trajectories in multipole magnetic fields



Since r2
� x2

� y2
� z2 and sinh � (x2

� y2)1/2/(x2
� y2

� z2)1/2, Eq. 77 is identical to Eq. 48, which confirms
that Eq. 75 reduces to the correct form in the special
case of a sectorial magnetic multipole (m � n). The
physical properties of meridional charged-particle tra-
jectories in sectorial magnetic multipoles are described
in Sect. 7 and need not be discussed further here.

In the case of an anti-symmetric sectorial (m � n ÿ 1)
magnetic multipole, it follows from Eq. 7 in Willis and
Gardiner (1988) that

�n ÿ 1�P nÿ1
n �cos h�

sin h
�

�n ÿ 1��2n�!
2nn!

�

"
2

�2n ÿ 1�!

#1=2

sinnÿ2 h cos h :

�78�

If Eq. 78 is substituted into Eq. 75, the radius of
curvature in the case m � n ÿ 1 becomes

q �
cm0V

Qecnÿ1
n

� �
2nn!

�n ÿ 1��2n�!
�2n ÿ 1�!

2

� �1=2
" #" #

�

�r=RE�
n�2

sinnÿ2 hj cos hj
; �79�

which may be rewritten in the form

q �
cm0V

Qecnÿ1
n

� �
2nn!

�n ÿ 1��2n�!
�2n ÿ 1�!

2

� �1=2
" #" #

�

��x2
� y2

� z2
�=R2

E�
�2n�1�=2

��x2
� y2

�=R2
E�
�nÿ2�=2

�jzj=RE�
; �80�

since r2
� x2

� y2
� z2, sin h � (x2

� y2)1/2/(x2
� y2

�

z2)1/2 and cos h � z/(x2
� y2

� z2)1/2. The physical
interpretation of Eq. 80, which applies to an anti-
symmetric sectorial (m � n ÿ 1) magnetic multipole, is
entirely analogous to the interpretation of Eq. 75, which
applies to a tesseral (0 < m < n) magnetic multipole. In
the particular case m � n ÿ 1, for which (n ÿ m) is
clearly odd, there is only one root of the equation
Pn

nÿ1 (cosh)� 0 in the range 0 < h < p, namely h � p/2.
Therefore, apart from the neutral line coincident with
the polar axis if n > 2, there are only the 2(n ÿ 1) neutral
lines in the equatorial plane.

As already noted for equatorial trajectories, the
degenerate case n � 1 (m � 0) corresponds to a magnetic
dipole coincident with the polar axis. Equation 80 is
inapplicable in the degenerate case m � 0 because the
derivation of this expression for the radius of curvature is
valid only if m > 0. In the particular case n � 2 (m � 1),
which corresponds to a ‘‘normal’’ (or planar) quadrupole
aligned with the polar axis, it follows from Eq. 80 that q ∝
r5 | z |ÿ1, where z denotes perpendicular distance from the
equatorial neutral line in either of the two meridional
planes / � /2

1
� p/2 and / � /2

1
� 3p/2 (k � 0,1). In

addition, for equatorial trajectories in the particular case
n � 2 (m � 1), it follows from Eq. 67 that q ∝ -5 | n |ÿ1,

where n denotes equatorial distance perpendicular to
either of these (equatorial) neutral lines.

Similarly, if m � n � 2 it follows from Eq. (48) that
q ∝ r5 -ÿ1 where - again denotes perpendicular
distance from the polar axis (h � 0,p) in one of
the following four meridional planes / � /2

2
� p/4, /

� /2
2
� 3 p/4, / � /2

2 � 5p=4 and / � /2
2
� 7p/4

(k � 0, l, 2, 3). The essential equivalence of the func-
tional form of the two quadrupolar radii of curvature
(m � 1, n � 2 and m � n � 2) arises because the
corresponding magnetic fields differ only in terms of
their different orientations with respect to the system of
spherical polar coordinates (Willis and Gardiner, 1988).
This result is an extension to the case n � 2 of the
essential equivalence of the functional form of the two
dipolar radii of curvature (m � 0, n � l and m � n � l),
as noted in the discussion following immediately after
Eq. 49. By analogy with the corresponding conclusion
for the configurations of multipole magnetic fields
(Willis and Gardiner, 1988), this result cannot be
extended to the radii of curvature of planar particle
trajectories in higher-degree magnetic multipoles (n > 2).

