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Abstract. Since its establishment in 2000, EARLINET (Eu-

ropean Aerosol Research Lidar NETwork) has provided,

through its database, quantitative aerosol properties, such as

aerosol backscatter and aerosol extinction coefficients, the

latter only for stations able to retrieve it independently (from

Raman or high-spectral-resolution lidars). These coefficients

are stored in terms of vertical profiles, and the EARLINET

database also includes the details of the range resolution of

the vertical profiles. In fact, the algorithms used in the li-

dar data analysis often alter the spectral content of the data,

mainly acting as low-pass filters to reduce the high-frequency

noise. Data filtering is described by the digital signal process-

ing (DSP) theory as a convolution sum: each filtered signal

output at a given range is the result of a linear combination of

several signal input data samples (relative to different ranges

from the lidar receiver), and this could be seen as a loss of

range resolution of the output signal. Low-pass filtering al-

ways introduces distortions in the lidar profile shape. Thus,

both the removal of high frequency, i.e., the removal of de-

tails up to a certain spatial extension, and the spatial distor-

tion produce a reduction of the range resolution.

This paper discusses the determination of the effective res-

olution (ERes) of the vertical profiles of aerosol properties

retrieved from lidar data. Large attention has been dedicated

to providing an assessment of the impact of low-pass filtering

on the effective range resolution in the retrieval procedure.

1 Introduction

Smoothing and numerical derivative are typically applied in

the retrieval of aerosol optical properties from lidar data, and

both may act as a low-pass filter. The smoothing is a low-

pass filter; instead the ideal numerical derivative enhances

high frequencies (Mollova, 1999). This means that in order

to perform effectively a numerical derivative of a signal, a

smoothing filter has to be coupled in cascade with the ideal

derivative (see Sect. 2.1). For this reason the terms “smooth-

ing filter” and “low-pass filter” should be considered as syn-

onymous. The smoothing is an operation frequently carried

out on the raw lidar signals as well as on final products,

such as the aerosol backscatter coefficient (βa) (Klett, 1981;

Fernald, 1984; Ansmann et al., 1992) to reduce the random

noise. On the other hand, the retrieval of the aerosol extinc-

tion coefficient (αa) from a Raman lidar signal (Ansmann et

al., 1992), or of the planetary boundary layer height estima-

tion from a Rayleigh lidar signal (Matthias et al., 2004), or of

the ozone profiles and the water vapor profiles with the differ-

ential absorption lidar (DIAL) technique (e.g., McGee et al.,

1995; Wulfmeyer and Bösenberg, 1998), includes a numeri-

cal derivative. The application of low-pass filtering will also

generate a reduction in the vertical or time resolution with

respect to the unfiltered products. Moreover, often there is

the need for comparing or combining different atmospheric

variables and this requires that they are fully consistent in

time and in space: they must be nearly co-located, coinci-

dent in time and with the same space resolution. This lat-

ter category includes, for example, the retrieval of lidar ra-

tio (S) profile or the comparison between the same quantity

obtained by different instruments with different resolutions,
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like balloon-borne ozone data versus ozone lidar profiles, as

pointed out by previous studies (e.g., Masci, 1999). In those

cases, inconsistencies could arise if data are not compared at

the same resolution. For example, to obtain an S profile, a

high-resolution aerosol backscatter coefficient profile, hav-

ing well-resolved layers, could be combined with a heav-

ily smoothed, low-resolution simultaneous extinction profile,

where the same layers can be not well resolved. This would

result in a biased estimation of the actual values of the lidar

ratio (see Sect. 3 and 3.1).

In general, even if the data samples after the filtering pro-

cess emerge separated by the same spatial step they had be-

fore being processed, this spatial step does not represent the

effective resolution of the filtered profile. The primary aim

of this paper is to study the problem of the effective reso-

lution (ERes) estimation for lidar products using a different

approach with respect to those already presented in the lit-

erature (Godin at al., 1999; Beyerle and McDermid, 1999;

Shcherbakov, 2007; Trickl, 2010; Leblanc et al., 2012; Porn-

sawad et al., 2012). A parametric study of several smoothing

filters is performed, and the results provide recommendations

on the optimization of lidar signal processing.

Although it is more common to consider the vertical spa-

tial resolution for lidar profiles, the effective resolution con-

cept can be easily generalized and extended to the time res-

olution, for example, in the case of the time series of lidar

profiles.

This paper is organized as follows: in Sect. 2, the foun-

dations of smoothing and numerical derivation are summa-

rized. Section 3 is devoted to the ERes operative estimation

based on both the application of the well-known Rayleigh

criterion (Born and Wolf, 1999) and the calculation of the

so-called noise reduction ratio (NRR) (Orfanidis, 2010). In

the Appendix A–D, different constructions of low-pass filters

are introduced discussing their advantages and drawbacks.

The “Summary and conclusions” section reports the outcome

of the paper and includes recommendations and suggestions

useful for the analysis of lidar data.

2 Smoothing and derivation of a lidar profile: the

digital filter approach

As pointed out in previous works (Pappalardo et al., 2004;

Matthias et al., 2004; Whiteman, 1999), the most used algo-

rithms to smooth or differentiate the data within the EAR-

LINET community are those involving some kind of slid-

ing least-squares polynomial fitting. Adopting this point of

view in a straightforward manner is not very efficient (Press

et al., 2007) and “the digital filter approach and the concept

of smoothing polynomials yield identical results” (Steffen,

1986). These digital filters based on smoothing polynomials

are widely known as Savitzky–Golay filters (SG) (Savitzky

and Golay, 1964) and include both smoothers and nth-order

differentiators: they will be discussed in some detail in Ap-

pendix A.

Without going into detail, as largely discussed in several

books and papers on digital signal processing (DSP) (e.g.,

Hamming, 1998; Orfanidis, 2010), a digital filter is a numer-

ical procedure or algorithm that transforms a given sequence

of numbers x(n) (the inputs signal) in another y(n) (out-

put signal) that has some more desirable properties (like less

noise, for example). The general time-domain relationship

between the system output value at time n and the input val-

ues for a linear-time-invariant (LTI) system can be written

as

y(n)=

∞∑
k=−∞

h(k)x(n− k). (1)

In Eq. (1), the sequence h(k) is the so-called impulse re-

sponse and it represents the wanted LTI transformation. Un-

less otherwise specified, the word “signal” refers to a generic

input/output of the filter. In the case of real-time DSP, Eq. (1)

cannot be used directly since the calculation of output value

y(n) at the current time n will require future discrete-time

input samples (for this reason the LTI system is required to

be causal). Moreover the summation in Eq. (1) has infinite

limits.

However, for the current study only finite impulse re-

sponse (FIR) filter will be examined, i.e., only those filters

for which the impulse response, h(k), has a finite number

of non-zero elements (2N+1, k =−N,. . .,N). Furthermore,

the analysis of lidar signals is typically carried out offline

and, for this reason, “future” input samples are always avail-

able (Orfanidis, 2010). On the basis of the above considera-

tions, Eq. (1) can be written as y(n)=
N∑

k=−N

h(k)x(n− k),n=N, · · ·,nmax−N − 1

nmax ≥ 2N + 1.

