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Abstract. In order to determine the normal direction of
the magnetopause, the minimum variance analysis tech-
nique is frequently used: it is applied to the magnetic field
data of a magnetopause crossing observed by a satellite,
and provides the direction along which the magnetic field
variation is minimum. In this study we propose a method
to extend naturally the framework of the minimum
variance analysis so that it includes all continuity con-
ditions across a planar magnetopause, so that we could
use all physical quantities observed by the spacecraft. We
first extend it to the electric field: we discuss how to
determine the normal direction and the speed of the mag-
netopause along the normal by using both the magnetic
and electric field data. We next discuss the full extension
to all continuity conditions across the magnetopause.
Finally, we discuss how to extend our method further
so that it can deal with the magnetopause which is acceler-
ating. A discussion of application to observations will
appear separately.

1 Introduction

In order to determine the normal direction of the mag-
netopause, Sonnerup and Cahill (1967) proposed
a method called the minimum variance analysis method
(denoted by MVA) applied to the magnetic field data, and
since then the method has widely been used for that aim.
A brief description of the MVA method being applied to
the magnetic field data during the magnetopause cross-
ings follows. The magnetopause is assumed to be planar
and unchanging in time. Then, from Coulomb’s Law for
the magnetic field, divB"0, the magnetic field compo-
nent normal to the magnetopause, B

n
, is required to

be constant across the magnetopause. In application to
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actual observations, this condition would mean the min-
imum variance of the magnetic field along the normal.
Then, MVA applies the eigenvalue analysis technique to
the variance-covariance matrix of the magnetic field and
determines such a direction.

The purpose of this work is to propose a new methodo-
logy to extend the framework of MVA in a natural man-
ner so that it includes other boundary conditions across
the planar magnetopause. As a first step, in Sect. 2 we
describe a method which includes the boundary condition
of both the magnetic and the electric field (the method is
called EBMVA). The method also provides an estimate
for the speed of the magnetopause along the normal. We
also discuss the features of this method, including com-
parisons with another methods in literature. In Sect. 3 we
generalize the methodology further, still in a natural man-
ner, so that it could include all boundary conditions
across a one-dimensional magnetopause (this fully gener-
alized MVA is called GMVA). We also discuss related
papers in literature. In Sect. 4 we present a generalization
to the case of the accelerating magnetopause. Finally,
Sect. 5 gives a summary.

2 EBMVA

First we assume the orientation of the magnetopause,
or in other words, we assume a normal vector of the
magnetopause, n. (In this stage n is assumed, but later
in this section we show how to determine the optimal
n from observed data.) Then we determine the veloc-
ity of the magnetopause discontinuity, º

d
, along the

assumed n, from observed magnetic and electric field
data. Here º

d
is actually the velocity relative to the

spacecraft.
In order to express the components of vectors below,

we define a coordinate system, ¸MN, which is based on n:
its N axis is parallel to n, thus ¸ and M are tangent to the
magnetopause plane. Directions of the ¸ and M axes on
the magnetopause plane are arbitrarily defined.



Under these assumptions, º
d
is analytically calculated

by using the continuity condition of the tangential electric
field in a frame moving with the magnetopause, as shown
later. The electric field is obtained by direct observations
or calculated by using the plasma velocity data, V, and the
MHD frozen-in condition, i.e.,

E"!V]B.

When the spacecraft observes the electric field E, the
electric field in the frame moving with the magnetopause,
E@, satisfies
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in component expression.
Because LB/Lt"0 in the frame moving with the

boundary, Faraday’s equation is reduced to rotE@"0,
leading to the constancy of E @

t
across the boundary, where

the subscript t means the electric field components per-
pendicular to n, i.e., ¸ and M components. Then, for
actual data, the optimal º

d
should minimize the variation

of E @
t

during the magnetopause crossing interval. If we
define the variance of a dataset [y
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, y

2
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where y
j,k

is the j-th component of y
k
and yN

j
is the mean of

the j-th component, then the variation of E @
t

can be ex-
pressed by its variance, K(E @
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Minimization of K(E @
t
) is achieved by solving
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and because E @
L

and E @
M

are linear functions of º
d
, as

shown in Eq. (2), the solution is given in an analytic form
as follows:
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where the numerator means the N component of the
vector.

In this way, the obtained º
d
provides the best condition

for the continuity of the electric field tangential compo-
nents, for the assumed n. Next we find the optimal n, i.e.,
the optimal direction of the magnetopause normal. In
doing so, we also consider the continuity condition of the
magnetic field normal components B

n
, as described later.

