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Abstract. This paper presents an analytical system for

analysis of all single substituted isotopologues (12C16O17O,
12C16O18O, 13C16O16O) in nanomolar quantities of CO2 ex-

tracted from stratospheric air samples. CO2 is separated from

bulk air by gas chromatography and CO2 isotope ratio mea-

surements (ion masses 45 / 44 and 46 / 44) are performed us-

ing isotope ratio mass spectrometry (IRMS). The 17O excess

(117O) is derived from isotope measurements on two dif-

ferent CO2 aliquots: unmodified CO2 and CO2 after com-

plete oxygen isotope exchange with cerium oxide (CeO2)

at 700 ◦C. Thus, a single measurement of 117O requires

two injections of 1 mL of air with a CO2 mole fraction of

390 µmol mol−1 at 293 K and 1 bar pressure (correspond-

ing to 16 nmol CO2 each). The required sample size (includ-

ing flushing) is 2.7 mL of air. A single analysis (one pair of

injections) takes 15 minutes. The analytical system is fully

automated for unattended measurements over several days.

The standard deviation of the 17O excess analysis is 1.7 ‰.

Multiple measurements on an air sample reduce the measure-

ment uncertainty, as expected for the statistical standard er-

ror. Thus, the uncertainty for a group of 10 measurements

is 0.58 ‰ for 117O in 2.5 h of analysis. 100 repeat analy-

ses of one air sample decrease the standard error to 0.20 ‰.

The instrument performance was demonstrated by measur-

ing CO2 on stratospheric air samples obtained during the

EU project RECONCILE with the high-altitude aircraft Geo-

physica. The precision for RECONCILE data is 0.03 ‰ (1σ)

for δ13C, 0.07 ‰ (1σ) for δ18O and 0.55 ‰ (1σ) for δ17O for

a sample of 10 measurements. This is sufficient to examine

stratospheric enrichments, which at altitude 33 km go up to

12 ‰ for δ17O and up to 8 ‰ for δ18O with respect to tro-

pospheric CO2 : δ
17O ≈ 21 ‰ Vienna Standard Mean Ocean

Water (VSMOW), δ18O ≈ 41 ‰ VSMOW (Lämmerzahl et

al., 2002). The samples measured with our analytical tech-

nique agree with available data for stratospheric CO2.

1 Introduction

Isotopic studies of carbon dioxide (CO2) play an important

role in understanding the global carbon cycle (Ciais et al.,

1997; Farquhar et al., 1993; Trolier et al., 1996). CO2 is

the end product of the carbon oxidation processes in the

atmosphere and is chemically inert in the troposphere and

stratosphere. Nevertheless, it can exchange oxygen isotopes

with liquid water (e.g. the oceans) and in plants via the en-

zyme carbonic anhydrase (Farquhar et al., 1993; Trolier et

al., 1996). These exchange processes largely determine the

oxygen isotope composition of CO2 in the troposphere. Mea-

surements of stratospheric and mesospheric samples, how-

ever, reveal strong enrichments of the heavy oxygen isotopes

in CO2 (Alexander et al., 2001; Boering, 2004; Kawagucci et

al., 2008; Lämmerzahl et al., 2002; Thiemens et al., 1995a, b;

Wiegel et al., 2013). These oxygen isotope enrichments de-

rive from isotope exchange of CO2 with O(1D) via a short-
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lived CO∗3 intermediate (Liang et al., 2007; Perri et al., 2003;

Yung et al., 1991).

The isotope delta (δ) represents the relative iso-

tope ratio difference of a sample to a reference mate-

rial, e.g. δ(nO / 16O, sample/reference)= R(nO / 16O, sam-

ple) /R(nO / 16O, reference) −1. nO stands for 17O or 18O.

R is the isotopic abundance ratio, e.g. x(17O) / x(16O) or

x(18O) / x(16O). Usually, δ values are reported in ‰. Here,

we also use the abbreviated notations δnOsample / reference or
nδsample / reference and omit the subscript index where not re-

quired. For oxygen isotopes, the international reference ma-

terials are Vienna Standard Mean Ocean Water (VSMOW),

Vienna Pee Dee Belemnite (VPDB) and atmospheric O2.

Most isotope fractionation processes are mass dependent

because they arise from differences in chemical and physical

properties that depend on mass such as vibrational zero point

energies. For mass dependent fractionation processes, varia-

tions in 17O and 18O are closely linked via the relationship

1+ δ17O = (1+ δ18O)λ, with λ between 0.501 and 0.531

(Kaiser, 2008). Where δ17O deviates from this relation be-

tween δ17O and δ18O, the deviation can be expressed as 17O

excess, here defined as 117O = [1+δ17O] / [1+δ18O]λ− 1.

Other definitions are also in use (Kaiser et al., 2004).

The isotopic composition of CO2 can be determined

by isotope ratio mass spectrometry (IRMS), measuring the

ion currents for the isotopologues with mass 44, 45 and

46. A significant complication is that three isotope ratios

(17O / 16O, 18O / 16O and 13C / 12C) contribute to these

masses, but only two ion current ratios are measured (45 / 44

and 46 / 44). For example, 17O- and 13C-substituted CO2

cannot be distinguished by isotope ratio mass spectrome-

try since mass 45 consists of both 13C16O2 and 12C17O16O.

Traditionally, the approach has been to assume a mass-

dependent relationship between δ17O and δ18O, effectively

eliminating one unknown isotope ratio. However, this does

not work for atmospheric trace gases that do not follow mass-

dependent fractionation laws. In these cases, measurements

of δ17O actually provide additional information, but indepen-

dent determination of δ 17O and δ18O in CO2 is not straight-

forward.

One possibility is to convert CO2 to O2 and to determine

δ17O by measuring the 33 / 32 ion current ratio. Several dif-

ferent conversion methods have been developed (Barkan and

Luz, 2012; Brenninkmeijer and Röckmann, 1998; Thiemens

et al., 1991).