(2)

Equation (2) is a representation of the so-called non-causal

linear-time-invariant (LTI) finite impulse response (FIR) dig-

ital filter (Orfanidis, 2010). If the impulse response consists

of M = 2N + 1 samples and if the length of the input signal

x(n) is nmax(n= 0,1, . . . , nmax− 1), then the length of the

output signal y(n) will have M+nmax−1 samples, if we do

not consider the limits for n in Eq. (2). When y(n) is calcu-

lated for n outside these limits, i.e., for n<N or n> nmax–

N–1, there is always a lack of one or more of the needed

input samples in x(n). These missing inputs are treated as

zeroes in the convolution sum, and this causes a transient

effect and, hence, distortion on the smoothed signal. To re-

move this transient effect, n have been limited in Eq. (2). Of

course, this implies an overall loss of information in the out-

put signal because of the necessary removal of N points at

the beginning and at the end of the output signal. Anyhow, it

should be noted that there are techniques (Gorry, 1990; Khan,

1987; Leach et al., 1984; Orfanidis, 2010) that are able to
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deal with this problem. In the study of processes in the tro-

posphere, which are the primary objective of EARLINET,

these transient effects could limit the capability of retriev-

ing planetary boundary layer information, which is already

affected by the incomplete overlap between the lidar trans-

mitted beam and the receiver field of view, if not properly

corrected (Wandinger and Ansmann, 2002). Indeed, if the

spatial extension of the region of incomplete overlap is not

well known, the smoothing of a profile including this region

might bias the retrieval, for example, of the aerosol extinction

profile, αa, at the lower ranges.

The impulse response of a non-causal FIR filter is a

real-valued sequence (this is true also for the signals con-

sidered in this study) and its discrete time Fourier trans-

form (DTFT) (Karam et al., 2009; Hamming, 1998; Smith,

2007):

H(ω)=

N∑
k=−N

h(k)e−jωk,ω =
�[rad s−1

]

fS[sample s−1]

=
2πf

fS

[rad sample−1
] (3)

gives the frequency response, where ω (the digital frequency)

is the ratio between the analog angular frequency � and the

sampling frequency fS, which “represents a convenient nor-

malization of the physical frequency f ” (Orfanidis, 2010). In

generalH(ω) is a complex, continuous and periodic function

of ω with period 2π . For real h(k), H ∗(ω)=H(−ω), and

all the information contained in the frequency response are

confined in the range 0≤ ω ≤ π (Kuc, 1988). The normal-

ized frequency, ω/π , will be used as an independent variable,

when needed, in the plots of this work (Schafer, 2011).

The FIR frequency response can be written as

H(ω)= A(ω)ejθ(ω), (4)

where A(ω) is the amplitude and θ(ω) is the phase re-

sponse. A sufficient condition to have linear phase is a real

and symmetric impulse response (Oppenheim and Schafer,

2009). For linear-phase FIR filters with even symmetric im-

pulse response, the phase response is a linear function of ω

that can be expressed as θ(ω)=−N0ω, where N0 is a con-

stant. This form of θ(ω) simply shifts in time the different

frequency components of the signal by the same constant

amount, avoiding phase distortion. In this study, we consider

non-causal (i.e., N0 = 0) low-pass linear-phase FIR filters

with the symmetry condition h(k)= h(−k). Under this as-

sumption, H(ω) becomes a real function (Kuc, 1988) which

can take positive and negative values. However when the am-

plitude changes sign, the phase response shows a jump dis-

continuity of π rad (Kohn, 1987). Note also that for a anti-

symmetric non-causal impulse response there is a constant

term of π/2 rad to be considered (see Sect. 2.1) in the phase

response (Oppenheim and Schafer, 2009). As an example,

three different H(ω) curves are shown in Fig. 1 for an SG

filter obtained using a second-degree polynomial (SG2) for

different values of the parameter N .

H is a direct representation of how a filter alters the fre-

quency content of a signal. In lidar studies, the relevant

features of a signal are generally confined in the lower-

frequency portion of the signal spectrum. In the ideal case,

for low frequencies, no alterations are produced on an input

signal (where H = 1, the so-called pass-band region), while

the frequencies in the stop-band region (where H = 0) are

completely removed. Ideal low-pass filters cannot be prac-

tically realized, and each deviation from the ideal behavior

will produce artifacts in the output signal. In fact, real low-

pass filters are characterized by a finite transition region be-

tween the pass band and the stop band and, at higher frequen-

cies, H could be significantly different from zero and with

alternating positive and negative amplitude values (ringing

or side-lobe effects). As an example, a negative value of H

in the stop-band region could result in particularly evident

high-frequency artifacts in the output signal. For this reason,

the filter design normally tries to minimize the transition re-

gion and the side-lobe effects as discussed in Appendix B, C

and D.

To clarify all the above effects, we considered what hap-

pens when a low-pass filter is applied to an oscillating input

signal described by the following equation:

xn = cos

[
2π

(
f0

fs

)
n+πk

(
n

fs

)2

+ϕ

]
;f0 = 0;k =

2

π
;ϕ = 0

⇒ xn = cos

[
2

(
n

fs

)2
]
= cos (2t2n ); tn =

(
n

fs

)
;n= 0,1,2, · · ·

(5)

Equation (5) is a representation of the so-called linear chirp

signal (McClellan et al., 2003; https://en.wikipedia.org/wiki/

Chirp) in the discrete form (fS is the sampling frequency),

which is useful for our purpose because its spectrum con-

tains several frequencies, starting from the DC (ω = 0) to the

higher ones. The results are summarized in Fig. 2. In par-

ticular, artifacts caused by the first side lobe are quite evi-

dent, appearing as waves, poorly attenuated and inverted in

sign with respect to the input signal, and located where the

abscissa of the smoothed signal plot is between ∼ 3.3 and

∼ 5.5. For this example, an SG filter has been selected be-

cause it is one of the most used smoothing filters and also

because it exhibits all the abovementioned effects resulting

from the smoothing process.

Due to the large dynamic range of a lidar signal, digi-

tal filters with a different frequency response could be ap-

plied at different ranges, in order to handle properly the lo-

cal values of the signal-to-noise ratio (SNR). In this way,

the smoothing parameters of the filter are range dependent;

therefore, the smoothed lidar returns will be characterized

by a range-dependent effective resolution (see Sect. 3). The

range-dependent filter parameters have a small impact on the

computation time required for the lidar data analysis espe-

cially when compared to standard smoothing operated by

www.atmos-meas-tech.net/8/5157/2015/ Atmos. Meas. Tech., 8, 5157–5176, 2015
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Figure 1. Left panel: frequency responses of the SG2 smoothing filter for different values of the filter length, M = 2N + 1. Right panel:

non-causal impulse responses for the different filter lengths.

Figure 2. Upper panel: the input signal (Eq. 5) and the smoothed

one using an SG2 (N = 33) filter. Bottom panel: the frequency re-

sponse of the SG2 filter and the frequency spectra of the input sig-

nal. The signal spectral features are preserved in the light green

region, where H>0.7 (Schafer, 2011). In the cyan area, the cor-

responding frequencies are sensibly damped, 0<H<0.7. It can be

clearly seen, corresponding to the gray regions in the two panels,

the effect of H<0, which results in high-frequency artifacts in the

output signal (red line in the upper panel). Note also the transient

zones, marked in yellow at the boundaries of the timescale of the

signal in the upper panel, where no output signal can be retrieved.