9 Illustrative charged-particle trajectories

The purpose of this section is to provide a few
illustrative examples of planar charged-particle trajec-
tories in low-degree (n � 3) multipole magnetic fields.
All trajectories presented in the following figures have
been derived by stepwise numerical integration of the
exact equations of motion of a charged particle in a
static magnetic field. In each example, distances are
expressed in terms of the radius of the Earth (RE) as unit
distance. Since the particle trajectories are merely
intended to be illustrative, the strength of each low-
degree multipole is arbitrarily assumed to be defined by
the appropriate spherical harmonic coefficients in the
International Geomagnetic Reference Field (IGRF) for
1990 (Langel, 1992). The energy of the particle (proton)
is then adjusted to give trajectories that lie within a
sphere of radius 4 RE yet still illustrate the basic
principles of particle motion in low-degree multipole
magnetic fields. Although the various aspects of
numerical accuracy are not discussed in any detail,
considerable care has been taken to ensure that the
numerical integrations are accurate. This accuracy has
been achieved by checking all results using different
standard numerical integration routines (e.g. Adams,
Backward Differentiation Formulae and Runge-Kutta-
Merson) and different numerical tolerances (e.g. 10ÿ4 to
10ÿ14) in these integration routines.

Figure 1 shows an illustrative trajectory for a 1-GeV
proton confined to the equatorial plane of a zonal
magnetic dipole (g0

1 � ÿ 29775 nT), obtained by step-
wise numerical integration of Eqs. 27–29 in the case
n � 1. This trajectory illustrates the classic result,
derived by Störmer (1955), that the radius of curvature
(q) of a charged particle moving in the equatorial plane
of a magnetic dipole is proportional to the cube of the
equatorial distance (-) of the particle from the dipole,
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namely q ∝ -3 (cf. Sect. 6). Similarly, Fig. 2 shows an
illustrative trajectory for a 300-keV proton confined to
the equatorial plane of a zonal magnetic octupole
(g0

3 � 1315 nT), obtained by stepwise numerical integra-
tion of Eqs. 27–29 in the case n � 3. The radius of
curvature of this trajectory varies with equatorial
distance from the octupole according to the relation
q ∝ -5.

Figure 3 shows a pair of sample trajectories for a 500-
keV proton confined to a supplementary pair of the four
special meridional planes / � /2

2
� (2k � 1) p/4

(k � 0,1,2,3) of a symmetric sectorial magnetic quadru-
pole (g2

2 � 1693 nT, h2
2 � ÿ380 nT), obtained by step-

wise numerical integration of Eqs. 42–44 in the case
m � n � 2 (cf. Sect. 7). It follows from Eq. 48 that the
radius of curvature of every such planar trajectory
varies according to the relation q ∝ r5-ÿ1. Since n � 2
(i.e. n > 1� , the polar axis is a magnetic neutral line (cf.
Sect. 7) and the relation q ∝ r5-ÿ1 implies that q →1 as
- → 0. The trajectories shown in Fig. 3 confirm the
physically intuitive conclusion that the radius of curva-
ture becomes infinitely large as the particle approaches
the polar magnetic neutral line (i.e. the z-axis).

It only remains to illustrate the various particle
trajectories in tesseral multipole magnetic fields
(cf. Sect. 8). Figure 4 shows both an equatorial and a
meridional trajectory for a proton in an anti-symmetric
sectorial magnetic quadrupole (g1

2 � 3058 nT,
h2

1
� ÿ2278 nT), for which (n ÿ m) is odd. The

equatorial trajectory shown in Fig. 4 is for a 3-MeV
proton and is obtained by stepwise numerical integra-
tion of Eqs. 59–61 in the case m � 1, n � 2 (cf. Sect.
8.2). The meridional trajectory is for a 1-MeV proton
and is obtained by stepwise numerical integration of
Eqs. 69–71 in the case m � 1, n � 2 (cf. Sect. 8.3). It
follows from Eq. 67 that the radius of curvature (q) of a
planar charged-particle trajectory confined to the
equatorial plane of this anti-symmetric sectorial mag-
netic multipole is directly proportional to -4 and
inversely proportional to cos(/ ÿ /2

1). Since q → 1 as
cos(/ ÿ /2

1) → 0, the radius of curvature becomes
infinitely large as the particle approaches either of the
two magnetic neutral lines in the equatorial plane, which
are defined by / � /2