One possibility to determine δ17O, is by measuring the

33 / 32 ion current ratio of O2 originated from CO2. Fol-

lowing this approach several methods have been developed:

Bhattacharya and Thiemens (1989) converted CO2 to O2 by

reacting it with BrF5; Brenninkmeijer and Röckmann (1998)

used conversion of CO2 into CH4 and H2O by reaction with

H2; in a second step they fluorinated the H2O with F2 to pro-

duce O2 and HF; Barkan and Luz (2012) equilibrated CO2

with H2O and used water fluorination to produce O2. These

methods are labour-intensive and time-consuming, but can

be very precise because the 13C interference is effectively re-

moved.

Assonov and Brenninkmeijer (2001) developed a tech-

nique where a hot metal oxide acts as an oxygen isotope

exchange medium for CO2. To investigate the complete oxy-

gen isotopic composition of CO2, the isotopic composition

of CO2 is measured before and after isotopic exchange with

oxygen from a solid oxide (CeO2) of known isotopic com-

position (Assonov and Brenninkmeijer, 2003; Kaiser, 2008).

This technique was developed as an offline analytical tech-

nique where the isotope ratios are measured with dual-inlet

IRMS. The CO2 sample sizes were 16 to 29 µmol, equivalent

to 1.0 to 1.8 L of tropospheric air. The standard deviation for

117O was 0.33 ‰. Mahata et al. (2012) modified the method

by including an additional step of gas chromatographic sep-

aration of CO2 from N2O, which improved the standard de-

viation to 0.06 ‰.

Kawagucci et al. (2005) described the first online method

for measuring the isotopic composition of CO2. In con-

trast to Assonov and Brenninkmeijer, Kawagucci used CuO

as isotope exchange medium instead of CeO2. Applying

continuous-flow IRMS allowed reducing the sample size

from micromoles to 8.7 nmol of CO2 for one set of mea-

surements (9 repeat analyses of an air sample), the standard

deviation for 117O of one set was 0.35 ‰.

Instead of isotope exchange with a solid oxide, Mahata

et al. (2013) recently described a technique where CO2 is

isotopically equilibrated with O2 gas in the presence of hot

platinum wire. The O2 can then be analysed without 13C in-

terference. High measurement precision (0.045 ‰ for117O)

was obtained for 20–30 µmol CO2, corresponding to an air

sample of 2 L volume.

In this paper we present a new system that combines the

fast and highly effective oxygen isotope exchange with CeO2

(Assonov and Brenninkmeijer, 2001) and the online design

by Kawagucci et al. (2005). The approach involves measure-

ment of two CO2 aliquots (first directly, and then after com-

plete isotope exchange with CeO2) in 15 min for a single run.

Since our analytical system is fully automated, the method is

not labour-intensive. The injection loop volume determines

the sample size. Usually, we inject two aliquots of 1 mL each

of an unknown air sample. Using this system, we measured

the triple oxygen isotope composition of three stratospheric

CO2 samples obtained during the EU project RECONCILE.

2 Method

2.1 Experimental set-up

The skeleton of the analytical system is a combination of

three 6-port 2-position Valco valves (VICI, model C6UWM),

which direct the sample through different parts of the system

(Fig. 1). Valco valve number 1 (V1) is used to flush and fill

the 1 mL-sample loop with sample air and inject the sample
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Figure 1. Schematic set-up of the analytical system (black) with the gas supply system (red). The sample injection unit (shown in detail in

Fig. 2) contains a multiport valve (MPort), mass flow controller (MFC), Valco valve 1 (V1) and is used to inject 1 mL of sample air into the

analytical system. The gas chromatography column (GC) separates CO2 from the rest of sample air. V2 injects the first CO2 aliquot to the

CeO2 oven and the second straight to IRMS; V3 provides the possibility to collect isotopically equilibrated CO2 in a liquid nitrogen trap.

The 1 mL volume after the trap is used to broaden the peak without providing a flow restriction. The CO2 peaks are injected into the IRMS

through an open split interface. Crossed circles are valves.

into the extraction and conversion part of the system. After

gas chromatography (GC) separation of CO2 from the bulk

air, Valco valve number 2 (V2) directs CO2 either through

the oxygen isotope exchange unit or bypasses it. Valco valve

number 3 (V3) comprises a loop with a cold trap to collect

the isotopically equilibrated CO2 before directing it into the

IRMS. The connections between different sections of the sys-

tem are made of fused silica capillary tubing (320 µm inter-

nal diameter (i.d.) / 430 µm outer diameter (o.d.), SGE An-

alytical Science) whereas lines in the sample injection part

(see below) are made of 1/8 inch o.d. stainless steel (SS).

The mass flow controllers together with V1, V2 and V3 are

assembled on a SS plate. A metal cover protects the whole

construction and capillaries from temperature variations.

The five subunits of the system will be described in the

following sub-sections: an automated air sample injection

system (Sect. 2.1.1), the CO2 separation unit (Sect. 2.1.2),

the oxygen isotope exchange unit (Sect. 2.1.3), the post-CO2

peak focusing unit (Sect. 2.1.4) and the mass spectrometer

(Sect. 2.1.5). All parts of the analytical system (except for

the sample injection system) are continuously flushed with

helium (He) carrier gas (99.99 % purity; Air Products). Three

mass flow controllers (MFCs; MKS Instruments) control the

gas flow in the system: MFC-injection controls sample air

flow in the sample injection unit, MFC-GC provides a stable

He flow in the CO2 separation unit, and MFC-oven controls

He flow in the isotope exchange unit.

2.1.1 Automated sample injection

Following the “identical treatment principle” (Werner and

Brand, 2001) the automated sample injection system allows

isotope analysis of atmospheric samples against air from a

reference air cylinder in one measurement cycle (Fig. 2).