H ≈ 1 for 0<ω/π<4× 10−3.

the least-squares polynomial fitting (see Appendix A); this is

quite important in the case of centralized calculus tools like

the Single Calculus Chain (SCC) (D’Amico et al., 2015), de-

veloped within EARLINET to perform a near-real time and

fully automated analysis of aerosol lidar data.

In Appendix A, B, C and D, a few digital filter types that

could be used in lidar data processing are described in detail.

Anyhow, there are many other methods to design efficient

low-pass filters (e.g., Eisele, 1998; Trickl, 2010, also used

within EARLINET).

The digital filter approach enables one to calculate the

random error associated with the output in a relative easy

manner if compared with the covariance matrix calculations

needed in the least-squares polynomial fitting (Whiteman,

1999). In fact, using the error propagation rules (Rocaden-

bosch et al., 2012), the variance (Var) of a filtered signal

could be written as (Gans, 1992)

Var
[
y(n)

]
=

N∑
k=−N

h2(k)Var[x(n− k)] . (6)

Equation (6) is correct if no correlation exists among input

signal samples and errors, which is a hypothesis frequently

assumed in lidar studies and in many other scientific fields.

Anyhow, if further operations are performed on a signal after

the smoothing process, the error estimation must be carried

out with particular care. In fact, even if measurement errors

associated with samples of the input signal are uncorrelated,

the errors associated with the samples of the output smoothed

signal will be correlated as a consequence of the convolu-

tion process and then the covariance matrix must be applied

(Gans, 1992).

2.1 Low-pass filter and first derivative

Besides direct smoothing, the first derivative is the other op-

eration frequently used in lidar data analysis. The frequency

response of the ideal first derivative filter is (Mollova, 1999)

H (1)(ω)= jω = ωejπ/2,0≤ ω ≤ π;

|H (1)(ω)| = ω.
(7)

Equation (7) shows a significant difference from a low-pass

filter: since its frequency response grows linearly with ω, the

ideal derivative can be seen as a noise-adding process be-

cause it amplifies high frequencies, an unwanted feature for

Atmos. Meas. Tech., 8, 5157–5176, 2015 www.atmos-meas-tech.net/8/5157/2015/
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Figure 3. The signal described by Eq. (5) (red line), together with its

first derivative (blue dotted line). The high-frequency components

of the signal are amplified in the derivative.

our purposes. In Fig. 3, the chirp function of Eq. (5) is plot-

ted along with its analytical first derivative; it helps to figure

out why this amplification happens. In the same fashion of

the example reported in Fig. 2, the portion of the differenti-

ated signal we want to preserve is the low-frequency one (for

example the part corresponding to the [0,1] interval of the

time axis), but the high frequencies (the noisy portion) are

strongly amplified with respect to those originally included

in Eq. (5); the higher the frequency, the higher the amplifica-

tion, as described by Eq. (7).

Therefore a proper trade-off must be operated between the

execution of the ideal derivative procedure for the whole sig-

nal and the necessary cut of the high frequencies. For this rea-

son, the goal is to design a band-limited differentiator that,

for frequencies higher than a certain cut-off value (i.e., for

ω >ωc), will ideally remove the high-frequency component

in Eq. (7). In other words, a low-pass differentiator is wanted,

i.e., a differentiator with a frequency response likeH (1)L and

that can be thought as a cascade of a low-pass filter HL and

the ideal derivative H (1) (Luo et al., 2005; Zuo et al., 2013):

H (1)L(ω)=H (1)(ω)HL(ω). (8)

The impulse response coefficients of this generic first deriva-

tive filter can be written as h(1)L(k). This kind of im-

pulse response is anti-symmetric (h(1)L(k)=−h(1)L(−k),

h(1)L(0)= 0) (Hamming, 1998; Smith, 2007), and a fre-

quency response is given by Eq. (3) and Euler formu-

las (Wang, 2012, 2013):

H (1)L(ω)=−j

N∑
k=−N

h(1)L(k)sin (ωk), (9)

where the cosine terms vanished. It is worth recalling that

for low-pass filters, the terms that disappear in Eq. (3) are the

sine terms, because of the even symmetry (h(k)= h(−k)) of

Figure 4. The frequency responses of the low-pass filter embedded

with an SG2 derivative filter and estimated with Eq. (10) (HL, i.e.,

the dSG2 low-pass filter) at different M values.

their impulse responses. Thus, from the Eqs. (7), (8), and (9),

HL(ω) can be written as

HL(ω)=
H (1)L(ω)

jω
=

−

N∑
k=−N

h
(1)L

(k)sin (ωk)

ω
. (10)

In Fig. 4, results from Eq. (10) are plotted in the case of an

SG2 derivative filter. Therefore, the SG derivative filter can

be understood as a cascaded system of two filters: the first

one being a low-pass filter acting on the raw input signal and

the second one being the ideal differentiator (jω) and acting

on the low-pass filtered signal. Prefix “d” stands for the low-

pass filter prototype (i.e., dSG) associated with this first stage

of the SG differentiator (inherently low pass), e.g., dSG2 for

those in Fig. 4.

3 The effective resolution

The investigation of the synthetic lidar data inversion (Pap-

palardo et al., 2004) in Fig. 5 helps to recognize the effective

resolution (ERes) as relevant in lidar data analysis. It high-

lights that the effective resolution plays an important role in

assessing properly the problems that could arise when data

with different resolutions are combined. In this latter figure,

the aerosol layer included in the true profile at 1.4–1.6 km be-

comes heavily smoothed by the low-pass filter used in the re-

trieval (a dSG2 in this case). If the aerosol backscatter profile,

βa, is smoothed, the resulting lidar ratio profile is consistent

with the true one (see Fig. 5, central and right panels), both in

value and in behavior. On the contrary, if aerosol backscatter

profile, βa, is not smoothed, the lidar-ratio profile in the layer

becomes quite different from the synthetic one. Outside the

layer the differences between the retrieved lidar-ratio profiles

www.atmos-meas-tech.net/8/5157/2015/ Atmos. Meas. Tech., 8, 5157–5176, 2015
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Figure 5. Aerosol retrievals using synthetic lidar profiles at

L’Aquila (Pappalardo et al., 2004). The aerosol layer at 1.4–1.6 km

almost disappears when smoothed by the low-pass filter used in the

retrieval algorithm (blue lines). The lidar-ratio profile in the layer is

not too far from the truth (black dotted lines); the same agreement

is not reached if the aerosol backscatter coefficient profile, βa, is not

smoothed (red dashed lines).

are less relevant because the aerosol field is nearly constant

and for this reason less sensitive to the distortion effect of

smoothing filter (Ziegler, 1981).

Two approaches will be considered for the quantitative as-

sessment of the ERes:

– The first one is related to the distortion induced by the

smoothing process on any non-trivial input signal (Enke

and Nieman, 1976; Ziegler, 1981). In fact, the area

preservation property (common to all the considered

smoothing filters, for example see the properties of SG

filters in Appendix A) implies that if the peak of a layer

is reduced, its spatial width will increase and potentially

could overlap with another feature present in a profile.

