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Abstract. A self-consistent method for day-time F2-
region modelling was applied to the analysis of Mill-
stone Hill incoherent scatter observations during the
storm period of March 16-22, 1990. The method allows
us to calculate in a self-consistent way neutral compo-
sition, temperature and meridional wind as well as the
ionized species height distribution. Theoretically calcu-
lated Ne(h) pro®les ®t the observed daytime ones with
great accuracy in the whole range of heights above
150 km for both quiet and disturbed days. The overall
increase in Tex by 270 K from March 16 to March 22
re¯ects the increase of solar activity level during the
period in question. A 30% decrease in [O] and a two-
fold increase in [N2] are calculated for the disturbed day
of March 22 relative to quiet time prestorm conditions.
Only a small reaction to the ®rst geomagnetic distur-
bance on March 18 and the initial phase of the second
storm on March 20 was found in [O] and [N2] variations.
The meridional neutral wind inferred from plasma
vertical drift clearly demonstrates the dependence on the
geomagnetic activity level being more equatorward on
disturbed days. Small positive F2-layer storm e�ects on
March 18 and 20 are totally attributed to the decrease in
the northward neutral wind but not to changes in
neutral composition. A moderate (by a factor of 1.5) O/
N2 ratio decrease relative to the MSIS-83 model
prediction is required to describe the observed NmF 2
decrease on the most disturbed day of March 22, but
virtually no change of this ratio is needed for March 21.

Introduction

Ionospheric F2-layer storm e�ects related to geomag-
netic disturbances have been studied for some decades

because of their great practical importance for HF radio
communication. The temporal, as well as spatial, storm
e�ect's appearance is dependent on the intensity of
geomagnetic disturbance, local and universal time of
SSC, season, latitude and longitude of the observational
point. Incoherent scatter observations along with F2-
layer theoretical modelling provide an excellent oppor-
tunity for an F2-layer storm e�ect analysis and this is
being conducted by scientists in the framework of the
CEDAR program. Periods of low (Richards et al., 1989)
and high (Buonsanto et al., 1992a; Richards et al.,
1994b) solar activity were analyzed using Millstone Hill
radar observations.

A 7-day interval of continuous observations in
March 16-23, 1990 (high solar activity) comprises quiet
(March 16-17) as well as highly disturbed (March 18, 20,
21) periods with Ap � 76 on March 21. A comprehensive
description of that observational interval and its theo-
retical interpretation is given in Buonsanto et al. (1992a)
for the American sector with Millstone Hill data and in
FoÈ rster et al. (1992) for the European sector with
EISCAT and satellite data of the `Active' experiment.

Millstone Hill radar overhead observations provide
Ne(h), Te(h), Ti(h), and Vz(h) values, which can be used
for a comparison with theoretical model calculations.
Such comparisons were conducted for September 1984
(Richards et al., 1989) and March 1990 (Richards et al.,
1994b) disturbed periods. Despite the fact that rather
sophisticated theoretical models were used in these
analyses they failed to describe the observed negative
phase of ionospheric storms. Taking into account
vibrationally excited N2

�, which in some publications
(Richards et al., 1989; Pavlov, 1994) is considered as a
plausible mechanism for the F2-layer negative storm
e�ect, did not help for the periods in question. The FLIP
model (Richards et al., 1994a, c) did not reproduce the
observed factor of a 1.7 decrease in the day-time
electron density for the September 1984 storm period
(Richards et al., 1989) and factor of 4 in the day-time
NmF 2 decrease for the March 1990 disturbance (Rich-
ards et al., 1994b). Although taking into account N2
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e�ects gets closer than the calculated NmF 2 to the
observed ones for the disturbed days during daytime
hours, the di�erence still remains large for the most
disturbed day of March 22 and the inclusion of N2

�
makes the overall agreement between calculated and
observed NmF 2 for the quiet days of March 18-20 even
worse. So, it was stressed that the inclusion of vibratio-
nally excited N2

� actually worsens the agreement
between modelling and observations (Richards et al.,
1994b). The same conclusion concerning the worsening
e�ect of including vibrationally excited N2

� into model
calculations was obtained by Richards et al. (1994c) for
Millstone Hill data analysis during the period of solar
maximum. On the other hand, Pavlov and Buonsanto
(1997) put the stress on the importance of taking into
account vibrationally excited N2

� to model the March
16-23 and April 6-12, 1990 disturbed periods.