MPort, a multiport eight-position Valco valve, forms the core

of the sample injection unit. Ports 1 and 5 are connected to

the reference air cylinder and sample bottles (SA1, SA2) are

connected to ports 3 and 7. Ports 2, 4, 6 and 8 are capped

to avoid gas mixing in the lines; they are used as STOP po-

sitions in between measurements. Note that this could also

be realized in principle with a 4-port-8-position valve or be

extended to an 8-port-16-position valve where the stop posi-

tions are already manufactured into the valve.

In the setup described here, we need to provide air samples

at an overpressure of 1.4 bar because of the mass flow con-

troller (MFC injection). After the automated sample injec-

tion unit, the pressure in the analytical system corresponds to

ambient pressure. The pressure sensor (Sensor Techniques)

monitors the gas pressure in the injection line (1–5 bars), and

the MFC-injection controls sample gas flow to a flow rate

of 1.0 mL min−1 during sample loop loading and zero flow
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Figure 2. Schematic setup of the sample injection unit. From left:

multiport valve (MPort), sample air canisters (SA1 and SA2), refer-

ence air ports, pressure sensor, an automated vent valve, mass flow

controller (MFC-injection) and Valco V1 with 1 mL sample loop.

All injection lines are 1/8 inch stainless steel tubes. Sample injec-

tion is fully automated. Crossed circles above the air sample flask

are valves.

during intermediate times in order to limit sample consump-

tion. The selected air sample fills the sample loop and enters

the gas chromatography column by switching V1. For am-

bient pressure, we use a sample loop of 1 mL, and the loop

is filled to ambient pressure. Each complete isotope analysis

requires two separate air injections. The first aliquot is sub-

sequently isotopically equilibrated with oxygen from CeO2

(“PostCO2”), and the second aliquot is measured directly

(“PreCO2”).

It is important to avoid gas mixing in the injection lines

between two air samples introduced to the system through

MPort. Therefore, an automated vent is used to clean the in-

jection lines between different air samples. To avoid gas mix-

ing in the injection lines we use a two-step procedure. First,

after the last measurement of a certain air sample or refer-

ence air, the MPort valve switches to a STOP position and

the SS injection lines are depressurized by shortly opening

the automated vent valve. Second, the MPort valve switches

to the new air flask and the inlet system together with a sam-

ple loop in V1 (in position LOAD) is flushed at higher flow

rate with the new sample. After this flushing step the protocol

described in Sect. 2.2.2 applies.

In order to improve analytical precision, multiple measure-

ments (usually 10) are performed on one air sample. For a

sample of 10 measurements only 30 mL of the sample air

(corresponding to 480 nmol of CO2) is used.

2.1.2 CO2 separation from air

CO2 is separated from the air and residual gases (N2, O2, Ar,

N2O and hydrocarbons) on a gas chromatography (GC) cap-

illary column (PoraPLOT Q 25 m× 0.53 mm, Varian) main-

tained at 40 ◦C, with helium as carrier gas. At a flow rate

of 4 mL min−1, the air peak (mainly N2 and O2) elutes at

120 s after the sample injection, CO2 at 160 s and N2O at

190 s. The non-CO2 gases leave the analytical system either

through the open split capillary or through the vent in V3

(depending on whether V3 is in position LOAD or INJECT).

The separated CO2 aliquot is directed either to the oxygen

isotope exchange unit or to the IRMS.

2.1.3 Oxygen isotope exchange unit

Following Assonov and Brenninkmeijer (2001), we use solid

cerium (IV) oxide (CeO2) to exchange oxygen atoms with

CO2. For our experiments, we use high purity CeO2 pow-

der (Merck, #102263). The powder is crushed in a mortar,

and the size fraction of 0.25–0.5 mm is selected to fill a

quartz glass reaction tube (1.4 mm i.d., 3.0 mm o.d., 300 mm

length). Scanning microscopy elemental composition scans

performed at the Institute of Non-Ferrous Metals in Gliwice,

Poland, showed no presence of sulfur on the CeO2 grains.

Therefore, unlike Assonov and Brenninkmeijer (2001), we

did not attempt to eliminate sulfate impurities from CeO2 by

high temperature treatment. The quartz tube is filled up man-

ually with 1.000± 0.050 g (6 mmol) of the CeO2 powder and

capped from both sides with quartz wool, preventing CeO2

grains from entering other parts of the system. The reaction

tube is placed in a tube furnace regulated by a temperature

controller. We refer to this assembly as the “CeO2 oven”.

The isotope exchange reaction proceeds at high temperature

(700 ◦C) and is fast and highly efficient. However, the CeO2

oven presents an additional flow resistance, so therefore the

MFC-oven provides He with higher head pressure so that a

flow rate of 20 mL min−1 is reached. Before the first use, the

CeO2 exchange reagent is preconditioned with oxygen gas,

see Sect 2.2.1. For this, we supply O2 manually via open-

ing an oxygen gas line with a needle valve placed before the

MFC-oven. Mixed He /O2 gas flushes the oven and leaves

the analytical system via the vent in V3.

2.1.4 Collection of CO2 after isotope exchange

The isotopically equilibrated CO2 peak is strongly broad-

ened after passing through the CeO2 oven and needs to be

refocused before entering the isotope detection unit in our

analytical system. Therefore, after the isotope exchange re-

action, the equilibrated CO2 is collected on a U-shaped tube

(1/8 inch SS, L= 500 mm) immersed in a liquid nitrogen

(LN2) bath. After complete collection, the trap is lifted up

above the LN2 level; CO2 is released and is flushed further

to V3 with He. The cryogenically focused peak is very sharp,

and an empty 1 mL SS volume is placed before V3 in order to

broaden the peak so that the PreCO2 and PostCO2 peaks ap-

pear on chromatogram with similar intensity. We have found

that keeping the level of liquid nitrogen in the LN2 dewar

constant improves system reproducibility. In our system a

constant level is provided by a microdosing liquid nitrogen

pump (NORHOF Holland) connected to a big 50 L dewar,
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which is sufficient to keep measurements running for three

days.