Our plan to find the optimal n is to find a point over the
entire unit sphere surface where D

n
becomes minimum,

where D
n
is a certain function of n and should express to

what extent E @
t
and B

n
are constant. Because the magnetic

field and the electric field have different dimensions, there
is no one-and-only way to define the functional form of
D

n
. In this study we adopt the definition as

D
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)
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whose meaning is described next.
In the first term of D

n
, B

n
"B

N
"B · n, and B

m
"B · m,

where the unit vector m is defined so that it is perpendicu-
lar to n and so that the magnetic field variance in the two
components perpendicular to n is smallest along m. Under
this definition, if n is set parallel to the minimum variance
eigenvector of the magnetic field, m is then parallel to the
intermediate variance eigenvector. Thus, the first term of
the D

n
becomes minimum for the direction which MVA

provides as the normal. We note here that the ratio of the
minimum to intermediate variances is usually used to
express the validity of MVA. The second term of the D

n
is

related to the electric field and defined in a similar manner
to the first term: the variance of the tangential compo-
nents are divided by that of the normal component, to test
the constancy of the tangential components in compari-
son with the normal component variation. The numer-
ator, K(E @

t
), is the same as in Eq. (4), with º

d
determined by

Eq. (6). In the denominator, E @
n
"E @

N
"E@ · n. Because

K(B
n
)/K(B

m
) and K(E @

t
)/K(E @

n
) are both non-dimensional,

the two terms are connected in D
n

by multiplication to
express the conjugate condition minimizing K(E @

t
) and

K(B
n
) at the same time. We regard this connection as

a natural one, and note D
n
is usable as an extended version

of the criterion which is usually used to express the valid-
ity of the results of MVA. That is, if D

n
is too large we may

reject the obtained results.
The actual procedure to find n which minimizes D

n
(n) is

achieved numerically: there are many publications which
deal with the numerical minimization (e.g., Press et al.,
1992) so one can refer to them for actual calculations.
After the optimal n is determined in this way, the asso-
ciated º

d
is already calculated, it is easy to calculate BM

n
,

and the deHoffman-Teller (HT) frame velocity V
HT

can be
calculated by

V
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To summarize in order to obtain the optimal n, we
minimize D

n
(n) over the unit sphere surface, or if we

express n in the spherical coordinate system as (h, /), we
find the minimum point of D

n
(h, /) in the range of

04h4n and 04/42n. In order to calculate D
n

for
a given set of (h, /), we first use Eq. (6) to determine º

d
,

secondly use Eq. (1) to obtain E@, then calculate the vari-
ances of B and E@ appearing in Eq. (7) and obtain D

n
.

Having described the EBMVA method, we note that
Sonnerup et al. (1987) have presented a method which also
uses the (motional inductive) electric field data and the
magnetic field data to determine the normal direction and
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the magnetopause motion along the direction. When they
assume the constant acceleration of the magnetopause
they show how to specify the range of possible initial
speed, but not the most probable value. On the other hand
when they assume that the magnetopause is moving with
a constant speed, it is usually difficult to specify the range
of the possible speed or the most probable speed. On the
other hand in our EBMVA method, the most probable
value of the magnetopause normal speed is uniquely de-
termined, even under the assumption of the constant
motion of the magnetopause. (For the acceleration effect,
see Sect. 4.) Another difference between the two methods
is that their method explicitly uses the HT frame, which
would narrow the range of its application: for example the
HT frame does not exist for the transition layers of tan-
gential discontinuities (TDs). On the other hand our
method should be applicable to TDs also, because our
method uses the most basic physical laws only.

We also note that Terasawa et al. (1996) present
a method similar to EBMVA in this work. Here we briefly
summarize their method. They start with D/Dt,
L/Lt#U

d
·+"0, which holds true because the system is

time-independent other than a constant motion U
d
. (Here

U
d
,º

d
n, and we note V

C
in their paper corresponds to U

d
here: here we use the notations in this study.) By using this
relation, Faraday’s law in the spacecraft frame is transfor-
med, by using some vector algebra, as follows:
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Then, assuming that the system is only a function of the
N-position in the ¸MN coordinates,
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,

thus Faraday’s law becomes

L
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Therefore:

(n]E@!º
d
nB

N
)"C,

where C is a vector constant. Using this relation, they
minimize the mean square of (n]E@!º

d
nB

N
)!C and

determine n, º
d
, and C.