The main obstacle to obtaining a satisfactory theo-
retical model description for the F2-layer negative storm
e�ect consists in the proper choice of thermospheric
parameters. All mentioned theoretical calculations are
based on the empirical (i.e. statistical) MSIS-86 (Hedin,
1987) thermospheric model, which is not designed for
the description of speci®c helio-geophysical conditions
for a given day and especially during disturbed periods
although ®rst-order geomagnetic activity e�ects are
included in MSIS models. A factor of 3 to 5 decrease
in the atomic oxygen density to molecular density ratio
at 300 km was needed to explain the observed decrease
in electron density for the September 1984 storm period
(Richards et al., 1989. The MSIS-86 neutral composition
predictions for the severe storm on March 20-21, 1990
turned out to be insu�cient to explain a factor of 4
depletion in the observed day-time NmF 2 values. The
studies conducted by Richards et al. (1994b) and
Buonsanto (1995) indicate that successful modelling of
F2-layer storms requires a better de®nition of the storm
time inputs, especially of the neutral atmosphere.

On the other hand, neutral composition and temper-
ature as well as vertical plasma drift, i.e. the main
aeronomic parameters responsible for Ne(h) distribution
in the F-region, may be obtained from radar observa-
tions. These observed ionospheric parameters will allow
us to describe the observed Ne(h) height pro®le for the
conditions in question with the best accuracy. It is not a
new idea to use ionospheric, in particular incoherent
scatter data, for the extraction of thermospheric param-
eters. Incoherent scatter measurements provide an
excellent material for such estimates and they have been
widely used for this purpose for years (Salah et al., 1974;
Alcayde et al., 1974; Evans et al., 1979; Alcayde, 1979;
Oliver, 1979, 1980, 1990; Ganguly et al., 1980; Alcayde
and Fontanari, 1982; Lathuillere et al., 1983; Hagan and
Oliver, 1985; FlaÊ et al., 1986; Alcayde and Fontanari,
1986; Burnside et al., 1988; 1991b Belley et al., 1992;
Buonsanto et al., 1992b; Oliver and Glotfelty, 1996).

The general approach is based on the use of the ion
energy conservation equation in the F-region. This
approach can provide valuable information on neutral
temperature, atomic oxygen concentration and ther-
mospheric winds. This method however, is not straight-

forward. Experimental Ti, Te and to less extent Ne
depend upon the assumed model of ion composition.
Usually it is presumed to be unchanged (at Millstone
Hill and EISCAT, for instance) for various geophysical
conditions and this should result in errors in experi-
mental Ti and Te values (Waldteufel, 1971; Lathuillere
et al., 1983; Kirkwood et al., 1986; Winser et al., 1990;
Glatthor and Hernandez, 1990) which are used to
produce the energy equation solution. Further, the
energy equation usually is considered for O� ions in an
atmosphere consisting of atomic oxygen only (Alcayde
and Fontanari, 1982; Burnside et al., 1988), or the whole
neutral composition is taken from an empirical model
(Alcayde and Fontanari, 1986; Winser et al., 1988;
Glatthor and Hernandez, 1990). However, it is well
known that ion composition changes with season and
during geomagnetically disturbed periods. Neutral com-
position may di�er from the empirical model predictions
for the particular day chosen for the analysis. Never-
theless this approach is widely accepted and, for
instance, such popular thermospheric models as the
MSIS series are based on neutral temperature derived
with the help of this method.

In our self-consistent approach (Mikhailov and
Schlegel, 1997) we rely on Ne(h) height distribution as
the most reliable parameter measured by the incoherent
back-scatter facility to deduce thermospheric data. The
traditional approach based on the ion energy conserva-
tion equation is used as well as a part of the method to
®nd the area of possible inverse problem solution. Then
this solution can be speci®ed with the help of standard
multiregressional methods. The method allows us to
obtain, in a self-consistent way, such important ther-
mospheric parameters as: concentrations of atomic [O]
and molecular [O2] oxygen, molecular nitrogen [N2],
vertical plasma drift W, exospheric temperature Tex and
shape parameter S for the Tn height pro®le. It provides
as well the O� ions ¯ux in the topside F2-region as a
result of the continuity equation solution. All these
aeronomic parameters enable us to understand the
physical reason for the observed F2-layer parameter
changes in a particular geophysical situation.