2.1.5 Isotope detection unit and isotope ratio mass

spectrometry

Pre- and post-equilibrated CO2 aliquots are transferred via

V3 through a Nafion™ dryer to a custom-made open split

system (Röckmann et al., 2003) and finally detected with an

IRMS (Thermo Fisher Scientific Delta V Advantage). The

three molecular ion masses m/z 44, 45 and 46 are measured

simultaneously. 45δ and 46δ are measured relative to a rect-

angular CO2 working reference gas peak. As the instrument

software assumes mass dependent oxygen isotope fractiona-

tion, the data reduction is performed separately to derive 13δ,
17δ and 18δ (see calculation Sect. 2.3).

2.1.6 The laboratory standards

For our measurements we use helium as a carrier gas and

two working reference gases: reference CO2 (RefCO2) and

reference oxygen (RefO2). The isotope values for the labo-

ratory standards are δ13C(RefCO2)=−34.84 ‰ vs. VPDB,

δ18O(RefCO2)= 5.20 ‰ vs. VSMOW, δ17O(RefO2)=

9.33 ‰ vs. VSMOW and δ18O(RefO2)= 19.00 ‰ vs. VS-

MOW. The isotope values of RefCO2 were measured at

the Department of Earth Science of Utrecht University,

the Netherlands, relative to the calcite reference material

NBS-19 (δ18O= 28.65 ‰ vs. VSMOW; δ13C= 1.95 ‰ vs.

VPDB). The carbonate was reacted at 70 ◦C and the oxy-

gen isotopic composition of the RefCO2 was calculated using

an acid fractionation factor α (CO2-calcite)= 1.00871 (Kim

et al., 2007). The isotope values of RefO2 were measured

in Grenoble (Joël Savarino group, Laboratoire de Glaciolo-

gie et Géophysique de l’Environnement, Grenoble, France).

The calibration of the O2 gas can be traced back to the origi-

nal SMOW of H. Craig via the laboratories in Grenoble and

UCSD (J. Savarino and M. Thiemens). Due to multiple trans-

fers of the scale between gas-bottles there may be a small

systematic offset to the VSMOW scale, however, this is not

relevant for the data presented here (see Sect. 2.2.1).

2.2 Measurement procedure

The measurement routine is fully automated and most items

are controlled via the ISODAT 3.0 software (Thermo Fisher).

ISODAT controls the positions of the three Valco valves, the

pneumatic lifter of the LN2 trap and the movement of the

open split capillaries. The MPort valve is controlled with a

commercial electronic switching unit that can communicate

with ISODAT. The gas flow rate for MFC-injection is con-

trolled via an ISODAT signal that switches between two set

points of the MKS module, type PR4000B. We use a sam-

ple flow rate of 1 mL min−1 during sample loop loading and

zero flow for intermediate times in order to save sample.

Instead of the MKS modules, we use custom made elec-
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Figure 3. Example of a typical IRMS chromatogram. Eight square

peaks of the working laboratory reference CO2 (RefCO2) are in-

jected, and two CO2 peaks of the measured air sample. Peak number

6 is non-equilibrated CO2 (PreCO2). Peak number 10 is isotopically

equilibrated CO2 (PostCO2).

tronic controllers for MFC-GC and MFC-oven. For MFC-

GC, we use only one of two possible set points and He

of 4 mL min−1 flow rate continuously flushes the GC col-

umn. For MFC-oven, the two set points for the He flow are

20 mL min−1 to push the post-equilibrated CO2 through the

oven and 6 mL min−1 for intermediate times.

A single measurement of an unmodified aliquot and a CO2

aliquot after isotope exchange takes 15 min. The short anal-

ysis time and a low sample usage allow injecting multiple

aliquots of the same sample into the analytical system, giv-

ing possibility of multiple measurements on each sample. In

2.5 h of analysis, we can repeat measurement on each air

sample 10 times and improve the analytical precision statis-

tically, see Sect. 3.4.

An example of an IRMS chromatogram is shown in Fig. 3.

PreCO2 is detected between 450 and 500 s (peak number 6

on chromatogram) and PostCO2 is detected between 850 and

900 s (peak number 10 on chromatogram). The other peaks

are the working laboratory reference CO2 (RefCO2) injected

to the IRMS via the open split interface.

2.2.1 Preconditioning of CeO2 reagent

Before the first use the CeO2 oven is preconditioned with

oxygen gas of constant isotopic composition. Additionally

oxygen cleans the isotope exchange reactant from contam-

inations that may occur during tube preparation. To equi-

librate the CeO2 powder with oxygen, we open the needle

valve placed before the MFC-oven, allowing O2 to mix into

the He flow. We flush the oven with the He /O2 mixture for

3 h at 600 ◦C. Next, we close the needle valve and increase

the oven temperature to 700 ◦C. The CeO2 oven remains un-

der He flow for 1 h, and then the analytical system is ready

to measure atmospheric air samples. As mentioned by Perri-

chon et al. (1995) and Assonov and Brenninkmeijer (2001),

under long annealing the catalytic behaviour of CeO2 grains

may degrade due to changes in CeO2 surface area. Usually,

we oxygenate the oven every 6 weeks (depending on use) and
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replace the whole quartz reaction tube with new CeO2 grains

every 5 months.

