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Abstract. In this paper we summarize the theory behind
full-profile analysis of IS measurements and report first
practical experiences with the GUISDAP (Grand Unified
Incoherent Scatter Design and Analysis Package) system
designed to perform full-profile analysis of any IS
measurements efficiently. By fitting whole plasma para-
meter profiles over the ionosphere, instead of point values
of the parameters supposed to be approximately constant
over small range intervals, full-profile analysis is free of
underlying assumptions about the slow variation of the
plasma parameters as a function of range. We define
full-profile analysis as a mathematical inversion problem
formalism and explain how it differs from the traditional
gated analysis. Moreover, we study the bias introduced to
traditional analysis results using realistic model iono-
spheres. By applying the full-profile method to data gener-
ated from the model ionospheres, we demonstrate that
full-profile analysis is free from this kind of bias. Lastly, an
example of analysis of real data by full-profile and gated
analyses is shown.

1 Introduction

Traditionally, incoherent scatter analysis has been based
on the concept of range-gates, where the methods used
rely on assumptions about slow spatial variation of the
target as a function of scattering point: usually the spatial
distribution of the response from the target comes from
a relatively small volume in space, being limited both by
the antenna beamforms and by the transmitter pulse
forms used. This is true for any particular crossed product
of the detected radar signal. Consequently, if a set of
crossed products with different lag values can be found so
that they all correspond to a small enough volume in
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space ("a range gate), the most straightforward way to
analyze the plasma parameters is to suppose that the
plasma stays constant in all of the region having influence
on the set of measurements considered. One then fits the
plasma parameters by least-squares methods to the chosen
measured ACF (autocorrelation function) values using
known theories about forms of plasma spectra. The effects
of transmitted pulse forms and post-detection filters are
then accounted for in various ways by different ‘corrections’
to the signal strengths in the ACF lag estimates.

The assumptions about the slow variation of the
plasma as a function of location can be relaxed by
modeling the spatial behavior of the plasma and by trying
to estimate the spatial behavior of the plasma from the
measurements. The estimation problem becomes more
complicated this way — the unknown quantities are the
plasma parameters defined as functions in three-dimen-
sional space instead of single values corresponding to
a chosen point in space. Moreover, it becomes necessary
to use all measured crossed products simultaneously in
the fits and the estimation problem grows from an inverse
problem with a few unknowns and may be 6—30 measure-
ments (usually the number of measured lag values at each
range gate) to a much larger problem, where the unknown
is an element in a function space and all the measurements
(this could be 103—104 or even more) are handled at the
same time.

In this paper we study the situation where the iono-
sphere is modeled by one-dimensional unknown-para-
meter profiles. These profiles could be understood to be
functions of either range or height. This assumption is
necessary to make the inversion problem not too ill-
behaved — the task of finding an arbitrary function defined
in three-dimensional space on the basis of information
gathered from a narrow radar beam would clearly be
totally impossible.

We will proceed as follows: first we discuss the tradi-
tional gated analysis as an inversion problem. Next we
show how the full-profile situation is formally defined as
an inversion problem and show the methods to solve it



numerically. The crucial parts here involve both the com-
puting solutions to the manipulation of the complex con-
cept of the incoherent-scatter measurement in a general
way as data structures as well as the methods of statistical
inversion theory. The modeling of parameter profiles calls
for rather complicated ways of interpolation of the pro-
files, calculated spectra and ambiguity functions to a hier-
archy of grids of various densities.

We base the discussion on several previous papers. The
theory of ambiguity functions was originally derived in
Lehtinen (1986) and is shown in fullest detail in Lehtinen
and Huuskonen (1996). The statistical inversion theory as
used here is described in Vallinkoski (1988) and Vallin-
koski and Lehtinen (1990b). The theory to approximate
the errors due to the fact that the ionosphere is not
constant in the region that contributes to the measure-
ments (effects of mixing errors), is outlined in Vallinkoski
and Lehtinen (1990a). Moreover, we refer to the papers
Lehtinen and Huuskonen (1996) and Huuskonen and
Lehtinen (1996) on the questions relating to estimation of
measurement fluctuations in the general case, also taking
care of the situation of a high SNR.