The aim of this study is to analyze Millstone Hill
daytime Ne(h), Te(h), Ti(h), Vz(h) observations and to
estimate the main aeronomic parameters for the March
16-22, 1990 storm period. We will discover the reason
for observed positive and negative F2-layer storm e�ects
in the course of the period in question. As the method of
calculation is supposed to deal with a stationary F2-
layer, only periods of relative stability in NmF 2 and
hmF 2 variations around noon hours are analyzed.

Method

The self-consistent method of Mikhailov and Schlegel
(1997) uses a standard set of incoherent scatter radar
measured parameters and an F-region theoretical model
to calculate the main aeronomic parameters responsible
for the formation of Ne(h) pro®le at F-region heights for
daytime conditions. Unlike other similar methods the
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present one allows us to obtain neutral composition,
temperature and vertical plasma drift in a self-consistent
way.

The theoretical model of the mid-latitude F-region
used in this method is described by FoÈ rster et al. (1995).
It takes into account transport processes for O��4S� and
photo-chemical processes only for O��2D�, O��2P�,
O�2 �X2P�, N2

� and NO� ions in the 120-620 km height
range. Vibrationally excited N2 e�ects are not taken into
account explicitly in the model but the McFarland et al.
(1973) O� + N2 reaction rate is presumed to mimic the
increase of this reaction rate due to N2

� at high level of
solar activity (Ivanov-Kholodny and Mikhailov, 1986).
Observed electron concentration at 620 km is used as the
upper boundary condition to solve the continuity
equation for O��4S�. At the lower boundary of 120
km the O��4S� is supposed to be in a photo-chemical
equilibrium. Experimental Te(h) and Ti(h) pro®les are
used in the calculations.

Line-of-sight plasma velocity, VO is obtained from
80�-90� elevation angles and may be considered as total
vertical plasma velocity, Vz(h). It includes the e�ects of
thermospheric winds, electric ®eld and plasma di�usion.
These Vz(h) values should be ``chirp corrected'' before
being used in calculations. The ``chirp correction'' is
di�erent for di�erent experiments and equals ÿ11 m/s
for the March 16-22 period. Vertical plasma drift W is
obtained from Vz(h) with the help of the expression
(19.59) from Banks and Kockarts (1973)

W � Vz � k
mi
P

mij
sin2 I

Ti
@ lnNi

@h
� Te

@ lnNe

@h
� gmi

k
� @�Te � Ti�

@h

� �
�1�

where I is the magnetic ®eld line inclination, mi - the O�
ion mass, Ti and Te-ion and electron temperatures, Ni
and Ne-ion O� and electron concentrations, mi - di�usion
collision frequencies for O� related to momentum
transfer collision frequencies m� by the expression (see
Eq. 19.13 in Banks and Kockarts, 1973)
mij � mj=�mi � mj�m�ij where i applies to O� ions and j
applies to other neutral or ionized gas species. Collisions
of O� ions with neutral O, O2, N2 and NO�, O�2 , N2

�, N�
ions are taken into account. All O� ion collision
frequencies have been taken from Banks and Kockarts
(1973). After subtraction of V?N , which is the ion
velocity component northward and perpendicular to the
magnetic ®eld due to E� B drift, the vertical plasma
drift W can be exclusively attributed to the e�ects of
thermospheric wind.

The temperature and concentrations of neutrals as
well as the vertical plasma drift W are calculated in a
self-consistent way in the Ne(h) ®tting procedure. So, Tn,
[O], [O2], [N2] and W are known at each step in order to
solve the continuity equation for O� and the chemical
balance equations for the other ions.

Likewise any non-linear multi-parametric inverse
problem solution, the Ne(h) ®tting procedure exhibits
many local minima for D � �log�Ne�h�obs=Ne�h�cal��2 cor-
responding to pseudo-solutions and the problem is to

choose one of them using additional physical constraints.
The standard multi-regressional methods turn out to be
ine�cient tominimizeD for the problem in question and a
two-step procedure was developed to localize the mini-
mum. When, after the ®rst step, its approximate position
is found then the standard methods may be applied to
specify the ®nal values for the parameters.