The isotopic composition of O2 used for oxygenation is

given in Sect. 2.1.6. It is important to underline that CeO2

is being oxygenated with O2 of non-mass dependently frac-

tionated O2 and hence the “anomaly” of O2 is further trans-

ferred to PostCO2 of each gas measured. Because of that we

cannot calculate delta values of the sample air directly on

the VSMOW scale. Instead, we use measurements of refer-

ence air, measured before and after the sample, to calculate

delta values of the sample air relative to the average of refer-

ence air. Since both (reference air and sample air) were equi-

librated with virtually the same CeO2 the “anomaly” cancels

out (see Eqs. 7–9). Additionally, knowing isotopic composi-

tion of reference air on the VSMOW scale allows us to calcu-

late δvalues of the sample on the VSMOW scale (see Eq. 8).

2.2.2 Single measurement routine

Each Valco valve has two possible positions: LOAD or IN-

JECT. At time zero, V1 is in position LOAD (sample loop

is flushed with sample air), V2 is in position INJECT (main

flow bypasses the oxygen exchange unit), and V3 is in po-

sition LOAD (main flow bypasses the LN2 trap). During

the first 80 s, sample air fills the sample loop via V1. Next,

V1 switches to position INJECT for 40 s, and the sample

air is transferred to the GC column in a He carrier gas

(4 mL min−1). CO2 is separated on the GC column from the

air and other minor gases such as N2O (see below). The air

peak starts at 200 s while CO2 starts at 240 s. To direct CO2

through the oxygen isotope exchange unit, V2 switches to

position LOAD from 240 to 290 s. At that time, the purified

CO2 has been injected to the CeO2 oven where it is isotopi-

cally equilibrated with the oxygen from CeO2. The cryogenic

trap is immersed in the LN2 bath at 260 s. When V2 switches

back to position INJECT, the He supply is provided by MFC-

oven, and the flow rate is increased to 20 mL min−1 in or-

der to speed up transfer through the CeO2 oven. The equili-

brated CO2 is then directed via V2 and V3 to the cryogenic

trap where it is collected. At 835 s, collection of isotopically

exchanged CO2 is complete, the LN2 trap is lifted up, V3

switches to position INJECT, and PostCO2 is transferred via

the open split interface to the IRMS. The m/z 44, 45 and 46

ion currents of PostCO2 are detected between 850 and 900 s

with peak intensity around 2500 mV.

While CO2 from the first air injection is transferred

through the CeO2 oven and to the cryogenic trap, the sec-

ond aliquot of the same sample air is introduced into the

analytical system. This air injection is used for direct iso-

tope measurement of CO2 (PreCO2). Similar to the first in-

jection, the sample loop is flushed with sample air for 80 s

(V1 in position LOAD between 215 and 295 s). At 295 s V1

switches from LOAD to INJECT for 40 s, and the sample air

is transferred to the GC column. After PreCO2 is separated

from the air and other minor gases, it is directed via V2 (IN-

JECT) and V3 (LOAD) to the IRMS. PreCO2 appears on the

chromatogram between 450 to 500 s and with peak intensity

around 2500 mV. Since PreCO2 takes a much shorter path

through the analytical system and does not require focusing,

it is detected before PostCO2.

Eight peaks of the working laboratory reference CO2

(RefCO2) are injected via the open split interface during the

run. The molecular delta values 45δ(CO2) and 46δ(CO2) of

PreCO2 and PostCO2 are calculated by ISODAT relative to

the working gas reference peaks. We choose the CO2 peaks

number five and nine in the chromatogram to be our working

gas reference peaks.

2.2.3 Measurement cycle

Full automation of our analytical technique allows measure-

ment of air samples against the reference air in one mea-

surement cycle. This allows monitoring and correcting for

daily changes in the analytical system performance or long-

term trends in the system. Our reference air cylinder is filled

with tropospheric air collected at the Cabauw tall tower

(51.971◦ N, 4.927◦ E). The reference air cylinder is always

connected to MPort positions 1 and 5 while the air samples

are connected to positions 3 and 7. We define a measurement

cycle as a sequence of measurements in the following order:

Reference air – Sample air 1 – Reference air – Sample air 2

– Reference air. There are no significant differences between

different ports. Since we repeat measurements on each port

10 times, the measurement cycle is composed of 50 measure-

ments.

2.3 Calculations

We calculate the 17O-excess in CO2 from the signals on

m/z 44, 45 and 46 of CO2 directly measured on IRMS

(PreCO2) and CO2 measured on IRMS after equilibration

with oxygen from CeO2 (PostCO2). The parameters used

for our calculations are from Kaiser and Röckmann (2008):

C=17Rref /
13Rref = 0.03516, D=13Rref ·

17Rref / 218Rref =

0.001042 and λ= 0.528.

λ describes the mass-dependent relationship between the

three oxygen isotopes. The theoretical range for many mass-

dependent fractionation processes is 0.501<λ< 0.531 (but

values outside this range may be attained even for mass-

dependent fractionation where 18α fractionation factor strad-

dles the value of 1). Kaiser (2008) has adopted λ= 0.528

for mass dependently fractionated CO2 samples, as have As-

sonov and Brenninkmeijer (2003) for their 17O-correction

algorithm. However Hofmann et al. (2012) have shown

that for CO2-water equilibration λ= 0.522± 0.002. This

value was supported by Barkan and Luz (2012) who found

λ= 0.5229± 0.0001 for the same process. However, as

pointed out by Kaiser (2008), 117O is not a measured quan-

tity and may be reported relative to an arbitrarily chosen

mass-dependent fractionation line. In the absence of an inter-
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national recommendation with respect to the preferred defi-

nition, any definition should be treated on an equal footing to

any other. Comparing data between laboratories always re-

quires recalculation of 117O from measured quantities, i.e.

δ18O and δ17O, and with different λ. For results shown in this

paper we define λ≡ 0.528 because it has often been used in

the past for CO2 triple isotope studies.