Full-profile analysis has been first reported in Holt et
al. (1992) where full two-dimensional ambiguities were
used in analysis of lag profiles of long-pulse data.

2 IS analysis as a statistical inversion problem

A statistical inversion problem is often written as

m"f (x)#e (1)

(see Vallinkoski, 1988; Vallinkoski and Lehtinen, 1990b).
Here x is the unknown variable, m is the measurement,
and f is the theory mapping describing the relationship of
our measurement values to the sought-for unknown vari-
able. The random errors of the measurement are ac-
counted for by an additional error term e. This notation
has some implicit meanings, summarized in the following:
x is a random variable defined in some measurable space,
which in practical numerical studies is usually just Rn. It
has a priori distribution density D

pr
(x).

We suppose in the following that the error term e is
Gaussian, independent of x and has covariance matrix R.
The conditional density of the measurements m (given x) is
then given by

D(m Dx)+exp (!1
2
(m!f (x))TR~1 (m!f (x))). (2)

In statistical inverse problems we are interested in the
a posteriori distribution, which is the conditional distribu-
tion of the unknown, supposing certain measurement
values m have been recorded. This conditional distribu-
tion is given simply, apart from normalization, by fixing
m in the joint probability density and studying it as
a function of x:

D(x Dm)+D(m, x)

+D
pr

(x) exp (!1
2
(m!f (x))TR~1(m!f (x))). (3)

2.1 The unknown in gated analysis

In gated analysis, the unknowns we fit are just plasma
parameters at a particular height (or a height interval
called a range gate, where the parameters are supposed to
be constant). Thus, the vector x could be defined by

x"(N
e
,¹

i
,¹

e
/¹

i
, l, v , . . .). (4)

Depending on the height of the range gate under study,
the set of variables fitted may look different. For example,
it is not necessary to consider collision frequencies at
higher altitudes and one can often suppose that ¹

e
/¹

i
"1

at lower altitudes.

2.2 The measurements in gated analysis

The measurement m is a subset of the correlator result
memory values. It is usually chosen so that the different
values in

m"(m
1
, . . . , m

N
) (5)

correspond to different lag values of the ACF estimates
from the particular range gate. ("the corresponding range
ambiguity functions have their masses inside that height
interval).

Each measurement point is the complex cross product
of two sampled signal values m
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as determined by the correlator algorithm.

2.3 The theory function in gated analysis

The theory function represents the theoretical way of
calculating estimates of correlator cross products m, sup-
posing that the unknown parameters x"(N

e
,¹

i
,¹

e
/¹

i
,

l, v , . . .) at a particular range gate are known. It consists
of two parts:

1) Calculation of theoretical spectra at a suitably
chosen sequence of points u

i
in frequency axis
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2) Calculation of the theoretical ACF estimates m
i

from these theoretically calculated spectra. This is most
effectively done by the spectral ambiguity functions (see
Lehtinen and Huuskonen, 1996) that are precalculated for
all correlator cross products (or their sums) and for
a chosen vector of frequencies u

i
. Thus, for each m

j
in the

range gate under study we have a spectral ambiguity
function ¼

j
so that

Sm
j
T"¼

j
·S"+

i

¼
j
i

S (u
i
). (8)
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The fully expanded formula for the direct theory then
becomes

f (x)
j
"+

i

¼
j
i

S(u
i
; x), (9)

with x"(N
e
,¹

i
,¹

e
/¹

i
, l, v , . . .) our unknown.

3 Full-profile analysis as an inverse problem,
simplified case

In the following we formalize the full-profile analysis
as a concrete inverse problem. In essence, this means
defining different grids and interpolation methods for
the different parameters and describing the numerical
algorithm for interpolation of the parameters to denser
grid points used for spectral calculations and even denser
grids used for ambiguity calculations. However, we
first formalize a simple version of the idea. This may help
the reader to grasp the rather complicated actual imple-
mentation.