The difference between EBMVA and Terasawa et al.’s
(1996) method is apparent in the equation rotE@!
U

d
div B"0. In EBMVA we only use rotE@"0 as Fara-

day’s law, which is correct because divB"0. In other
words, rotE@"0 is the essential part of Faraday’s law in
that it is covariant under the Lorentz transformation.
However by keeping the U

d
div B term in the equa-

tion, they can couple the two conditions rotE@"0 and
divB"0, the former (latter) of which leads to the
constancy of E @

t
(B

N
). Their coupling method is, therefore,

based on summation, while the coupling method of
EBMVA is based on multiplication. As we stated earlier,
there is no one-and-only way for the coupling, because the
magnetic field and the electric field have different dimen-
sions: with appropriate algorithms (including the deter-
mination of scaling parameters, which we will discuss
next), multiplication-based methods and summation-
based methods should both be valid. However from
a practical viewpoint, summation-based methods would
need more parameters to determine than the multiplica-
tion-based method presented in this work, especially when
other boundary conditions such as the mass flux conser-
vation are included. That is, when terms from different
boundary conditions are added, scaling parameters are
needed to equalize the dimensions of all terms. An
example is U

d
in the equation rotE@!U

d
divB"0. Also,

when an attempt is made to couple many boundary condi-
tions, it is not necessarily clear how to define the scaling
parameters, because the physical meaning of the scaling
parameters is not always apparent: for example, note that
any assumed U

Q
, having the dimension of velocity, satis-

fies rot (E#U
d
]B)!U

Q
divB"0. On the other hand,

the multiplication-based coupling methodology in this
study does not include such scaling parameters whose
determination need additional consideration, and the
methodology can be naturally extended to other bound-
ary conditions such as the mass flux conservation, an
extension we show in the next section.

Returning to the features of the EBMVA method, in
actual observations it often happens that the sampling
time is different between the magnetic field data and the
electric field data (or the plasma velocity data which are
used to calculate the motional induction electric field).
Usually the sampling time is shorter for the magnetic field
and thus the number of the magnetic field data points (K

B
)

is larger than the number of the electric field data points
(K

E
) obtained over the same time interval. In such a case,

the first term of the right hand side of Eq. (7) can be
calculated by using the K

B
magnetic field data, while the

second term can be calculated by the K
E

sets of (E,B),
where B is usually averaged to have the same sampling
time as E. However the problem here is that the functional
form of Eq. (7) does not reflect the information of the
quantity of data. In general, as the quantity of data in-
creases, the standard error of any statistic calculated from
the data decreases. So in Eq. (7), the standard error of
K(B

n
)/K(B

m
) for a fixed n decreases with increasing K

B
. The

same can be said for K(E@
t
)/K(E@

n
). Thus, the reliability, or

weights, of the two terms should depend on the quantity
of data, but Eq. (7) does not include such weights. Then,
a possible definition of D

n
which includes the weights is as

follows:
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n
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m
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For example if K
B
AK

E
, only the first term remains in

D
n

and the magnetic field data determine n, which is the
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same as is obtained with MVA. Also note that instrumen-
tal conditions may affect the accuracy of observed phys-
ical quantities, as has been pointed out by Sonnerup et al.
(1987). Some additional weights may therefore be applied
depending on the instrumental conditions, in the same
style as Eq. (9).

We note that in MVA and EBMVA we minimize
variances (K) in order to reach the optimum solution.
However it is known that the method of minimizing the
variance is too sensitive to outliers. For example, if one
data point is distributed far from other data points, i.e., if
it has a large deviation from the average of other data
points, then that one point can distort considerably the
result of minimization, because the deviation is squared in
the variance which is to be minimized. If such outliers are
removed by visual inspection, arbitrariness cannot be
avoided in doing so. In order to overcome this problem,
68 percentile ranges can be used instead of variances, with
the outliers kept in the dataset. For example, instead of
using

K(B
n
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!BM
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)2, (10)

B
n
can be sorted in, say, ascending order, and the robust

estimate of the variance defined by
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can be used, where B*
n
(i) refers to the i-th smallest data,

SyT of a real number y means the integer number nearest
to y, K is the total number of the data, Kr"0.34134 ·K,
and 0.34134 is a 1-p range for a normalized Gaussian
distribution. This 68 percentile range is unchanged if, for
example, the largest data point becomes even larger,
meaning that this quantity is robust for outliers.

3 GMVA

There are three other boundary conditions which are not
included in EBMVA, i.e., the mass flux conservation:
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and the energy flux conservation:
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where quantities observed at the spacecraft are shown
without prime while quantities in the frame moving with
the magnetopause are shown with prime, e refers to the
internal energy density, and q refers to the heat flux. Here
we note that Eq. (12) and Eq. (14) have a similar style: o» @

n
is the normal component of oV@, and ¹ @

n
is the normal

component of T@. Because this is similar to B
n

being the
normal component of B, we can include the contributions
of o» @

n
and ¹ @

n
into D

n
in the same manner as that used for

B
n
. That is, the constancy condition can be expressed in

terms of the variance of the vector quantity (oV@ or T @)
along the normal direction, normalize (divide) it by the
variance of the same vector data along a perpendicular
direction, then multiply the normalized value to the right
hand side of Eqs. (7) or (9). On the other hand, Eq. (13)
means constancy of all three components of S@. In this case
this method for normalization cannot be used, because
there is no component which is to change during the
magnetopause crossing. Therefore another way should be
thought of to include this momentum conservation condi-
tion. An answer is to find an n
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F
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+
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and to multiply F
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) to Eqs. (7) or (9). To

summarize, if we write down the generalized version of
Eq. (7) here, it is
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where m
B

is the same as m in Eqs. (7) and (9) (how to
determine it is described in the previous section), and
m