Note the calculations of the 17O-excess in CO2 do not

depend on the actual isotope ratios as demonstrated by

Kaiser (2008). Rather, only the quantities

C =
17Rref

13Rref

=

17RVPDBCO2

[
1+ δ17Cref/VPDBCO2

]
13RVPDBCO2

[
1+ δ13Oref/VPDBCO2

] (1)

and

D =
13Rref17Rref

218Rref
=

13RVPDBCO2

[
1+ δ13Cref/VPDBCO2

]17
RVPDBCO2

[
1+ δ17Oref/VPDBCO2

]
218RVPDBCO2

[
1+ δ18Oref/VPDBCO2

] (2)

are required, where ref=RefCO2. The conversion equations

from 45δ and 46δ of PostCO2 (with respect to working refer-

ence CO2) to 13δ, 17δ and 18δ can be written in terms of C

and D as follows:

18δ=46δ+D
[
(2+C)46δ− (2+ 4C)45δ

(
1+17δ

)
−(2− 2C)17δ+ 3C17δ2

]
(3)

17δ = (1+18δ)λ− 1. (4)

These equations are solved iteratively and typically con-

verge to better than 0.001 ‰ after 3 iterations.

13δ = (1+ 2C)45δ− 2C17δ (5)

Using 13δ(PostCO2)=
13δ(PreCO2),

17δ(PreCO2) is calcu-

lated as

17δ (PreCO2)=

(
1+

1

2C

)[
45δ (PreCO2)−

45δ (PostCO2)
]

+
17δ (PostCO2) . (6)

Then, 18δ(PreCO2) is calculated using Eq. (3).

To correct for the daily variability of the system, we mon-

itor isotopic composition of reference air before and after

the sample. We calculate δ13C, δ17O and δ18O of the sample

(SA) relative to the average of the reference air (RefAir) fol-

lowing Eq. (7). Note Std stands for international standards.

δSA/RefAir =
[
(δSA/Std+ 1)

/
(δRefAir/Std+ 1)

]
− 1. (7)

The CO2 in the reference air was calibrated versus

international standards at UC Berkeley (group of K. Boer-

ing). Three samples of 20 µmol CO2 each, were extracted

cryogenically from the reference air at IMAU laboratory,

flame sealed in glass ampoules and shipped to UC Berkeley.

The method of Assonov and Brenninkmeijer (2001) was

applied for the isotope ratio measurements of CO2. Detailed

description of the procedure can be found in the appendix

of Wiegel et al. (2013). At UC Berkeley the samples from

Utrecht were measured against the secondary laboratory

standard, which, in turn, was calibrated against the three

NIST CO2 reference materials RM8562, RM8563 and

RM8564. The δ17O value of the UC Berkeley lab standard is

not known, but calculated from its δ18O with respect to VM-

SOW assuming λ= 0.528 and 117O= (0± 0.5) ‰ (Wiegel

et al., 2013). The measurements at UC Berkeley resulted

in the following isotope deltas for CO2 in Utrecht ref-

erence air: δ13C(RefAir/VPDB) = (−8.25± 0.10) ‰;

δ17O(RefAir/VSMOW) = (16.95± 0.40) ‰;

δ18O(RefAir/VSMOW) = (32.74± 0.08) ‰ and 117O

= (−0.2± 0.5) ‰. The uncertainty in brackets corresponds

to the average of three samples measured.

We calculate the final δ values of the sample according to

δSA/Std =δSA/RefAir · δRefAir/Std

+ δSA/RefAir + δRefAir/Std. (8)

Finally, the 117O is calculated as follows:

117O=
[
1+ δ17O

]/ [
1+ δ18O

]λ
− 1. (9)

3 Performance of the analytical system

3.1 Blank measurements

Blank measurements were carried out not only to verify that

the analytical system is leak tight but also to detect possi-

ble contamination from the GC column or from the oxy-

gen isotope exchange unit. During the blank measurement,

pure He carrier gas was injected into the analytical system

and the usual measurement routine was applied (described

in Sect. 2.2.1). No peak was detected on the chromatogram

between 450 to 500 s suggesting no contamination from the

GC and the absence of leaks. A peak with an area of 0.3 Vs

was detected in the PostCO2 detection window (between 850

to 900 s). This peak originates from the CeO2 oven. As this

is only 1.4 % of a typical sample peak and it would affect

sample and reference air in the same way, no corresponding

correction is applied.

3.2 N2O contamination

Because it has the same molecular mass, the isotopologues

of N2O interfere with CO2 isotopologues in IRMS measure-

ments at m/z 44, 45 and 46 (Mook and van der Hoek, 1983).

The N2O mixing ratio of atmospheric air is about 1200 times

smaller than for CO2. In our system, we expect N2O peak

areas to be as small as 0.02 Vs for 20 Vs CO2 peak areas.

This is at the peak detection limit, and it is difficult to detect
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Figure 4. Chromatogram showing the separation of CO2 from N2O

in the artificially prepared mixture. The sample was injected to the

analytical system at 60 s. CO2 appeared on chromatogram at 220–

243 s and N2O appeared at 248–275 s. Peaks are well separated, the

interval between the CO2 and N2O peaks is 5 s. The air peak (nor-

mally visible at 180–210 s) is not included on this chromatogram.

N2O on the IRMS chromatogram. However, the distribution

of molecular ion masses 44, 45 and 46 in N2O is very dif-

ferent from the distribution in CO2, and therefore N2O in-

terfering with CO2 can decrease 117O by 3 ‰ (Wiegel et

al., 2013). For precise isotope measurements, CO2 has to be

separated from N2O or a correction for the N2O interference

needs to be applied. In our online technique, N2O is sep-

arated from CO2 on the gas chromatography capillary col-

umn. To verify that CO2 and N2O are well separated, we

prepared a mixture of 400 ppm N2O in synthetic air. We in-

jected this N2O-rich gas to our system from MPort position

3. The N2O was detected on the chromatogram between 250–

275 s. While the SS injection line between MPort and MFC-

injection still contained the N2O-rich gas, venting was not

applied. MPort was moved to position 5 allowing the refer-

ence air to mix with the N2O-rich gas in subsequent runs.