The final result will be that it is no longer possible to dis-

tinguish one peak from another (i.e., they are no longer

resolved): this means that a low-pass filter reduces the

vertical resolution. This latter statement naturally leads

to the use of the Rayleigh criterion (Born and Wolf,

1999) for the determination the effective resolution.

– The second approach is based on the removal of high

frequencies due to the smoothing operation (Gans and

Gill, 1983; Orfanidis, 2010). Since high frequencies in

space domain correspond to relatively small-scale de-

tails in the lidar profiles, if they are lost in a certain

amount this will imply a reduction of the resolution in

the output profile with respect to the input one. Inci-

dentally, it should be noted that since a smoothing fil-

ter damps effectively only high frequencies and since it

is common to deal with white noise, the low-frequency

portion of the noise is still present in the smoothed sig-

nal, for example in the form of long-wave ripples (Gans,

1992). Moreover, a link is established between the ERes

estimated with each of those two approaches and the

corresponding cut-off frequency definition, as discussed

in Sect 3.4 (Godin et al., 1999; Masci, 1999; Beyerle

and McDermid, 1999; Leblanc et al., 2012).

Before discussing the two abovementioned methods, using

the results of Sect. 2.1, an answer will be provided to the

question about how to obtain a lidar-ratio profile that comes

from aerosol extinction and backscatter profiles with the

same effective resolution.

3.1 Obtaining profiles with the same effective

resolution: the lidar ratio case

To retrieve the aerosol extinction profile, αa (Ansmann,

1992), a first-derivative filter is applied. The frequency re-

sponse of the embedded low-pass filter (HL) can be found

from Eq. (10), or more directly if a Gaussian derivative filter

is employed (see Appendix D for details on Gaussian filters).

The calculation of HL gives the solution to the problem of

retrieving a consistent lidar ratio and without a hypothesis or

assessment about the effective resolution itself of the profiles

involved: they only need the same resolution. In fact, once

HL is known, because the properties of the convolution and

of the Fourier transform (Rabiner et al., 1970; Rabiner and

Gold, 1975; Kuc, 1988; Oppenheim and Schafer, 2009), with

the aid of fast Fourier transform (FFT) algorithms it is possi-

ble to smooth the corresponding aerosol backscatter profile,

βa, with this filter. In this way both the profiles are with the

same effective resolution, since their frequency spectrum has

been changed using the same low-pass filter. To illustrate bet-

ter the above concepts, in Fig. 6, a retrieval of the optical pa-

rameters is performed starting from simulated elastic/Raman

lidar data (Ansmann, 1992; Pappalardo et al., 2004) with an

aerosol layer 1000 m thick. The signals have been simulated

for the Rayleigh signal at 351 m and for the corresponding ni-

trogen Raman signal at 382 m, without adding noise or back-

ground. Both the SG2 derivative and the Gaussian derivative

filters are employed to retrieve the aerosol extinction pro-

file. Then the corresponding embedded low-pass filters are

used to smooth the raw-resolution aerosol backscatter pro-

file. Both the extinction and the backscatter coefficient pro-

files with the same ERes are combined to get an estimation

of the lidar ratio. Figure 6 shows that, besides the good re-

sults for the retrieval of the lidar ratio inside the actual sim-

ulated layer, an accurate result is also obtained in the zone

immediately outside the layer, i.e., where the filter distorts

the profiles with respect to the true layer. In Fig. 6 it is also

shown that wrong lidar-ratio values are obtained in almost

all the aerosol layers if the aerosol backscatter profile, βa, is

smoothed with a different low-pass filter (H instead of HL).
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Figure 6. In the left plots, the aerosol extinction profile, α (blue line), has been retrieved by means of an SG2 derivative filter with N =

7 (frequency response is indicated with H (1)L). The aerosol backscatter profile, βa,HL (black line), is obtained by smoothing the one

retrieved at raw resolution (not shown) with the correct low-pass filter: the dSG2 filter with N = 7 (i.e., the smoothing filter HL). The other

aerosol backscatter profile, βa,H (red line), is retrieved using a low-pass filter of the same family (dSG2), but with N = 14: then H 6=HL.

The right plots show the same vertical profiles, but using the Gaussian filters. The parameter driving the Gaussian derivative filter is σ . In

this case the value used to get the aerosol extinction profile (blue line), α (σ = 4), it is the same needed in the Gaussian filter to smooth the

raw-resolution backscatter profile (black line). A Gaussian filter with a doubled σ value (σ = 8) is used to obtain the other aerosol backscatter

profile, βa,H (red line). In all the plots the magenta lines indicate the input simulated profiles.

3.2 The effective resolution: the Rayleigh criterion

The Rayleigh criterion is generally accepted in spectroscopy

for the determination of the minimum resolvable detail (Born

and Wolf, 1999). It is an empirical criterion and states that

two peaks are considered fully resolved if the drop in inten-

sity between them is lower than 74 % of the peak intensity.

This is a result of the diffraction formulation that says that

the imaging process is named diffraction-limited when the

first diffraction minimum of the image of one source point

coincides with the maximum of another. The application of

Rayleigh criterion to the determination of the effective reso-

lution could be done by analyzing the effect of a low-pass

filter on a pair of unitary pulses. Operatively, two unitary

pulses at fixed distance are smoothed by a low-pass filter

whose parameters are changed to increase the signal distor-

tion. By increasing N for SG filters with fixed P , or σ for

Gaussian filters, it is possible to find the maximum value of

the filter parameter that still allows resolving two smoothed

pulses according to the Rayleigh criterion. For SG filters,

after P is changed, the whole procedure is repeated again

to evaluate the results of applying the criterion to different

polynomial degrees. Then, the effective resolution associated

with the smoothing filter considered is exactly this distance.

Moreover, this procedure, also known as the “step function”

method, has been already tested in the frame of the first EAR-

LINET algorithm intercomparison (Pappalardo et al., 2004).

There are alternative approaches to estimate the ERes such

as the analysis of the smoothing effect on the full width at

half maximum (FWHM) of a finite impulse (Leblanc et al.,

2012), the response to a Heaviside step function (VDI –

Verein Deutscher Ingenieure, 1999; Eisele and Trickl, 2005;

Vogelmann and Trickl, 2008, Trickl, 2010), or the application

of the regularization theory to lidar data processing (Porn-

sawad et al., 2012; Shcherbakov, 2007). However, for SG

filters, the “step function” method apparently shows some

ambiguous results as can be seen in the examples reported

in Fig. 7. In fact with SG filters (with P ≥ 2) it can be diffi-

cult to properly define whether the Rayleigh criterion is sat-

isfied (or not) because of the occurrence of anomalous fea-

tures like bumps between the two smoothed peaks (Fig. 7

central panel) and/or of the displacement of the smoothed

peaks with respect to their unsmoothed position (Fig. 7,

lower panel). In these cases, the ratio used for the applica-

tion of the Rayleigh criterion is evaluated between the in-

tensity at the peak and the intensity at the midpoint between

the two peaks. Moreover, because the intensity at the mid-

point is not always the absolute minimum, this ratio provides

a more conservative estimation of the ERes. The drawbacks

in the application of the Rayleigh criterion could represent a

further problem caused by the presence of side lobes in the

frequency response of the SG filters. For the Gaussian filter

and for filters whose side lobes are of limited amplitude (as

the SG2+Blackman window (SG2+Blk), see Appendix C)

in comparison with SG filters, these problems are no longer

observed.