V
and m

T
unit vectors are obtained from oV@ and T@ by

using the same procedure as is used to obtain m
B

from B.
As another feature of the GMVA method, Eq. (6) may

not be used to determine º
d
, because many terms of

Eq. (16) include º
d
. The reasonable solution to this prob-

lem is to solve the set of (n,º
d
) numerically at once so that

D
n
becomes minimum.
Finally we note that Sonnerup et al. (1987) applied

MVA to the mass flux data of a certain magnetopause
crossing event. The result was that the minimum vari-
ance was comparable to the intermediate variance, lead-
ing to poor determination of n from the mass flux
data. That situation was also the case for B observed
at the same time: B also had comparable values of the
intermediate and minimum variances. Then, they did not
use the mass flux data in their final method to determine n,
but they used the maximum variance eigenvector of B (i

B
):

they found that i
B

is nearly tangential to the mag-
netopause, and constrained their method so that n must
be perpendicular to i

B
(see, e.g., page 12, 150 of Sonnerup

et al., 1987).
One may then ask what is the use of the B and oV@ data

in GMVA (the first and third terms of Eq. 16) in a situ-
ation like this (comparable values of the two smallest
eigenvalues for both the magnetic field and the mass flux),
where the data do not provide a proper estimation of n by
themselves. The answer is that, the inclusion of B and oV@
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into GMVA is meaningful even in such a situation.
To explain how it is so, let us first discuss B when B has
the same values of the intermediate and minimum vari-
ances, for simplicity. In such a case, the first term of
Eq. (16) (or 7), K(B

n
)/K(B

m
), becomes unity for any as-

sumed n if it is perpendicular to i
B
. On the other hand, if

n is assumed to be parallel to i
B
, the term K(B

n
)/K(B

m
)

becomes larger than unity. Thus the unity is the minimum
value K(B

n
)/K(B

m
) can take, and the minimum value oc-

curs not at a certain point but at a ring (great circle on
the unit sphere surface) corresponding to n’s satisfying
n · i

B
"0. This means that the K(B

n
)/K(B

m
) term in Eq. (16)

tends to constrain the region of possible minimum of D
n
to

the ring perpendicular to i
B
. Then other conditions such as

that of E@ determine the solution as a point on or near the
ring. This effect of B on the solution n is basically the same
as is employed by Sonnerup et al. (1987) (using i

B
, as

stated), although our method is more flexible in that the
angle between n and i

B
is not fixed to the exact 90° (other

boundary conditions’ contribution in Eq. 16 can shift the
minimal point of D

n
).

Having discussed the magnetic field, we now dis-
cuss the mass flux. What we are looking at here is
the situation where the mass flux data have comparable
values of intermediate and the minimum variances. Then
with the same logic as already discussed, the third term of
Eq. (16), K(o»@

n
)/K(o»@

mV
), tends to constrain the solution

n to a ring perpendicular to the maximum variance eigen-
vector of oV@. Thus, the inclusion of the mass flux term
into Eq. (16) is meaningful. Both of the first and third
terms act as constraints to the solution, in the situation
discussed here, and their contributions are evenly and
objectively evaluated in the form of multiplication in
Eq. (16).

We also note that Paschmann et al. (1986) examined
the tangential momentum conservation. Their conclusion
was that the tangential momentum conservation was gen-
erally satisfied for n determined with the maximum vari-
ance analysis of the electric field. This information sug-
gests that the momentum conservation condition can also
lead to a proper estimation of n, and thus it is favorable to
our method.

4 Magnetopause acceleration effect

Sonnerup et al. (1987) included the acceleration effect of
the magnetopause motion in their method. We note that it
is also possible for our EBMVA method to include the
acceleration effect, by assuming
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where q is the time, offset to the start time of the
observation, º

0
is the initial velocity, and a is the acceler-

ation. Because this equation is linear with regard to
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and n is a vector whose components are
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Other procedures are entirely the same as in the previous
section. For the GMVA method, this equation may not be
used but the set of (n,º

0
, a) has to be solved numerically at

once so that D
n
becomes minimum, because º

0
and a are

then included in many terms of Eq. (16).

5 Summary

We have proposed a methodology to generalize naturally
the concept of MVA to physical quantities other than the
magnetic field. We believe the physical meaning of the
methodology is clear and simple enough to lend reliability
to the methodology by itself. We expect that this meth-
odology is able to draw meaningful information from the
magnetopause crossing data for which MVA does not
work good. Tests of the methodology by simulation stud-
ies, application to actual observations, and comparisons
with other methodologies, will be presented in a future
publication.
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