The reference air became contaminated with N2O in quanti-

ties that are similar to the CO2 mixing ratio. On the follow-

ing IRMS chromatogram, both CO2 and N2O appeared, and

even for these high amounts of N2O, the peaks were almost

baseline-separated (see Fig. 4). This shows that for normal

air, N2O and CO2 are separated on the GC capillary column,

and a corresponding N2O correction does not need to be ap-

plied, similar to what was shown by Ferretti et al. (2000).

3.3 Equilibration efficiency

In order to quantify CeO2 equilibration efficiency, four at-

mospheric air samples with different δ18O(CO2) values were

measured against RefAir in two measurement cycles. In the

first measurement cycle, SA1 and SA2 were connected to

MPort position 3 and 7 while reference air was connected

to positions 1 and 5. In the second cycle, SA3 and SA4

were connected to position 3 and 7 instead of SA1 and SA2.

Ten measurement repetitions were performed on each gas, so

therefore the whole measurement sequence was 90 runs long.

Figure 5. Full and highly efficient oxygen equilibration reaction in

the CeO2 oven represented by isotopically exchanged CO2 of four

diverse atmospheric air samples (SA1 – rhombs, SA2 – triangles,

SA3 – circles and SA4 – stars) measured against the reference air

(stripes). The initial differences in δ18O between the reference air

and the air samples were up to 12 ‰ (relative to RefCO2).

The raw-δ46CO2 isotope values of PreCO2 were the

following: RefAir = 24.50 ‰; SA1= 35.40 ‰; SA2 =

36.77 ‰; SA3 = 32.65 ‰ and SA4 = 36.84 ‰ all relative

to RefCO2 (1σ = 0.10 ‰). Figure 5 shows 46δ of these four

samples and the reference air after isotopic equilibration. In

all cases, after the isotopic exchange reaction raw-δ46CO2 is

equilibrated to 21.82 ‰ (relative to working reference CO2,

(RefCO2)) with precision of 0.08 ‰. In other experiments,

when the initial δ18O between RefAir and the air samples

were 30 ‰ different, the δ18O was indistinguishable within

0.09 ‰. This proves that oxygen equilibration reaction in

CeO2 oven is highly efficient and that the exchange rate is

> 99.7 % (1–0.09/30).

3.4 System reproducibility and long stability test

RefAir (directly from the cylinder) and two SS 2 L cans

(filled separately from the RefAir cylinder) were connected

into the analytical system via the four different injection ports

(MPort position 1, 3, 5 and 7) and measured continuously

for several days. The MPort position was changing each

10 measurements, and a total of 270 measurements were per-

formed. Figure 6 shows the results for each single measure-

ment (blue points) and for each group of 10 measurements

(diamonds). There is no significant difference between mea-

surements from the main cylinder and from the aliquots in the

smaller flasks (p value of ANOVA significance test is 0.8).

The 117O values are randomly distributed within the mea-

surement error, and the long-term analytical system stability

does not vary.

The mean value of117O for our RefAir is −0.30 ‰ (rela-

tive to VSMOW, λ= 0.528), which reflects the calibration of

the UC Berkeley measurements to our reference air (117O=

−0.20± 0.40 ‰). The standard deviation for all 270 individ-

ual measurements is 1.68 ‰, but this improves to a standard

deviation of 0.58 ‰ when they are split into 27 groups of 10

measurements each.

Atmos. Meas. Tech., 8, 811–822, 2015 www.atmos-meas-tech.net/8/811/2015/



D. J. Mrozek et al.: Continuous-flow IRMS technique for determining the 17O excess of CO2 819

Figure 6. Stability and reproducibility test for the analytical sys-

tem: 117O values of reference air were measured constantly for

several days. Striped black line indicates the average value of 270

runs and for 27 groups of 10 measurements respectively. The dotted

lines indicate standard deviation over 270 individual runs (blue) and

over 27 groups of 10 measurements (black) and show how multiple

measurements on the same sample decrease the measurement error.

The reproducibility (1σ) of 27 groups of the raw data,

i.e. the isotopologue ratios (45 / 44 and 46 / 44) is 0.02

and 0.13 ‰ for non-equilibrated CO2 and 0.04 and 0.08 ‰

for equilibrated CO2, respectively. The main contribution

to the measurement error of 117O is the uncertainty in the

isotope ratio 45 / 44 after the isotopic exchange reaction.
12C16C17C contributes only about 1/15 to the signal at m/z

45 (Kawagucci et al., 2008; Brenninkmeijer and Röckmann,

1998); therefore, the approximate precision of 117O in a

sample of 10 measurements is 15× 0.04 ‰= 0.60 ‰. This

value is in good agreement with our experimental uncertainty

of 0.58 ‰.

In order to show how multiple measurements on one sam-

ple can improve our system precision further, we divide 270

measurements from the long stability test into groups of

different size: two groups of 135 runs; three groups of 90

runs; five groups of 54 runs; etc. For each case, we calcu-

late the standard error (SE) of the individual samples. As

SE= σ/n0.5, a linear correlation between ln(SE) and ln(n) is

expected with slope −0.5 with the results shown in Fig. 7.

The standard error shows a generally monotonic decrease

with increasing number of measurements per package. The

expected slope for this graph is −0.5 and the experimental

slope is −0.468. The results indicate that for large air sam-

ples (with a volume 750 mL and larger), we are able to deter-

mine 117O with a precision of 0.2 ‰.