The ®rst step is based on the use of the ion energy
conservation equation in the F-region to ®nd Tex. This is a
widely used approach (see references cited in the Intro-
duction). The only di�erence is that [O], [O2], and [N2]
used for O�, NO� and O�2 collision frequencies calcula-
tion are taken in a self-consistent way rather than from
empirical models. Taking into account themolecular ions
may be important for disturbed periods when their
contribution becomes essential even at heights of the F2-
region. According to Banks and Kockarts (1973) the ion
energy conservation equation may be written as follows:

Lei � Qin � 0 �2�
with

Lei � 3k�Te ÿ Ti�
X3
i�1

Nimie

Qin �
X3
i�1

X3
n�1

3k
miNimin
�mi � mn� �Tn ÿ Ti� � mn

3k
�~Ci ÿ ~Cn�2

h i
where: ~Ci and ~Cn are the ion and neutral velocity vectors,
all other symbols are standard. The equation is solved in
the 250-400 km height range to ®nd the neutral temper-
ature Tn at each height step. These Tn values are then used
to calculate Tex with the help of Bates (1959) expression:

Tex � Tn ÿ T120 exp�ÿS�hÿ h0��
1ÿ exp�ÿS�hÿ h0�� �3�

where T120 is the neutral temperature at z0 � 120 km
taken from the MSIS-83 model (Hedin, 1983). The
resultant Tex is the average of all Tex obtained in the 250-
400 km height range. The frictional term can be
considered as negligible, as long as relative drifts of ions
with respect to the neutrals are smaller than about
300 m/s as this gives an error in Tn calculation less than
60 K (Alcayde and Fontanari, 1986). Such an accuracy
is, in principle, quite su�cient for the ®rst step of
solution ®nding. On the other hand, daytime electric
®elds were small for the period in question (Buonsanto et
al., 1992a), so the frictional term was ignored in Eq (2).
The ®rst step of Dminimization gives the area of possible
Tex, S, [O], [O2], [N2] values, which are ®nally speci®ed at
the second step using a standard multi-regressional
method with physical constraints on the parameters.

Observations and calculations

The list of periods along with solar and magnetic indices
used in the study is given in Table 1.

The regime of observations provides about three
overhead height Ne, Te, Ti and Vz pro®les per hour for the
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period in question, so we use at least a two-three hour
period of observation (about 8-10 pro®les) around the
noon hours to calculate median pro®les along with the
standard deviations at each height. Of course, such a 3 h
time interval for averaging is too long keeping in mind
the 1.5 h characteristic time for the F2-layer maximum.
But the scatter of the observed parameters is large for
the disturbed days, so whenever possible we tried not to
use shorter time intervals to produce more or less
reliable pro®les. These median vertical pro®les are then
smoothed by a polynom up to the 5th degree before
being used in the model calculations.

Figure 1 gives the variations of AE, Kp and Dst

indices for the period in question. The ®rst magnetic
storm with AE up to 800 nT, Kp up to 5 and Dst down to
-60 nT on March 18 had its onset during daytime hours
in the American sector. Magnetic activity returned to
normal during the next day on March 19. The second
and more severe magnetic storm with AE up to 1100 nT,
Kp up to 7 and Dst down to ÿ130 nT had its SSC near
2245 UT on March 20, but the ®rst splash of auroral
activity was registered earlier (Fig. 1) again during
daytime hours. This is important for further discussion.
The geomagnetic activity decreased to some extent by
March 22, but the ionosphere exhibited strong negative
F2-layer storm e�ects on that day. March 17 was chosen
as an excellent quiet time reference day.

The results of model calculations in comparison with
the Millstone Hill Ne(h) observations for the three most
interesting days of March 18, 21 and 22, 1990 are shown
in Figs. 2-4. The observed Ne(h) pro®les are given along
with � standard deviations over the chosen period of
observations. The quiet time Ne(h) pro®le of March 17 is
given as a reference. The observed median Te, Ti and Vz
pro®les used in our calculations are given in Fig. 2 as for
March 18 as an example.

Table 1. List of time intervals of the March 1990 storm period
used in the study. The three month average solar 10.7±cm ¯ux was
F10:7 � 184:1� 10ÿ22Wmÿ2Hzÿ1.

Date Time
(UT)

Ap
(daily)

F10:7
(day/day±1)

1990
Mar 16 18.0 ± 21.0 7 179.9 / 166.0
Mar 17 17.3 ± 20.5 3 183.8 / 179.9
Mar 18 16.5 ± 19.5 35 198.2 / 183.8
Mar 19 16.5 ± 19.5 16 218.2 / 198.2
Mar 20 16.5 ± 19.5 30 225.7 / 218.2
Mar 21 17.3 ± 18.9 76 229.3 / 225.7
Mar 22 18.4 ± 20.0 28 244.7 / 229.3
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A comparison of the calculated O�/Ne ratio with the
standard Millstone Hill ion composition model is given
in Figs. 3-4. The method is seen to provide a good ®tting
of the calculated to the observed Ne(h) pro®les in the
whole range of heights above 150 km for both quiet and
disturbed days.