In full-profile analysis the variable vector x, given by
Eq. 4 is replaced by a much longer vector giving the
plasma variables at ionospheric-height grid points. The
vector can be constructed from the elements of the follow-
ing matrix:
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The plasma theory is the same as that used in the gated
analysis. The only difference here is that the plasma theory
has to be applied to all the parameter set values different
spectrum grid points. We need to calculate the two-
dimensional spectrum matrix (see Fig. 1)

S
ij
"S (u

i
; N

e
(r
j
), ¹

e
(r
j
) , . . .). (11)

Let us denote an arbitrary result memory location by
m

k
. The dependence of the result memory location on the

Fig. 1. An example of a two-dimensional spectrum

Fig. 2. An example of a two-dimensional ambiguity function

plasma parameters of the whole profile can then be cal-
culated by

Sm
k
T"+

i, j

¼ k
ij

S
ij
(x

plasma
), (12)

where the ambiguity functions ¼ k are two-dimensional
spectral ambiguity functions that depend on both fre-
quency (index i) and height (index j ); see Fig. 2.

4 Full-profile analysis, actual implementation

The formulation above is in principle useful for full-profile
analysis, but it is not the most efficient way to model the
full-profile case. The basic reason is that in order for the
model to be accurate enough, the density of the range grid
must be very high — it needs to be high enough to be able
to approximate the fine details of the ambiguity functions.
Because the data sampling density is usually approxim-
ately the same as the width of the ambiguity functions (at
least in typical high-resolution multipulse or alternating-
code experiments), it follows that the unknowns are de-
fined more densely than the data are gathered. From this
it follows that there are more unknowns in the problem
than there are data.

It is not impossible to handle this kind of inverse
problem — it just calls for a proper use of regularization or
a priori information in such a way that the details of the
unknown functions are forced not to be smaller than the
spatial resolution of the measurements themselves. How-
ever, this is rather costly in terms of computational-power
requirements and it will be useful to develop more efficient
ways of modeling the situation.

In the above solution, spectra have to be calculated on
a rather dense grid, and because this is a slow process, we
need some faster ways of calculating the full-profile direct
theory. The actual, effective solution is therefore much
more complicated than the straightforward idea above.

The effective solution to the modeling of the full-profile
case is based on a hierarchy of grids and interpolation
methods between them. The grids we use are defined in the
following (see Fig. 3):
1) Parameter grids: For each plasma parameter, a grid is
defined, on whose nodes the plasma parameter values are

M. S. Lehtinen et al.: First experiences of full-profile analysis with GUISDAP 1489



Fig. 3. Illustration of the different grids used in full-profile modeling
of the ionosphere

defined. Different plasma parameters can have different
grids. These grids need generally to be coarser than the
spatial resolution of the code itself (roughly speaking:
coarser than the width of the ambiguity functions and also
coarser than the sample interval of the signals).
2) Spectrum-calculation grid: This grid is finer than the
parameter grids. Each parameter is interpolated to this
grid, so that interpolated parameter values are available
on each point of the grid. Theoretical spectra can then be
calculated at each range of the grid.
3) Ambiguity-function grid: This is the grid where ambi-
guity functions are represented. It is denser than the spec-
trum grid and dense enough to represent the smallest
details of the two-dimensional ambiguity-function range
dependence.

4.1 The unknowns of actual full profile

Let us denote the parameter-grid range values of the
ith parameters by (ri

j
)Npg

ij/1
and the corresponding values of

the parameters themselves at the nodes by (pi
j
)Npg

ij/1
. Then

we can write the unknown of our full-profile inversion
problem as
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where Npg
i

is the number of nodes in the parameter grid of
the ith parameter. (Note that parameter node values pi

j
as

well as the grid-point range values ri
j
are indexed collec-

tions of real numbers, but not really matrices, because
different parameters could be represented by a different
number of grid points, and thus the ‘rows’ of these
‘matrices’ would be of unequal lengths.)