1
� (2k � 1)p/2 (k � 0,1). Like-

Fig. 1. Planar equatorial trajectory of a proton (1 GeV) in a zonal
dipole magnetic field (m � 0, n � 1; g1

0
� ) 29775 nT)

Fig. 2. Planar equatorial trajectory of a proton (300 keV) in a zonal
octupole magnetic field (m � 0, n � 3; g3

0
� 1315 nT)

Fig. 3. Planar meridional trajectories of a proton (500 keV) in
a symmetric sectorial quadrupole magnetic field (m � 2, n � 2;
g2

2
� 1693 nT, h2

2
� ) 380 nT)

Fig. 4. Planar equatorial (3 MeV) and meridional (1 MeV)
trajectories of a proton in an anti-symmetric sectorial quadrupole
magnetic field (m � 1, n � 2; g2

1
� 3058 nT, h2

1
� ) 2278 nT)
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wise, it follows from Eq. 75 that the radius of curvature
of a charged-particle trajectory confined to the supple-
mentary pair of meridional planes passing through these
two magnetic neutral lines becomes infinitely large as the
particle approaches either one of these neutral lines. The
equatorial and meridional trajectories shown in Fig. 4
confirm these conclusions.

Similarly, Fig. 5 shows an equatorial and two
meridional trajectories for a proton in an anti-
symmetric sectorial magnetic octupole (g2

3 � 1246 nT,
h3

2
� 293 nT). The equatorial trajectory shown in Fig. 5

is for a 50-keV proton and the meridional trajectories
are for a 5-keV proton. This figure confirms that the
radius of curvature of any particle trajectory becomes
infinite as the particle approaches the polar magnetic
neutral line (i.e. the z-axis) or either of the two
(supplementary) equatorial magnetic neutral lines (i.e.
the x- and y-axes).

Consider next particle trajectories in tesseral multi-
pole magnetic fields for which (n ÿ m) is even rather
than odd. Figure 6 shows two illustrative meridional
trajectories for a 100-keV proton in a tesseral magnetic
octupole (g1

3 � ÿ2240 nT, h1
3 � ÿ287 nT). The magnetic

field of this multipole is locally perpendicular to the two
meridional planes / � /3

1
� (2k � 1) p/2 (k � 0,1)

everywhere apart from the four neutral lines defined by
the intersections of these two meridional planes with the
two cones h � h1 and h � h2, where h1 and h2 denote the
two roots of the equation P3

1 (cosh) � 0 in the range 0 <

h < p (cf. Sect. 8.1). It follows from Willis and Young
(1987) that h1 � arccos (1/

p

5) � 63° 26′ 06′′ and h2 � p
– arccos �1=

p

5) � 116° 33′ 54′′ (after correcting for the
typographical omission of the solidus sign in the earlier
paper). Figure 6 confirms that the radius of curvature of
a planar charged-particle trajectory, confined to the
supplementary pair of meridional planes, becomes
infinitely large as the particle approaches any one of
the four neutral lines defined by the intersection of these
planes with the cones h � h1 and h � h2.

10 Scattering of charged particles
at a magnetic neutral line

Figures 3–6 illustrate the ‘‘non-adiabatic’’ scattering of
charged particles near a magnetic neutral line, in the
sense that Alfvén’s ‘‘guiding-centre’’ approximation
(Alfvén and Fälthammar, 1963; Northrop, 1963) is
violated in the immediate vicinity of each neutral line. In
the static magnetic fields considered here, the ‘‘guiding-
centre’’ approximation is valid if the particle’s radius of
gyration is small compared with the characteristic scale
length of spatial variations in the magnetic field
(Chapman, 1961). Since it has been shown in this paper
that the radius of curvature of a particle’s trajectory (i.e.
the instantaneous radius of gyration) becomes infinitely
large as the particle approaches a magnetic neutral line,
the ‘‘guiding-centre’’ approximation is not valid in the
immediate vicinity of such a neutral line.