Experimental Te(h), Ti(h) and Ne(h) pro®les derived
from the incoherent scatter data analysis depend on the
ion composition used in the ®t of the theoretical to the
measured auto-correlation function (ACF). An uncer-
tainty in ion composition may lead to considerable
uncertainties in the derived Te(h) and Ti(h) pro®les and
to somewhat smaller uncertainties in Ne(h) (Waldteufel,
1971; Lathuillere et al., 1983; Kirkwood et al., 1986;
Winser et al., 1990; Glathor and Hernandez, 1990). The
most pronounced changes in ion composition take place
during disturbed periods and in such conditions some
iterations are required to obtain the proper ®t to the
measured ACF (Mikhailov and Schlegel, 1997). Such a
correction applied to the two most disturbed days of
March 21 and 22 has shown that the experimental
pro®les may not be corrected for March 21 as the
changes in ion composition are not very strong (Fig. 3).
Only one additional iteration was required for the
March 22 experimental pro®les. In the 200-250 km
height range, where the di�erence in ion composition is

the largest (Fig. 4), the corrected values are higher than
the initial ones by 140K for Ti, by 450K for Te and by
only 4% for Ne. These corrected pro®les for March 22
were used in our further analysis. For more severe
disturbances analyzed by Mikhailov and Schlegel
(1997); and Mikhailov and Foster (1997) when the
ionosphere was molecular-ion dominated up to 250-350
km a similar correction of the experimental pro®les was
much more important.

The observed day-to-day variations of the F2-layer
maximum parameters are shown in Fig. 5. The slight
NmF 2 positive storm e�ect onMarch 18 resulted from the
®rst geomagnetic disturbance (see Fig. 1) is accompanied
by a 20 km hmF 2 increase. Day-time NmF 2 and hmF 2
values onMarch 19 practically returned to their prestorm
values. A slight increase in NmF 2 and a 40 km increase in
hmF 2 again take place at the beginning of the second
storm on March 20 followed by pronounced negative
storm e�ects on March 21 and 22 when the storm was in
progress. The observed changes in NmF 2 and hmF 2 on
March 22 relative to the prestorm reference March 17
level are a factor of 2.4 and 76 km, correspondingly.

The four lower boxes in Fig. 5 give the ratio of the
calculated O� ion production rate q(O�) to the linear
loss coe�cient b, the [O]/[N2] ratio, the O� ion out¯ow
at 600 km in comparison with Millstone Hill observa-
tions, and the vertical plasma drift W at the height of the
F2-layer maximum. These are the most important
aeronomic parameters responsible for the F2-layer
maximum formation. A comparison of the [O]/[N2]
ratio to the MSIS-83 model prediction is given as well.
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Figure 6 gives the results of the thermospheric
parameter calculations in comparison with the MSIS-
83 model predictions and Millstone Hill estimates. The
exospheric temperature Tex shows a general increase
mostly resulted from the increase of solar activity level
during the period in question (see Table 1). The
calculated Tex is close to the Millstone Hill Tex estimates
and both are higher than the MSIS-83 predictions by 50-
130 K (Table 2). The calculated atomic oxygen [O]
concentrations are pretty close to the MSIS-83 predic-
tions, but [N2] and [O2] are systematically lower at a
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®xed height of 300 km. The meridional (along the
magnetic meridian) neutral wind UN is inferred from the
vertical plasma drift W after subtraction of the compo-
nent related to E� B plasma drift (UN � �W ÿ V?N
cos I�= sin I cos I). This UN is shown in comparison with
the Millstone Hill estimates at the height of 350 km in
the bottom box of Fig. 6. The method of UN derivation
at Millstone Hill is described by Buonsanto (1990) and
Buonsanto et al. (1992a). The calculated UN repeats
Millstone Hill day-to-day UN , the relative variation
being more poleward on March 16, 17 and 19, coincides
on March 18 and 20, but di�ers in sign on March 22.

The results for neutral composition are given in
Fig. 6 at a ®xed height of 300 km for convenience, but
more proper comparison should be made at the height
of the F2-layer maximum (Table 2) rather than at a ®xed
height as this minimizes the e�ect of di�erent neutral
temperatures Tex.