4.2 Parameter-gridPspectrum-grid interpolation

There are three alternatives to this interpolation: a) linear
interpolation, b) four-point Lagrange interpolation and
c) cubic spline interpolation between the grid point
values. The two main interpolation methods here are (a)
and (b). Cubic spline interpolation is included essentially
as an alternative to the four-point Lagrange interpolation
for the cases where an alternative method is necessary to
avoid the ‘inverse crime’ situation — a situation where
simulated data would be generated using same grids and
interpolations as are used in the analysis of it.

The spectral grid range values are now denoted by
(rS

k
)Nsg

k/1
and the corresponding interpolated parameter

values are denoted by (p i
k
)Nsg

k/1
. Linear interpolation is then

simply defined by:
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j
).

In linear interpolation, any interpolated point depends
only on the nodes immediately above and below the
interpolated points. This results in important savings in
calculating derivatives of the direct theory in the fitting
procedure.

Lagrange four-point interpolation is defined by
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supposing r"rS
k

obeys r i
j
4r(r i

j`1
(this means that for

each range value, we choose four grid nodes for the inter-
polation so that two grid-point heights are below the
wanted height and two are above it).

Lagrange interpolation is local: each interpolated value
depends only on the values of two nodes higher and two
nodes lower than the range of the interpolated value.
While Lagrange interpolation defined this way does not
have exactly the same continuity properties as spline in-
terpolation, it behaves much like that in an approximative
sense: the derivatives are not continuous over the nodes,
but their jumps are very small anyway. This fact, and the
simple analytical formula for the Lagrange interpolant
make it a useful tool in developing interpolating
methods.
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When using Lagrange interpolation for range values
which do not have two nodes below and above them, we
use the four highest or lowest nodes in the interpolation
formula anyway. This way we can interpolate the para-
meter values over the whole parameter grid and also
extrapolate them outside that grid.

Spline interpolation is defined as a specified degree
piecewise polynomial going through the specified nodes
and having maximal continuity properties that makes the
determination of the piecewise polynomial unique and
possible. Splines are not local approximations: changing
one node value generally changes the spline everywhere.
Routines for calculating splines exist in many numerical
libraries, which makes them easy to implement. Also,
locality is preserved by use of the coefficients of base
splines instead of the node values.

4.3 Spectrum calculations

Using whatever interpolation mode between parameter
grid and spectrum grid, we arrive at plasma parameter
values at each of spectrum grid ranges. The next step in
the full-profile direct theory is then to calculate the two-
dimensional spectrum at the spectral grid resolution;

S
ik
"S (u

i
; (p1

k
, . . . , pN

pk
)). (16)

The spectral calculations are the most time-consuming
part in the whole direct-theory chain. In optimizing analy-
sis time the number of spectra should be minimized,
meaning that the spectral grid should be as coarse as
possible.

Moreover, local interpolation methods save lots of
spectral calculations in analysis loops: if changing a single
parameter node value changes the interpolated parameter
profile only locally, it is not necessary to calculate changed
spectra at all spectral grid points when calculating numer-
ical estimates to derivatives of the direct theory in the
fitting loop.

4.4 From spectra to correlator dump values

The two-dimensional theoretical spectrum is calculated
using the range resolution defined by the spectrum grid.
However, the ambiguity functions are calculated at
a denser grid, and to be able to calculate the two-dimen-
sional integrals of the products of the ambiguity functions
and the spectra (both functions of range and frequency),
the calculated spectra are linearly interpolated to the
ambiguity grid (actually the spectra are not interpolated
at all — instead linear coefficients between spectral grid
points and correlator memory points are calculated and
stored. These linear coefficients are equivalent to linear
interpolation of the spectra to the ambiguity grid followed
by integration over range and frequency).

Linear interpolation is used here exclusively. The
reasoning behind this is that in cases where this would
not be accurate enough, one can always define the spec-
trum grid to be denser and this improves the overall
accuracy.