However, the “step function” method used in the case of

the SG0 filter (also known as the boxcar or the moving av-

erage, see Appendix A) of length M leads to a first operative

definition for the ERes. In fact, from Fig. 8, it should be clear

that the effective resolution in this case is simply reduced by

a factor ofM = 2N+1, because under the action of the SG0
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Figure 7. The Rayleigh criterion applied to a couple of one bin

thick (1Rraw = 1, in arbitrary units, a.u.) unitary pulses (blue line)

distant 10 bins. The lower and central panels show (black lines)

the smoothed profile obtained using the SG filters: unwanted fea-

tures (under-shots, the central “bump” and the displacement of the

smoothed peaks) are quite evident in both cases. The profile ob-

tained with the Gaussian filter (upper panel, red line) has no prob-

lems. All smoothed profiles are normalized to the maximum.

all the involved data points will be equally weighted. So the

ERes (1Reff) associated with the boxcar filter can be explic-

itly written as

1RSG0
eff |Ray = (2N + 1)1Rraw. (11)

It is worth mentioning that for the SG0 the effective resolu-

tion is also equal to the inverse of its impulse response coef-

ficient (multiplied by the raw resolution 1Rraw) which, for

any given N , is a constant independent of k,

hSG0(k)=
1

2N + 1
. (12)

The use of cascade filters can be exploited to solve the ob-

served ambiguity in the application of the Rayleigh criterion

for SG filters with P ≥ 2. In fact, the cascaded filters, con-

structed with our simple rule (stated in Appendix B), make

plausible that a L1 filter has almost the same ERes of the cas-

cade L1 ·L2 filter. For example, the ERes estimated for the

SG2 ·SG4 cascade should approximate the value of the ERes

of the SG2 filter. Moreover, Fig. 9 shows that the application

of the Rayleigh criterion to the SG2 ·SG4 cascade does not

Figure 8. Two unitary pulses (thickness=1Rraw = 1, distance be-

tween pulses= 9 bins, black line) after the application of SG0

with N = 1 (length M = 2N + 1= 3, blue line) and N = 2 (length

M = 2N +1= 5, red line), become 31Rraw- and 51Rraw-wide

pulses respectively. For N > 4 the two pulses cannot be distin-

guished: 1RSG0
eff
|Ray = 9 bins [a.u.].

show the central bump problem. Figure 10 (left panel), which

shows the behavior of the ERes of several SG filters and their

corresponding “equivalent” cascaded filters, evidences that

the occurrence of the anomalous “bump” feature in Fig. 7,

has a limited effect in the determination of the ERes (< 5–

10 % difference) for these filters.

Exploiting the quite evident linear relationship between

the ERes and N shown in Fig. 10, the following linear re-

lationship can be obtained:

1RSG2·SG4
eff |Ray = (1.17N − 0.09)1Rraw;

1RSG2
eff |Ray = (1.24N − 0.24)1Rraw;

1RSG4·SG6
eff |Ray = (0.80N − 0.65)1Rraw;

1RSG4
eff |Ray = (0.74N − 0.48)1Rraw;

1RSG6·SG8
eff Ray

= (0.60N − 0.78)1Rraw;

1RSG6
eff |Ray = (0.62N − 0.86)1Rraw.

(13)

For the other filters under investigation (dSG2, SG2+Blk,

and Gaussian), the application of the Rayleigh criterion does

not give particular problems. Thus, Fig. 10 (right panel)

shows that for these filters the ERes can also be written using

the linear relationships,
1RdSG2

eff |Ray = (1.55N + 0.83)1Rraw;

1RSG2+Blk
eff |Ray = (0.80N + 0.20)1Rraw;

1RGeff|Ray = (2.79σ − 1.04)1Rraw.

(14)

For example, if an aerosol extinction profile is retrieved

from a nitrogen Raman lidar signal with a raw resolution of

1Rraw = 15 m by using an SG2 derivative filter (i.e., the low-

pass filter to consider is the dSG2) withN = 30, its estimated
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Figure 9. The Rayleigh criterion applied to 2 unitary pulses (1 bin thick and at a distance of 20 bins) in the case of the SG2 filter (black line)

and of the SG2 ·SG4 filter (red line). The cascaded filter does not exhibit the appearance of central “bump”. The N values in legend indicate

the maximum possible value to resolve the two smoothed pulses.

Figure 10. Left panel: the ERes estimated with the Rayleigh criterion applied to SG filters up to order P = 6 as a function of N . For all the

polynomial orders examined (2, 4, 6), small differences (≤5–10 %) in the ERes are found between the results obtained applying the criterion

on SG filter and the corresponding “equivalent” cascade filters. Right panel: the ERes obtained for three different low-pass filters (dSG2,

SG2+Blk, Gaussian) for which the application of Rayleigh criterion does not show anomalous features.

ERes will be of 700 m. Because of the constraints on N and

σ discussed in Appendix A and D, the ERes obtained with

Eqs. (13) and (14) will always be positive and larger than the

raw resolution, 1Rraw, and lower than (2N + 1)1Rraw (up-

per limit given by the SG0). The linear fit is performed with

the constraint that SG filters with N = P/2 do not smooth

and, therefore, do not change the vertical resolution (i.e.,

1Reff =1Rraw). As an example of how these constraints

are applied for the SG4 filter, the condition N = P/2 im-

plies that with N = 2 the filter will not cause any smoothing

and, hence,1Reff =1Rraw(= 1 in our plots). Then, to obtain

the fitting parameters, the linear relationship has been con-

strained through to the point (N = 2,1Reff = 1). Regardless

of whether the linear fit is constrained or not, the estimated

slope does not significantly change while the estimated in-

tercept point has low impact on the ERes determination (up

to ±1 ·1Rraw, a value that can be interpreted as indetermi-

nation on the estimation of the ERes). As N or σ increase in

Eqs. (13) and (14), the weight of the intercept point in the de-

termination of the ERes becomes less and less relevant. The

numerical difference in the ERes calculated with or without

the intercept point for the SG2 is negligible for any value of

N ; for the SG6 the difference becomes < 10 % for N > 15,

and for the Gaussian filter it is lower than 10 % when σ>4.5.

Although the use of the Rayleigh criterion leads to simple

and ready-to-use linear relationships for the calculation of

the ERes, no universal equation encompassing all low-pass

filters has been found. In fact, for any given new smoothing

filter, the whole procedure has to be repeated from scratch.

3.3 The effective resolution: the NRR criterion and the

SNR matching criterion

Removal of the noise embedded in a signal is the main

purpose in the application of a low-pass filter. The amount

of zero-mean white noise removed by a generic filter has

already been explicitly assessed in literature (Gans and

Gill, 1983; Brown, 2000). Thus, the ratio between the in-
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put (VarIN) and the output (VarOUT) noise variances can be

taken as a measure of the noise removed from an input sig-

nal after the filter smoothing. This quantity is also called

noise reduction ratio (NRR) and depends only on the im-

pulse response of the filter under investigation (see Chapter

8.3 and Appendix A.2 in Orfanidis, 2010; Mitra, 2001; Gans

and Gill, 1983). Formally,

NRR=
VarOUT

VarIN

=

N∑
k=−N

[h(k)]2. (15)

By using the explicit formula for the ERes associated with

the SG0 filter and Eqs. (11), (12), and (15),
NRRSG0(N)

=

N∑
k=−N

[
hSG0(k)

]2
=

1

2N + 1
;

1R
SG0(N)
eff |NRR = (2N + 1)1Rraw =

1Rraw

NRRSG0(N)
.