Discussion

The analysis of the calculated Tex (Fig. 6 and Table 2)
shows that the Tex elevation by 270 K during the period
in question mostly re¯ects the solar activity level
increase from F10:7 � 179:9 on March 16 to
F10:7 � 244:7 on March 22. A similar Tex increase is seen
in the Millstone Hill estimates. The same tendency gives
MSIS-83, but it predicts that Tex will decrease from
March 21 to March 22 due to an Ap index decrease from
Ap � 76 to 28 and underestimates Tex by 137 K. On the
other hand, average di�erences for these three curves are
less than 10% and within the limits of the experimental
Tex determination as well as the accuracy of the model
predictions.

A comparison of the MSIS-83 and the calculated
absolute [O] concentrations gives a di�erence of 18% on
average. This di�erence is much less than that which was
found at Arecibo by Burnside et al. (1991a) and at
Millstone Hill by Oliver and Glotfelty (1996). It should

be recalled that all collision frequencies used in our
calculations are taken from Banks and Kockarts (1973)
and m�O� ÿ O�, in particular. But in recent works
devoted to the incoherent scatter data analysis (Burnside
et al., 1987, 1988; Buonsanto et al., 1989; Burnside et al.,
1991b, a; Buonsanto et al., 1992a, b) it is suggested that
this value should be increased by a factor of 1.7. The
possible e�ect of such correction is discussed by Belley
et al. (1992). They point out that the inferred atomic
oxygen densities would have to be decreased by the same
factor and this would contradict the CIRA-86 model
predictions on [O]. A much lower factor of 1.2 - 1.4 for
the m�O� ÿ O� collision frequency was recommended
recently by Pesnell (1993); Reddy et al. (1994) and Davis
et al. (1995). This is closer to the Banks and Kockarts
(1973) value. In the recent publication by Oliver and
Glotfelty (1996) on this problem they found, from an
analysis of Millstone Hill observations, that the
�O� ÿ O� collision cross section is only 75% of the
Banks' value. The results of our calculations do not
show any necessity to change the Banks and Kockarts
(1973) �O� ÿ O� value, but simultaneous daytime inco-
herent scatter and satellite measurements of neutral
composition or wind observations are required to clear
up this question.

The MSIS-83 model atomic oxygen concentration
virtually does not demonstrate any variation with solar
and geomagnetic activity at a ®xed height of 300 km
(Fig. 6) while our calculations show a 30% decrease on
March 22 with respect to the quiet reference day of
March 17. This [O] decrease takes place despite the 270
K increase in Tex and informs us of the absolute decrease
in [O] abundance in the thermosphere on the day of
disturbance. A more pronounced di�erence by a factor
of 1.5 in [O] decrease between our calculations and
MSIS-83 predictions takes place at the height of hmF 2
(Table 2).

A 30% di�erence on average between the calculated
and MSIS-83 predicted [N2] concentrations takes place
for the period in question (Fig. 6, Table 2), but this may
be considered as a normal result. A comparison of [N2]
measured on board the DE-2 satellite with MSIS-83
predictions gives a ratio of 0.5±0.9 for quiet geomagnetic
conditions (Hedin and Carignan, 1985). A two-fold
increase in [N2] compared to the prestorm level takes
place at 300 km on March 21 and 22 when the second
geomagnetic storm was in progress. A very weak
reaction to the ®rst geomagnetic disturbance on March
18 is seen in [O] and [N2] variations. A general increase
in [O2] can be seen throughout the period in question,
but the reliability of the calculated [O2] is not too high as
stressed by Mikhailov and Schlegel (1997).

The calculated at 350 km meridional (along the
magnetic meridian) neutral wind UN (Fig. 6) is more
positive (more equatorward) for disturbed days in
accordance with the present-day understanding of the
global circulation pattern. It is similar to Millstone Hill
estimates except for the most disturbed day of March 22
when Millstone Hill analysis gives a northward UN . The
reason for this di�erence is not clear, but it requires a
special analysis, outside the scope of this study.