In terms of formulas we do the following: let us deno-
te the spectral grid points by rS

k
and the ambiguity

grid points by rW
j
. We then suppose we have spectrum

values calculated at the spectral grid S
ik
"S (u

i
; pi (rS

k
)) and

ambiguity functions at the ambiguity grid ¼
ij
"¼K (u

i
;

rW
j

). For programing purposes, linear interpolation from
the spectrum grid to other ranges r is most easily defined
by using the base splines for linear interpolation, or ‘tri-
angle functions’ B

k
(r) defined to be the unique piecewise

linear functions with

B
k
(rS
k
)"1

B
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(rS
n
)"0 if nOk (17)

(that is: B
k
(r) is a triangle with peak at rS

k
, sloping down to

zero at the adjacent spectral grid points). Then the spectra
S
ik

are interpolated to an arbitrary range r simply by

S
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k
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(r)S

ik
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Equation 46 of Lehtinen and Huuskonen (1996) giving
the average of the signal cross products as an integral over
space and frequency of the product of the spectral ambi-
guity function and location-dependent spectra is then
evaluated as

Sz(t)z (t@)T/R"+
i

+
j

¼
ij
+
k
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)S
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(19)

"+
i

+
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C
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S
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, (20)

where C
ik
"+

j
¼

ij
B

k
(rW
j
) are precalculated coefficients

giving the linear relationships between spectra expressed
at the spectrum grid and a particular signal lagged prod-
uct estimate.

In an actual experiment, many such lagged product
estimates may be summed on top of each other in any
result memory location. In this case we simply use the
corresponding sum of the coefficients C

ik
to get the linear

relationship of the correlator result memory and the
spectra at the spectrum grid.

One should note that because the range extents of the
ambiguity functions are limited, the coefficients C

ik
are

typically zero for most k. Thus, to be able to calculate the
direct theory, we need to store only the nonzero parts of
C

ik
for any result memory location. This is the final trick

leading to savings in both memory requirements and
calculation time. This approach would actually allow for
other than linear interpolations to be used between spec-
trum grid and ambiguity grid with no penalty in process-
ing time.

4.5 Summary of the direct-theory calculation

Because all the details above may seem more complicated
than they actually are — they have been developed that
way to make the actual numerics as fast as possible — it
may be helpful to repeat the steps necessary in direct-
theory calculation. We also discuss here the derivative
calculations necessary in the fitting loop.
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Fig. 4. Results from the gated analysis of
long-pulse ( full circles) and alternating-code
data (open circles). The model profiles of N

e
,

¹
i
, and ¹

e
/¹

i
are given by the solid line

So, this is how it goes: the starting point is the vector of
the unknowns, which are all the plasma parameter values
at all of the different parameter grid points (Eq. 13). Each
parameter is then interpolated by Eq. 15 to the spectrum
grid rS

k
. Now we can calculate the theoretical spectra S

ik
at

each of the spectrum grid ranges rS
k
. The theoretical value

for each result memory point is finally obtained by using
the stored coefficients through Eq. 20.

In the fitting loop we need the partial derivatives of the
direct theory with respect to the unknowns. Numerical
approximations of these are calculated by changing the
value of each of the unknowns at a time, calculating new
result memory values and taking the differences of these
with the original ones. Because the change of a single
plasma parameter value only changes its interpolated
values up to two nodes above and two nodes below the
changed node (for four-point Lagrange interpolation), we
only need to recalculate those spectra whose range values
coincide in this interval. This leads to great savings in the
analysis time.