(16)

Equation (16) enables a general hypothesis on how to esti-

mate the effective resolution by means of the NRR. In fact,

it can be inferred that the ERes associated with a generic

low-pass filter L(p̂), characterized by a set of parameters,

p̂ = (p1,p2· · ·,pn) (e.g., p̂ = (N,P ) for SG-based filters or

p̂ = (σ ) for a Gaussian filter), can be written by means of the

general equation

1R
L(p̂)

eff |NRR =
1Rraw

NRRL(p̂)
. (17)

In other words, it is possible to say that since low-pass filter-

ing alters the SNR, it is reasonable to assume that if a signal

shows the same SNR after the smoothing with different low-

pass filters, then those filters act on the signal in a similar

fashion: they cause the same reduction of resolution. There-

fore, the output profiles will have the same ERes. To imple-

ment operatively these concepts, the SG0 filter for different

values of N is applied on a generic signal, and then the cor-

responding SNR of the smoothed signal is calculated. Ap-

plying a generic low-pass filter L(p̂) on the same signal, an

optimization process can be performed to find the values of

[N0, p̂0] that reduces the average difference between the two

SNRs to zero, as close as possible (SNR matching criterion).

Mathematically,

1SNRN,p̂ = SNRSG0(N)
−SNRL(p̂)

⇒ [N0, p̂0] :1SNRN0,p̂0
≈ 0.

(18)

Finally, by using Eq. (16), the ERes of a L(p̂0) smoothing

filter becomes

1R
L(p̂0)

eff |SNRm = (2N0+ 1)1Rraw. (19)

In Fig. 11, an example of the similar SNRs achievable by

using two different types of low-pass filters is shown. The re-

sults of the ERes obtained using the Eqs. (17), (18), and (19)

Figure 11. The input SNR of a test signal is shown with the black-

squares line. The SNRs after applying an SG0 smoothing filter with

different values of N are shown with blue-squares lines. The SNRs

of the signal smoothed using a Gaussian filter with a σ that satis-

fies Eq. (18) are also drawn with red-squares lines. Note the good

agreement between the blue-squares and red-squares lines.

for several other low-pass filters are reported in Fig. 12. The

analysis of Fig. 12 provides a clear confirmation of the equiv-

alence between the NRR criterion and the SNR matching

criterion. For this reason Eq. (17) provides an easy way to

estimate the ERes for all types of smoothing filters, instead

of using the less general (and more time-consuming) SNR

matching procedure (Eqs. 18 and 19). In fact, with the NRR

criterion, the estimate of the effective resolution is based only

on the impulse response of the smoothing filter employed,

which is known or it can easily be calculated. Figure 12 also

shows that the ERes calculated with the NRR criterion can be

expressed by using linear relationships, as for the Rayleigh

criterion in Sect. 3.2. The linear regressions obtained from

the NRR criterion for the same type of smoothing filters as

the ones discussed in Sect. 3.2 are

1RSG2·SG4
eff |NRR = (0.98N + 0.30)1Rraw;

1RSG2
eff |NRR = (0.89N + 0.11)1Rraw;

1RdSG2
eff |NRR = (1.61N + 1.25)1Rraw;

1RSG4
eff |NRR = (0.57N − 0.15)1Rraw;

1RSG2+Blk
eff |NRR = (0.96N + 0.04)1Rraw;

1RSG6
eff |NRR = (0.42N − 0.27)1Rraw;

1RGeff|NRR = (3.53σ + 0.02)1Rraw.

(20)

As can be seen from Eqs. (13), (14), and (20), comparison

of the ERes estimated using the Rayleigh criterion and NRR

criterion reveals differences as well as similarities. A conve-

nient way to summarize the results obtained for both crite-

ria and to understand their main differences is to study the

behavior of the frequency responses of the smoothing fil-
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Figure 12. Left panel: the ERes estimated as a function ofN with the NRR criterion (solid lines) and with the SNR matching criterion (SNRm,

dotted lines) are shown for different SG smoothing filters. The ERes values for the SG2+Blk filter are not shown and they are between the

SG2 and the SG2 ·SG4 curves. Right panel: the ERes using the Gaussian filter with different σ . Note that the NRR and SNRm criteria give

almost the same results.

ters (Fig. 13). With the NRR criterion, the same value of

the ERes is obtained when the frequency responses have

approximately the same pass band (i.e., for ω/π<4× 10−2

in the upper plot of Fig. 13), which is the region between

ω = 0 and the canonical definition of the cut-off frequency,

ωc = ω|H−3dB
= ω|H≈0.7.

On the contrary when, using the Rayleigh criterion, a com-

mon value of the ERes is obtained when the frequency re-

sponses share almost the same stop-band extension, irrespec-

tive of significant differences that may occur in the pass band.

The stop-band frequency, ωsb, is defined as the frequency

corresponding to the first zero of H(ω) (Schafer, 2011) for

filters having side lobes. For the Gaussian filter and the SG2-

windowed filter, i.e., in case of frequency responses with both

a significantly wide transition band and without side lobes of

relevant amplitude (see Appendix C, Fig. C1 and Fig. D1),

the stop-band frequency can be taken as ω|H=0.1, the upper

limit of the transition band (Cappellini and Emiliani, 1986).

Given the above definitions, the stop-band frequencies for

the bottom plot of Fig. 13 are close to each other, since for

all the filters they are comprised between ω/π ≈ 7× 10−2

and ω/π ≈ 9× 10−2.

As discussed so far, smoothing filters always convey a dis-

tortion action on signals and a quantification of this effect is

highly desirable. In fact, as shown by use of the NRR cri-

terion, the smoothing of a signal could not always lead to

significant improvement in the SNR (this is due to the satu-

ration effect achieved when almost all the noise is removed).

For example, in Fig. 5 the layer structure is lost by the dis-

tortion action of the applied low-pass filter. For this reason,

in a smoothing operation it seems very relevant to find the

limit over which the (undesirable) distortion of an underly-

ing input signal could become more relevant than the con-

current (desirable) decrease of the noise level predicted by

Eq. (15). Previous papers related to spectroscopic studies ac-

tually found this limit analyzing SG filters (Enke and Nie-

man, 1976; Ziegler, 1981; Gans and Gill, 1983; Rzhevskii

and Mardilovich, 1994). As a potential follow-up to this pa-

per, it would be interesting to apply the outcome of this spec-

troscopic studies to the lidar signals with the aim to optimize

the ERes retrieval and, more in general, the whole lidar signal

processing.