Table 2. Calculated thermospheric parameters and MSIS±83
model predictions (second line) at the height of hmF 2

Date hmF 2
(km)

log[O]
�cmÿ3�

log[O2]
�cmÿ3�

log[N2]
�cmÿ3�

S
(K)

Tex W
(m/s)

1990

Mar 16 309 9.028 6.508 8.377 .017 1358 )13.8
8.964 7.026 8.402 .017 1315

Mar 17 308 8.954 6.482 8.280 .017 1363 )8.1
8.979 6.975 8.384 .018 1308

Mar 18 328 8.842 6.368 8.151 .016 1479 )3.2
8.889 6.971 8.333 .017 1380

Mar 19 311 8.962 6.907 8.368 .016 1446 )12.6
9.002 7.136 8.496 .017 1380

Mar 20 353 8.680 6.485 7.961 .015 1488 5.1
8.801 6.784 8.174 .016 1440

Mar 21 340 8.824 6.551 8.316 .015 1582 )7.3
8.881 7.072 8.384 .015 1524

Mar 22 380 8.514 6.280 7.965 .016 1630 15.9
8.639 6.492 7.910 .015 1493
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Let us analyze the ionospheric parameter variations
given in Fig. 5. Daytime NmF 2 in accordance with
Rishbeth and Barron's (1960) concept is mostly con-
trolled by the q(O��=b variation. The exospheric tem-
perature Tex increase (Fig. 6) provides the general hmF 2
elevation throughout the period in question, but day-to-
day hmF 2 relative changes are mostly governed by the
vertical drift W variation. The vertical drift, W is seen to
re¯ect the changes in the geomagnetic activity, being
more positive for disturbed days, as it is mostly due to
the thermospheric wind (Fig. 6) and to a less extent to
electric ®elds. The e�ect of disturbances on March 18, 20
and 22 is clearly seen in the calculated vertical drift
velocity W variations. The onset of the ®rst disturbance
on March 18 took place during daytime hours in the
American longitudinal sector (Fig. 1). So, we can expect
only vertical plasma drift increases due to the thermos-
pheric circulation changes but not changes in [O] and
[N2] concentrations (Mikhailov et al., 1995). This is a
well-known concept of forbidden local time for the F2-
layer negative storm onset (ProÈ lss and von Zahn, 1978).
According to this concept, negative F2-layer storm
e�ects do not appear as a rule at mid-latitudes for
geomagnetic storm onsets in the daytime sector, espe-
cially for winter and equinox periods. This does take
place in our calculations, so a small positive F2-layer
storm e�ect should be totally attributed to the decrease
of normal northward thermospheric wind (Fig. 6). A
similar situation takes place on March 20, when the ®rst
step of the large geomagnetic storm (see Fig. 1) falls
again in the daytime hours. Our calculations do not
show any noticeable changes in [O] and [N2] concentra-
tions for this period, but a very pronounced vertical drift
increase does occur. This is the e�ect of the normal
background (poleward) thermospheric circulation dam-
ped by the increased auroral heating. When the auroral
heating is moderate, we have no changes of neutral
composition at middle latitudes during winter and
equinox periods, but an increase of vertical plasma drift
only (Mikhailov and Skoblin, 1990; Mikhailov et al.,
1995). Indeed, our calculations as well as Millstone Hill
calculations give a small equatorward UN on these days
(Fig. 6). This is in accordance with the ProÈ lss (1980)
concept that the daytime positive storm e�ects are not
related to density changes but caused by ionization
transport e�ects due to thermospheric winds (ProÈ lss,
1991, 1993).

The NmF 2 negative storm e�ect on March 21 and 22
results mostly from neutral composition changes in
accordance with the present-day understanding of this
phenomenon. The calculated [O] and [N2] concentra-
tions as well as the exospheric temperature Tex on March
21 are very close to the MSIS-83 predictions (Fig. 6, see
also O/N2 ratio in Fig. 5), so moderate daytime F2-layer
storm e�ects may be explained with the help of empirical
models such as MSIS-83.

The situation is di�erent for March 22. The calcu-
lated Tex is higher than the model one by 137 K (Table
2), the O/N2 ratio is less by 1.51 times at the height of
hmF 2 (Fig. 5), or by a factor of 1.43 at 300 km. The
q(O��=b ratios at hmF 2 are very close for March 21 and

22 (Fig. 5), but despite the fact that the upward drift of
16 m/s on March 22 helps to increase NmF 2, the NmF 2
decreases instead. This results from a strong
1:2� 109cmÿ2sÿ1 out¯ow of O� ions from the F2-region
(Fig. 5). It should be mentioned that even larger O�
¯uxes were measured at Millstone Hill for the distur-
bance on February 8, 1986 (Yeh and Foster, 1990). The
overall agreement between calculated and observed O�
¯uxes at 600 km height is seen for the period in question
(Fig. 5) and this gives an additional con®rmation of the
validity of our calculations.