5 Bias of gated analysis

The direct theory developed for the full-profile analysis
gives us a tool to calculate full IS data dumps for model
ionospheres. It is only necessary to define the parameter
grid with values of plasma parameters at each grid point.
In the following, we will use plasma parameter values
based on the model by Alcaydé et al. (1994). The profiles
of N

e
, ¹

i
, and ¹

e
/¹

i
are shown by the solid lines in

Fig. 4.
If the simulated dumps are then analyzed using the

gated-analysis method, we can compare the analysis re-
sults with the input model values and thus are able to
estimate the bias in the gated analysis. Figure 4 shows
gated-analysis results from a EISCAT Common Program
experiment (CP-1-K), which uses both alternating-code

and long-pulse modulations. The spectra were calculated
at 6-ls (900-m) steps. Thus the spectral grid is finer than
the width of the range ambiguity functions for the alter-
nating codes (+3 km) and long pulses (+50 km). The
ambiguity functions have a 1-ls resolution.

The alternating-code results (open circles) follow close-
ly the model parameter profiles. As the range ambiguity
function is only 3 km in width, the assumption of small
changes is valid within the scattering volume.

The long-pulse results are clearly biased, on the other
hand. The electron densities are underestimated around
the F-region peak; the ion temperature is overestimated
below the F-region peak and underestimated above,
whereas the bias in the temperature ratio is opposite. The
maximum error is 10% in the electron density and ion
temperature and 35% in the temperature ratio. Similar
results were obtained by Lathuillere et al. (1986), who also
found that the electron temperature, which corresponds to
our temperature ratio, was always biased as in Fig. 4, but
that the bias in the ion temperature could be either posit-
ive or negative, depending on the form of the electron
density profile. Another case is shown in Holt et al. (1992),
where a very long pulse (640 ls) combined with a sharp
F layer resulted in a clear bias in the electron density.

The electron density bias at the F-region peak is
straightforward to understand, but interdependencies of
the other parameters with each other through the plasma
formula can make the explanation of other biases difficult.
Moreover, the plasma theory is nonlinear, which causes
the smallest ¹

e
/¹

i
values by gated analysis to be smaller

than any ¹
e
/¹

i
values in our model ionosphere. A qualitat-

ive explanation is shown in Fig. 5, which shows a set of
spectra contributing to the lowest long-pulse gate. The
width of the spectrum varies by a factor of two, and thus
the average spectrum is very different from the shape of
any genuine IS spectrum. When this spectrum, or the
corresponding ACF in fact, is analyzed by standard
methods, the fit must be poor. Due to the highly nonlinear
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Fig. 6. Analysis results based on the
alternating-code (open circles) and long-
pulse (full circles) modulations. The data is
measured on 16 February 1993, at
1110—1140 UT by the EISCAT UHF radar

Fig. 5. Incoherent-scatter spectrum for altitudes 115, 125, 135, 145,
155, 165, and 175 km (thin lines) and the average of the spectra (thick
line). The frequency is given in scaled units

nature of the problem, the results need not be close to the
averages of the plasma parameters within the scattering
volume.

Figure 6 shows that similar behavior is easily found
from experimental data as well. The data was measured
on 16 February 1993 at 1110—1140 UT. As the alternat-
ing-code results can be assumed to represent the true
parameter profiles, the ¹

i
is overestimated and ¹

e
/¹

i
underestimated by the long-pulse analysis, in accordance
with the model analysis presented here.

6 Full-profile-analysis results

Figure 7 shows full-profile-analysis results for the same
simulated data as used in Fig. 4. The spectral grid point

separation for the fitting is 3 km, which is coarser than the
spectral grid used in creating the dump (900 m). In order
to avoid the ‘inversion crime’ it is important that
simulated data is created with a better accuracy than that
used in the analysis. The same parameter grid is used for
all parameters fitted (N

e
,¹

i
, ¹

e
/¹

i
, and v

i
), although the

software allows a separate grid for each parameter. Other
parameters (l

in
and ion composition), as well as ¹

e
/¹

i
below 110 km, are fixed to model values. The parameter
grid point separation is 6 km below 150-km altitude,
12 km below 200 km, and 36 km or 24 km above.

Figure 7 demonstrates how the full-profile method is
able to circumvent the problems faced by the gated-analy-
sis method. It is easily seen that both full-profile results
follow closely the model parameter profiles below the
F-region peak where the gated analysis gave a consider-
able bias. The most evident deviations are seen at the
F-region peak, where both N

e
and ¹

e
/¹

i
overshoot and ¹

i
oscillates slightly. The overshoot is caused by the coarse-
ness of the parameter grid at this point.