Although a detailed discussion of the dynamics of
charged particles in multipole magnetic fields is beyond
the intended scope of the present paper, a few brief
comments should be made about the two distinct classes
of planar charged-particle trajectory. For an axisym-
metric magnetic multipole (m � 0) of odd degree
(n odd), there exists a class of equatorial trajectory that
can clearly never intersect a neutral line (cf. Sect. 6, also
Figs. 1 and 2). In the case of a dipole (n � 1), it is known
that the general (three-dimensional) equations of motion
for a trapped particle cannot be solved analytically
(Dragt and Finn, 1976), whereas the equations of
motion for a particle confined to the equatorial plane
can be solved in terms of elliptic functions (Störmer,
1955; Avrett, 1962; Dragt, 1965). A similar statement
holds for charged-particle motion in the equatorial
plane of an axisymmetric magnetic multipole of
arbitrary degree n, provided that n is odd. Therefore,
every equatorial trajectory in an axisymmetric magnetic
multipole of arbitrary (odd) degree is regular (integr-
able) and conserves an adiabatic invariant (such as l).

Fig. 5. Planar equatorial (50 keV) and meridional (5 keV) trajectories
of a proton in an anti-symmetric sectorial octupole magnetic field
(m � 2, n � 3; g3

2
� 1246 nT, h3

2
� 293 nT)

Fig. 6. Planar meridional trajectories of a proton (100 keV) in a
tesseral octupole magnetic field (m � 1, n � 3; g1

3 � )2240 nT, h1
3 �

) 287 nT)
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This class of planar trajectory is a special case that is
dynamically distinct from the rest of phase space.

Conversely, for a non-axisymmetric (sectorial or
tesseral) magnetic multipole (m 4 0), every equatorial
or meridional trajectory eventually intersects a neutral
line (cf. Sects. 7 and 8, also Figs. 3–6), apart from the
degenerate case m � n � 1, which corresponds to a
dipole lying in the equatorial plane (cf. Sect. 7). It
follows from the analytic results presented in Sects. 7
and 8, as well as from the form of the computed
trajectories presented in Figs. 3–6, that a particle
behaves irregularly when it intersects a neutral line.
Therefore, every equatorial or meridional trajectory in a
non-axisymmetric magnetic multipole (n > 1) is
irregular (non integrable) and does not conserve a single
invariant. This class of planar trajectory may well be
dynamically indistinct from the rest of phase space,
although a completely rigorous resolution of this matter
must await a more detailed investigation.

Notwithstanding the need for a more detailed
investigation of the dynamics of charged particles in
multipole magnetic fields, it should be noted that the
results outlined are analogous to those that apply to
charged-particle motion in magnetic reversals (e.g.
Büchner and Zelenyi, 1986, 1989; Chen 1992; Chapman,
1993, 1994; Chapman and Watkins, 1993, 1995). In
magnetic reversals with parabolic field lines, the
equations of particle motion are only integrable in the
special ‘‘equatorial’’ plane (z � 0), which is the only
plane that is everywhere perpendicular to the parabolic
field lines. Trajectories confined to this special plane (i.e.
z � 0, dz/dt � 0) are regular and conserve an exact
invariant, whereas trajectories not confined to this plane
are irregular (chaotic) and do not conserve a single
invariant. In general, chaotic, or stochastic, trajectories
(or sections of such trajectories) access a much more
extensive region of phase space than regular trajectories,
which are constrained in phase space by the existence of
adiabatic invariants.

11 Conclusions

In his book The Polar Aurora, Störmer (1955) obtained
an exact equation for the radius of curvature of the
trajectory of a charged particle whose orbital motion is
confined to the equatorial plane of a magnetic dipole.
Every equatorial trajectory has the remarkable geome-
trical property that its radius of curvature (q) at any
point is proportional to the cube of its (equatorial)
distance (-) from the magnetic dipole, that is q / -3.
This paper extends Störmer’s result by deriving equally
remarkable exact equations for the radii of curvature of
all possible planar charged-particle trajectories in an
individual static magnetic multipole of arbitrary degree
(n) and order (m).

In general, planar charged-particle trajectories arise
wherever there exists a plane (or planes) such that the
multipole magnetic field is everywhere perpendicular to
this plane (or planes), apart from possibly at a set of
neutral lines where the magnetic field actually vanishes.

For example, the magnetic field of an axisymmetric
(m � 0), or zonal, magnetic multipole is everywhere
perpendicular to the equatorial plane, provided the
degree (n) of the multipole is odd. In this general
axisymmetric case, the radius of curvature of the
equatorial particle trajectory is defined by the relation
q ∝ -n�2 (n odd), which reduces to q ∝ -3 if n � 1 (cf.
Eqs. 31 and 32). Therefore, the general result for the
radius of curvature of the trajectory of a charged
particle confined to the equatorial plane of a static
axisymmetric magnetic multipole reduces to Störmer’s
classic result in the limiting case of a magnetic dipole
(n � 1). There are no planar charged-particle trajectories
in the case of an axisymmetric magnetic multipole of
even degree (i.e. n even).