The obtained results have shown that the self-
consistent approach to the Ne(h) modelling in the
ionospheric F-region can be successfully used for the
analysis of both quiet and disturbed conditions. This
was shown as well for more severe F2-layer storms by
Mikhailov and Schlegel (1997); and Mikhailov and
Foster (1997). The method gives reasonable neutral
composition, temperature, wind and O� ¯ux variations.
The observed daytime moderate negative F2-layer storm
e�ects in March 1990 can be totally explained using
model MSIS-83 neutral composition for March 21, or
slightly changed by a factor of 1.5 O/N2 ratio for the
stronger disturbance on March 22. This di�ers from the
results of other analyses (Richards et al., 1989, 1994b)
where much larger O/N2 ratio changes were suggested.
No special consideration of vibrationally excited N2

e�ects is made in our method, but the laboratory
measured by McFarland et al. (1973)(O� � N2) reaction
rate constant e�ciently mimics the increase of this
reaction rate due to N2

� at high level of solar activity.
This was con®rmed by the results of Mikhailov and
Schlegel (1997); and Mikhailov and Foster (1997)
analyses of disturbed periods during the phase of solar
maximum. Recent laboratory measurements of the
O� � N2 reaction rate constant (Hierl et al., 1997)
con®rm a steep increase of the reaction rate for
temperatures higher than 1300 K due to N2 vibrational
excitation.

Conclusions

The self-consistent method of Mikhailov and Schlegel
(1997) for day-time F2-layer modelling was applied to
the analysis of Millstone Hill incoherent scatter obser-
vations during the storm period of March 16-22, 1990.
The method allows us to calculate in a self-consistent
way neutral composition and temperature, vertical
plasma drift and O� ion out¯ow from the F2-region,
i.e. the main aeronomic parameters responsible for the
mid-latitude F2-layer formation. Earlier the method was
developed and tested using day-time EISCAT observa-
tions. Now it is con®rmed by the Millstone Hill data
that the method can be successfully used for the analysis
of other incoherent scatter observations both for quiet
and disturbed conditions. The main results of our study
may be listed as follows:

1. The F2-layer theoretical model being the core of the
method enables us to ®t calculated to observed Ne(h)
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pro®les with great accuracy in the whole range of
heights above 150 km for both geomagnetically quiet
and disturbed days.
2. The calculated exospheric temperature Tex shows an
overall increase by 270 K from March 16 to March 22
resulting from the general increase of the solar activity
level during the period in question. The Tex variations
are close to Millstone Hill estimates, and both are higher
than the MSIS-83 predictions by 50-130 K.
3. The calculated atomic oxygen shows a 30% decrease
at 300 km on March 22 relative to the quiet time
prestorm period. This [O] decrease takes place despite
the 270 K increase in Tex and relates to the absolute
decrease in [O] abundance in the thermosphere on the
disturbed day in accordance with the present-day
understanding of the physical processes in the disturbed
thermosphere. The MSIS-83 model, on the contrary,
predicts a small increase in [O].
4. A two-fold increase in [N2] concentration at 300 km
compared to the prestorm level takes place on March
21, 22 when the second geomagnetic storm was in
progress. Only a small reaction to the ®rst geomagnetic
disturbance on March 18 and the initial phase of the
second storm on March 20 was found in [O] and [N2]
variations in accordance with the forbidden time for the
F2-layer negative storm phase onset concept.
5. The inferred from plasma vertical drift W meridional
neutral thermospheric wind clearly demonstrates the
dependence on the geomagnetic activity level being more
equatorward for disturbed days. This tendency is more
pronounced in our calculations than in Millstone Hill
estimates of UN .
6. Small positive F2-layer storm e�ects with simulta-
neous NmF 2 and hmF 2 increase observed on March 18
and 20 are totally attributed to the decrease of the
northward neutral wind due to the increase of auroral
heating but not to changes of neutral composition. This
takes place at mid-latitudes when the storm onset falls
into day-time hours.
7. The observed daytime negative F2-layer storm e�ects
on March 21 and 22 are produced by neutral compo-
sition changes along with increased O� ions out¯ow
from the F2-region. They can be totally explained using
model MSIS-83 neutral composition for March 21, or
slightly decreased by a factor of 1.5 O/N2 ratio for the
stronger disturbance on March 22. This is di�erent from
the results of other F2-layer negative storm e�ect
considerations where much a larger O/N2 ratio decrease
was required to explain the observed decrease in NmF 2.
A plausible explanation to this di�erence is seen in our
self-consistent approach which provides internal consis-
tency for the main aeronomic parameters.
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