In the topside the 36-km profile behaves smoothly,
whereas the profile with 24-km range resolution shows
a clear sawtooth structure. This demonstrates that full
profile is not able to reach the nominal range resolution of
the gated analysis (22.5 km) but instead the best usable
resolution is around 30 km for the experiment in question.
For completely noiseless data this would not be the case,
but our data has a small amount of random noise added.
The problems start to arise when the grid spacing is made
smaller than half of the length of the ambiguity functions
(defined as the half-power width) or if spacing is close to
the range separation of successive gates. In the case of the
CP-1-K long-pulse measurements, the length of the range
ambiguity function is about 60—70 km, which tells that
grid spacing at about 35 km or coarser should be useful.
The gated analysis treats successive range gates separa-
tely, although the spacing (22.5 km) is much less than
the range extent of the measurement. Therefore smooth
profiles are possible, but the good altitude resolution
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Fig. 7. Full-profile analysis results of
simulated data. The parameter grid spacing is
6 km below the 150-km altitude, 12 km up to
the 200-km altitude, and either 36 km ( full
circles, solid line) or 24 km (crossed, dashed
line) above the 200-km altitude. The model
parameter profiles are given by the thin solid
line and the gated-analysis results of the long-
pulse data by the open circle

Fig. 8. Full-profile-analysis results ( full
circles) of EISCAT UHF data measured on 16
February 1993, at 1110—1140 UT. The
parameter grid spacing is 6 km below the
150-km altitude, 12 km up to the 200-km
altitude, and 30 km above the 200-km
altitude. The gated-analysis results of the
long-pulse data by the open circles

achieved is an illusion. The correlation of the neighboring
gates has not been revealed by the analysis. The full-
profile method takes into account the dependence of
neighboring points and creates a more realistic figure of
the situation.

7 Full-profile analysis of real data

Figure 8 shows finally full-profile-analysis results of the
data used in Fig. 6. Analysis is carried out as for the
simulated data except that the analysis resolution is 30 km
above 200 km. Although slightly noisier than those in
Fig. 6, the results show the same features in detail. Thus
the full-profile analysis gives a method to analyze long-

pulse data without systematic biases below the F-region
peak.

8 Conclusions

We have described a general system designed for using
two-dimensional ambiguity functions in connection with
functionally modeled ionospheric parameters to fit pro-
files of plasma parameters to incoherent-scatter measure-
ments. In achieving this goal it has been necessary to
develop a hierarchy of different grids and interpolation
methods to minimize the calculation task to be feasible in
practise. Moreover, special methods of programing and
program design are necessary to manage all the complex
aspects of a general incoherent-scatter measurement.
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By employing the tools developed we have shown that
traditional ways of analysis introduce bias in the results,
due to the fact that in the traditional gated-analysis con-
cept the variation of the parameters as a function of range
is actually forgotten. Using the machinery developed it is
possible to simulate actual correlator dumps with the
range variation of the parameters taken into account. By
applying gated-analysis methods to these dumps and
comparing to the original models, the bias can be seen.
The existence of this bias has been known previously, but
now we have ways to analyze its size numerically.

We have also seen that full-profile analysis is free from
this bias and we have shown that the analysis works in
practise for both simulated and real data.

Full-profile analysis has been reported previously, but
our system is the first one capable of analysis of general
measurements, carrying out all calculations automatically
on the basis of a general experiment specification. More-
over, much effort has been made to minimize the calcu-
lation burden by developing the calculations to allow only
such resolutions as are necessary at different points in the
experiment direct theory calculation.

In the examples of this paper we have used same grid
for all parameters, but different grids can easily be used by
the system. Future developments will include more gen-
eral functional models for the parameters (like, for
example, an exponential formula for collision frequency),
in addition to the presently possible interpolated models.
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