3.4 The effective resolution: the cut-off frequency

The considerations emerging from the analysis of Fig. 13 al-

low linking both the approaches provided for the ERes es-

timation to the cut-off frequency. The cut-off frequency as-

sociated with the frequency response of a smoothing filter

can be used for estimating the effective resolution (Godin,

1987; Godin et al., 1999; Masci, 1999; Beyerle and McDer-

mid, 1999; Leblanc et al., 2012). For this reason, consider-

ing a generic low-pass filter L(p̂), the following equation is

valid:

1R
L(p̂)

eff = π
1Rraw

ωc

. (21)

Of course, the definition of effective resolution in Eq. (21)

depends on the value chosen for ωc and, therefore, on the ac-

tual pass-band (or bandwidth) definition. Figure 13 suggests

that the most suitable value of ωc depends on the chosen cri-

terion for the ERes estimation. In order to find this value from

Eq. (21),

ωc = π
1Rraw

1R
L(p̂)

eff

. (22)

In this way, once the ERes is evaluated for a given low-pass

filter L(p̂) with a given criterion, Eq. (22) allows estimat-

ing the value of its frequency response at ω = ωc. The π
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Figure 13. Upper panel: frequency responses of different low-pass

filters with the same ERes (= 251Rraw) estimated using the NRR

criterion. The curves show similar behavior at lower frequencies

and have nearly the same cut-off frequency ωc = ω|H−3dB
. Bot-

tom panel: the same curves as in the upper panel, but with the

ERes (= 251Rraw) calculated using the Rayleigh criterion. In this

latter case, the common feature of the frequency responses curves is

the extension of the stop-band region.H ≈ 1 for 0<ω/π<4×10−3

for all the curves.

multiplication factor is necessary to obtain 1Reff =1Rraw

(i.e., no smoothing) for ωc = π . For example, with the NRR

criterion, the cascade SG2 ·SG4 with N = 25 will provide a

value of 1Reff ≈ 25 a.u. (1Rraw = 1, from Eq. 17 or 20),

which implies a ωc/π ≈ 0.04; thus, once estimated at the

cut-off value, the frequency response of the selected filter

gives H(0.04)≈ 0.72 (Fig. 14, right panel). Indeed, from

Fig. 14, as far as the NRR criterion is considered, the val-

ues of the frequency responses at ω = ωc given by Eq. (22)

for any given 1Reff and for any smoothing filter (or at least

within those analyzed) are quite constant and they range

within ∼ 0.65 and ∼ 0.72. Therefore, using the NRR crite-

rion and Eq. (21), for a given low-pass filter L(p̂), the cut-

off frequency defined as ω
L(p̂)
c |NRR = ω|HL(p̂)

−3dB

= ω|HL(p̂)≈0.7

appears as the best value to be chosen to estimate the ERes.

For the Rayleigh approach (Fig. 15), the ERes calculated

using Eq. (21) is similar to those estimated using Eqs. (13)

and (14) if the cut-off frequency of the low-pass filter L(p̂)

is ω
L(p̂)
c |Ray = ω

L(p̂)

sb /2 (Orfanidis, 2010). To summarize,

Eq. (21) can be rewritten for both the NRR and the Rayleigh

criterion as
1R

L(p̂)

eff |NRR ≈ π
1Rraw

ω
L(p̂)
c |NRR

≈ π
1Rraw

ω (H
L(p̂)

−3dB)
;

1R
L(p̂)

eff |Ray ≈ π
1Rraw

ω
L(p̂)
c |Ray

≈ π
21Rraw

ω
L(p̂)

sb

.

(23)

Equation (23) provides a general frame for the consider-

ation done in Sect. 3.3 and related to Fig. 13. Furthermore,

the second formula in Eq. (23) provides a kind of general

equation, or at least a rule of thumb, also for the ERes re-

trieval based on the use of Rayleigh criterion. Instead the first

equation is not really needed because the general equation for

the NRR criterion is Eq. (17). It is important to mention that

Eq. (23) has been obtained using the low-pass filters studied

in this work.

4 Summary and conclusions

Noise removal in the retrieval of lidar optical properties us-

ing low-pass filters implies the removal of a certain amount

of the useful information contained in the signal. Smooth-

ing procedures affect both the magnitude and the vertical ex-

tension of the features contained in a profile. Moreover, the

likely presence of several separated layers (of aerosol, ozone,

etc.) in a lidar profile raises the question of whether they are

well resolved or not after they have been smoothed. There-

fore, it is important to introduce the definition of effective

resolution (ERes) associated with a lidar profile to take into

account the smoothing effects. The digital filter approach to

investigate the smoothing effects provides several advantages

with respect to the standard least-squares approach like

– faster algorithms able to properly deal with the large dy-

namic range of a lidar signal, which is an interesting

feature concerning the automatic data processing chain

like the SCC (D’Amico et al., 2015);

– easier statistical error analysis (Rocadenbosch et al.,

2012);

– ready-to-use effective resolution definitions through an

analysis of the impulse/frequency response;

– methods to design the most efficient low-pass filters to

satisfy specific needs in the lidar signal processing.

In this work, a parametric study of several smoothing filters

has been presented also with the aim to provide recommen-

dations in support of the selection of the filter type for the

aerosol lidar applications. The estimation of the ERes does
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Figure 14. Left plot: the value of the frequency responses function at ωc/π plotted as a function of the effective resolution (Eq. 22, NRR

criterion), for all the examined low-pass filter. Right plot: a sketch of the procedure to estimate the single value of the frequency response at

ωc/π , in the case of the point indicated by the blue triangle in the left plot: according to Eq. (22), the value of ωc/π is about 0.04 and the

corresponding H (0.04) is ≈ 0.72.

Figure 15. For all the investigated smoothing filters, the ERes ob-

tained with the Rayleigh criterion as function of the corresponding

value of the quantity π ·2/ω
L(p̂)
sb

. The identity line is drawn in black.

not provide any ultimate indication on the best filter to be ap-

plied in the of lidar data analysis. This is because the ERes

does not contain any information about the spectral behavior

of the different filters. Among the investigated filters, for ex-

ample the cascaded Savitzky–Golay filters are well suited for

the lidar data analysis. This class of filters is characterized by

– the preservation of the spectral features of the signal in

the pass band;

– a narrow frequency transition band;

– reduction of the side-lobe effects;

– a larger transient zone in time domain.

The Gaussian filter are characterized by

– efficient suppression of noise;

– less accurate preservation of the signal in the frequency

pass band;

– a large frequency transition band.

Moreover, as long as the choice is between the SG2 deriva-

tive filter and the Gaussian derivative filter, the employment

of the latter seems recommendable when the first derivative

of a signal is required.

The advantages of the DSP approach are used, for exam-

ple, to solve practical problems of lidar studies, i.e., how

to calculate the lidar ratio ensuring that both the retrieved

aerosol extinction and aerosol backscatter profiles have the

same resolution. Thus, an operative ERes estimation method

has been presented by taking into account

– the Rayleigh criterion, which assesses the spatial res-

olution and hence our ability to resolve (or not) close

aerosol layers;

– the NRR criterion, which assesses the amount of noise

reduction associated with a specific low-pass filter de-

sign.