In the case of a general symmetric sectorial (m � n)
magnetic multipole, the magnetic field is locally perpen-
dicular to 2n meridional planes everywhere apart from
the polar axis (h � 0,p), which is a magnetic neutral line
if n > 1. The radius of curvature of a charged particle
confined to any one of these 2n meridional planes varies
according to the relation q ∝ r2n�1/-nÿ1, where r denotes
radial distance from the symmetric sectorial multipole
and - denotes perpendicular distance from the polar
axis (cf. Eq. 48). Therefore, the radius of curvature
becomes infinitely large as the particle approaches the
polar magnetic neutral line (n > 1), as is intuitively clear
on physical grounds.

In the case of a general tesseral (0 < m < n) magnetic
multipole, the magnetic field is locally perpendicular to
2m meridional planes everywhere apart from the polar
axis, which is a neutral line if m > 1, and the 2m(n ÿ m)
neutral lines lying at the intersections of the 2m
meridional planes with the (n ÿ m) cones h � hi, where
hi (1 � i � n ÿ m) denote the (n ÿ m) different roots of
the equation Pn

m (cosh) � 0 in the range 0 < h < p. Thus
there are 2m(n ÿ m) neutral lines apart from the polar
axis in the case of the general tesseral magnetic
multipole. Moreover, if (n ÿ m) is odd, one of the
(n ÿ m) cones coincides with the magnetic equator
(h � p/2) and in this case the magnetic field is
perpendicular to the equatorial plane everywhere apart
from the 2m equatorial neutral lines. Therefore, planar
trajectories exist in 2m meridional planes and the
equatorial plane if (n ÿ m) is odd, but exist only in 2m
meridional planes if (n ÿ m) is even.

If (n ÿ m) is odd, the radius of curvature of an
equatorial particle trajectory is directly proportional to
-n � 2, where - denotes equatorial radial distance from
the multipole, and inversely proportional to cos[m
(/ ÿ /n

m)] (cf. Eq. 66). Since cos[m(/ ÿ /n
m)] vanishes

at the 2m equatorial neutral lines, the radius of
curvature becomes infinitely large as the particle
approaches any one of these neutral lines. This result
holds for an anti-symmetric sectorial (m � n ÿ 1)
multipole because n ÿ m � 1, which is odd (cf. Eq. 67).

The radius of curvature of a meridional particle
trajectory is directly proportional to rn�2, where r
denotes radial distance from the multipole, and inversely
proportional to Pn

m(cosh)/sinh (cf. Eq. 75). Since
Pn

m(cosh)/sinh ∝ sinm ÿ 1 h for small values of h (Willis
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and Gardiner, 1988) and hence the polar axis (h � 0,p) is
a neutral line if m > 1, the radius of curvature becomes
infinitely large as the particle approaches the polar
magnetic neutral line. Likewise, the radius of curvature
becomes infinitely large as the particle approaches any
one of the 2m(n ÿ m) neutral lines located at the
intersections of the 2m meridional planes with the
(n ÿ m) cones defined by the roots of the equation
Pn

m (cosh) � 0 (0 < h < p)
Planar charged-particle trajectories, which illustrate

these theoretical results, are presented in Sect. 9 for low-
degree (n � 3) magnetic multipoles. These illustrative
planar trajectories are computed by stepwise numerical
integration of the exact equations of particle motion.
The computed planar trajectories clearly show the ‘‘non-
adiabatic’’ scattering of charged particles at equatorial,
meridional and polar neutral lines in the case of non-
axisymmetric magnetic multipoles (m 4 0). It should be
emphasized, however, that all the theoretical and
computational results presented in this paper refer to
planar charged-particle trajectories in an individual
static magnetic multipole field.

This non-adiabatic scattering of charged particles
casts some doubt on the possible existence of belts of
stably trapped radiation in any non-axisymmetric
multipole magnetic field that might exist during a
geomagnetic polarity reversal. There could still be
classes of complicated, three-dimensional trajectories,
corresponding to the confinement (‘‘trapping’’) of
charged particles in non-axisymmetric multipole mag-
netic fields, but this possibility requires further investi-
gation. Similarly, further research is required on the
different regions of phase space defined by regular
(integrable) and irregular (non integrable) trajectories.
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