Figure 7. Improvement of the measurement precision by perform-

ing multiple measurements on the same air sample. The ln of the

standard error (SE) is plotted versus ln of the number of measure-

ments (n) that were included in the calculation of the SE. The upper

axis represents the amount of CO2 used for analysis including sam-

ple loop flushing. A SE of about 0.2 ‰ can be reached after about

100 measurements. The experimentally derived slope for the error

reduction is −0.468, which is close to theoretical value −0.500.

3.5 Linearity test

Possible non-linearity effects of the analytical system were

examined by diluting the reference air with 5 and 10 % of

synthetic air (CO2-free). This means a reduction of the ini-

tial mixing ratio of 400 ppm to 380 and 360 ppm. Dilutions

were prepared barometrically in 2 L and 150 mL SS flasks.

Figure 8 shows the difference in 117O between the dilu-

tion and the undiluted RefAir sample as a function of CO2

peak area: 5 % dilution peak> 17.5 Vs and 10 % dilution

peak< 17.5 Vs. The 117O results are not statistically differ-

ent from the reference air, and not from each other (p value

of an ANOVA significance test is 0.7). We conclude that the

117O signal is not affected by decreases in the mixing ratio

up to 10 % as they may occur in the stratosphere. As such,

our system is suitable for measurement of atmospheric air

samples with CO2 mole fractions between 400 and 360 ppm.

4 Stratospheric air samples

The scientific potential of our analytical system was es-

tablished by measuring stratospheric air samples obtained

within the EU project RECONCILE. Samples were collected

in the polar region (aircraft base in Kiruna/Sweden) with

the high-altitude aircraft M55-Geophysica during December

2011. The air samples were measured for numerous tracers,

such as N2O, CFC-11, CFC-12, CH4 (Kaiser et al., 2006;
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Figure 8. 117O of CO2 in aliquots of the laboratory reference gas

that was filled into flasks of 2 L and 150 mL volume, respectively.

These are the flasks in which the stratospheric samples were mea-

sured. The reference air was additionally diluted by 5 % (squares)

or 10 % (triangles) with zero air. There is no significant difference

between different types of flask, and for the different dilutions, thus

no non-linearity can be detected.

Laube et al., 2010; Röckmann et al., 2011) and the remaining

air was used for measurement of the isotopic composition of

CO2 with the analytical technique described here. In Fig. 9,

we show the oxygen isotopic composition of three strato-

spheric air samples together with already published data.

At 18 km the observed 17O excess values for stratospheric

CO2 go up to 7 ‰ for δ17O and up to 3 ‰ for δ18O with

respect to tropospheric CO2 (δ17O ≈ 21 ‰ VSMOW, δ18O

≈ 41 ‰ VSMOW). The samples measured with our analyti-

cal technique agree with available data for stratospheric CO2

(Kawagucci et al., 2008; Lämmerzahl et al., 2002; Wiegel et

al., 2013). The precision for the RECONCILE data is 0.03 ‰

(1σ) for δ13C, 0.07 ‰ (1σ) for δ18O and 0.55 ‰ (1σ) for

δ17O for a group of 10 measurements. An in-depth analysis

on the new data set will be published in a separate paper.

5 Conclusions

We have established an online measurement system for mea-

surement of 117O in CO2 based on complete oxygen iso-

tope exchange with CeO2 at 650 ◦C (Assonov and Bren-

ninkmeijer, 2001) and similar to the online system using a

copper oxide exchange reagent by Kawagucci et al. (2005).

Our method is the first fully automated analytical system that

uses CeO2 as the isotope exchange medium. The 3 h labour

characterized for a single measurement in the offline tech-

niques (Assonov and Brenninkmeijer, 2001; Hofmann and

Pack, 2010; Mahata et al., 2012) was decreased to a mini-

mum: connecting air samples to the injection lines, filling the

LN2 dewar and running the measurement sequence by press-

Figure 9. Three-isotope plot for oxygen isotopes in CO2 from at-

mospheric air samples. Previous observations are from Kawagucci

et al. (2008) (circles); Lämmerzahl et al. (2002) (diamonds) and

Wiegel et al. (2013) (triangles). Three samples from the RECON-

CILE project (squares) fall in the range of previously published val-

ues. Two blue circles distinguish tropospheric air samples (contin-

uous blue circle) from stratospheric ones (dashed blue circle). The

red line is the mass dependent fractionation line with slope 0.528.

Note logarithmic scale ln17O= ln(δ17O+1) and ln18O= ln(δ18O

+1).

ing the start button. That was possible by constructing the

automated sample injection, by applying ISODAT 3.0 soft-

ware and electronic devices to control movement of valves,

LN2 trap and gas flow in the MFCs, and finally by using a

microdosing LN2 pump to keep the liquid nitrogen level in

the CO2 trap constant.

Although the standard deviation of a single run is higher

than for already established methods that use CeO2 (Assonov

and Brenninkmeijer, 2001; Hofmann and Pack, 2010; Ma-

hata et al., 2012) it can be decreased statistically with inject-

ing multiple aliquots of the same sample.

The reproducibility of measured 117O is 0.6 ‰ for 10

measurements (usage of the air sample 30 mL) and can

be decreased statistically to 0.2 ‰ (usage of the air sam-

ple 750 mL). Our system is designed for measuring atmo-

spheric air samples with CO2 mole fractions between 360

and 400 ppm. The most promising application of our sys-

tem is analysis of stratospheric CO2 from air samples of vol-

ume 100 mL and less. So far, we have successfully measured

three oxygen isotope composition of CO2 from air samples

collected above Kiruna/Sweden and polar region in Decem-

ber 2011. In the present setup a limitation is the requirement

of overpressure of the sample gas in the injection unit of at

least 1.4 bar. The current focus is on further development of
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the injection unit to allow measurement of air samples at am-

bient pressure.
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