Both criteria can also be considered as a measure of the loss

of information on the vertical scale of the signal. The NRR

criterion underlines that smoothing filters are able to remove

efficiently only the high-frequency noise. In fact, the pres-

ence of low-frequency noise remains almost unchanged and

will continue to affect the lidar retrievals. Comparison be-

tween these two criteria allows the identification of a simple

linear relationship between the effective resolution and the

filter parameters. For the same filter with same parameters,
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using different criteria, the ERes shows differences. The dis-

crepancies are limited to a maximum of about 30 % in case

of SG or Gaussian filter, while for other filters they are less

significant (< 20 %) or not relevant (< 5 % for dSG2 case).

The analysis of the filter’s frequency responses shows that

– similar effective resolutions are obtained with the

Rayleigh criterion for those filters that share a compara-

ble stop band (ωsb), irrespective of their behavior in the

pass band;

– similar effective resolutions are obtained with the NRR

criterion for different filters that have similar values in

the −3dB cut-off frequency, ω|H−3dB
, i.e., a comparable

pass band.

Though feasible for any filter type, the ERes estimation based

on the Rayleigh criterion shows some drawbacks and ap-

pears more elaborated and less general with respect to the

use of the NRR criterion. In fact, a ready-to-use equation to

estimate the effective resolution has found the NRR crite-

rion applicable to all the smoothing filters. For this reason

the NRR approach to the ERes estimation would appear the

most suitable in terms of providing a generalized application.

Nevertheless, the results of the analysis done in Sect. 3.4, al-

low one to obtain also for the Rayleigh criterion a specific

equation for the ERes estimation based on the knowledge of

ωsb.

Finally it is worth mentioning that, within the lidar com-

munity, other approaches rooted in the numerical derivative

problem have been proved to be effective, and there are other

methods providing alternative and reasonable ERes defini-

tions (Leblanc et al., 2012; Pornsawad et al., 2012; Trickl,

2010; Shcherbakov, 2007; Eisele and Trickl, 2005; VDI –

Verein Deutscher Ingenieure, 1999). For this reason a more

exhaustive comparison with other approaches to the evalua-

tion of the ERes will be likely done in future in the frame of

EARLINET activities.
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Appendix A: The Savitzky–Golay filter

The SG approach is faster and relatively easier to implement

than standard least-squares calculations, though, according

to the theory, they produce the same results (Savitzky and

Golay, 1964). In fact, the coefficients h(k) in Eq. (2) have

to be calculated just once for fixed filter parameters. For SG

filters this means fixed N (i.e., the filter’s half-length; M =

2N+1 is the filter’s length) and fixed polynomial degree, P .

In contrast, when using the standard least-squares smoothing,

a new and complete calculation of polynomial coefficients

has to be done for each point of the signal, even if N and

P are fixed (Press et al., 2007). The minimum N required to

perform a significant smoothing is related to the polynomial

degree through the relation 2N>P (Schafer, 2011), and for

2N = P there are no differences between the input and the

output signals (no smoothing). With SG filters, in principle, a

variable N could be used when smoothing or differentiating

a signal as well as a different P if required (Barak, 1995), and

the computation time is still shorter than for the least-squares

algorithm.

The SG filters are popular in many scientific fields because

of the following:

– They preserve all the first P + 1 moments (with P =

0,2,4, i.e., Peven, because for fixedN , the smoothed sig-

nal will not change if either Peven or Podd = Peven+1 is

used). This property is connected to the flat frequency

response in the pass band as reported in Fig. 2. This

feature enables quite faithful preservation of the low-

frequency component of the signal (Karam et al., 2009).

For example, the moving/sliding average, which is the

zeroth order SG filter (SG0), does preserve both the

area (its zeroth-order moment) below a main peak in

the signal (e.g., an aerosol layer) and the mean posi-

tion (the first-order moment) of a symmetric peak, but

does not preserve the standard deviation (the second-

order moment), which is an estimation of the peak

width (Ziegler, 1981). In order to preserve higher-order

moments (Bromba and Ziegler, 1981), the signal should

be smoothed using an SG filter with a higher-degree

polynomial P .

– The SG filter pass band depends on both N and P as

can be seen in Eq. (B2). A higher P tends to increase

the filter’s pass band, but this translates to worse perfor-

mances in terms of noise removal, while a higher N has

an opposite effect (see Figs. 1 and 4). This suggests a

trade-off between higher pass-band extension (i.e., less

signal distortion) and better noise removal (Orfanidis,

2010; Savitzky and Golay, 1964; Press et al., 2007; Tur-

ton, 1992).

– The impulse response of the SG nth-order derivative fil-

ter, for given P and N , can be directly calculated (Sav-

itzky and Golay, 1964). This is another useful property

of the Savitzky–Golay method. The way the SG filters

are constructed implies that low-pass filtering is an em-

bedded feature of the derivative. It should be noted that

the SG first-order derivative filter will produce the same

result on a signal for Podd and the next even degree

Podd+ 1 (for P = 1 and P = 2, for P = 3 and P = 4,

etc.) for a fixed N . The degree of flatness in the pass

band associated with the corresponding low-pass fil-

ter (see Sect. 2.1) has to be assessed accordingly (Luo

et al., 2005).

– The transition band (see Fig. C1) of an SG filter is gen-

erally smaller than that of other filters with similar pass

band (see Figs. C1 and D1). This is a valuable charac-

teristic (Schafer, 2011).

– The presence of side lobes is the main problem with

the SG filters. As a consequence the output signal is

contaminated with high-frequency artifacts as seen in

Fig. 2. Moreover, the amplitude of these side lobes is

significantly higher with respect to other low-pass fil-

ters, as can clearly be seen by comparing Figs. 1, 4,

and D1. In fact, for SG2 filters the observed amplitude

for the peak of the first side lobe is about −0.25, which

implies a signal suppression of only 75 %, so SG filters

do not offer a great performance in the stop-band re-

gion. The attenuation value for the first side lobe does

not significantly change for the examined SG filters; it

becomes just slightly worse when P increases (Schafer,

2011).

Appendix B: Cascaded filters

One of the methods that enable the reduction of the side

lobes in the frequency response of a low-pass filters is

the cascade technique. By taking advantage of commuta-

tive and associative properties of the convolution operation

(D’Antona and Ferrero, 2006) and because convolution in

time-domain equals multiplication in frequency domain (Das

and Chakraborty, 2012), two or more low-pass filters can eas-

ily be applied in cascade. The behavior in frequency domain

of cascaded filters is the product of their single transfer func-

tions, a property used in Eq. (8). Thus, for a cascade of fil-

ters the resulting impulse and the frequency responses can be

written, respectively, as{
hLC(k)= hL1(k)∗hL2 (k)∗ . . .∗hLn(k);

HLC(ω)=HL1(ω) · HL2 (ω). . . · HLn(ω).
(B1)

Cascading two (or more) identical low-pass filters will ef-

fectively damp the amplitude of the side lobes. However, a

drawback of cascading identical filters is the reduction of the

pass-band extension. The “equivalent” cascaded filter is the

one that preserves the pass-band characteristic of the “sin-

gle” filter (L1) but with much less pronounced side lobes.
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Figure B1. Upper plot: the chirp signal (blue dashed line) is smoothed by SG2 and an SG4 in cascade (red line), both with the same N = 33.

A comparison in time domain with Fig. 2 evidenced the larger transient region (in yellow) with respect to the “single” SG2, N = 33.The

cascaded filter frequency response (bottom plot) exhibits a pass band similar to the SG2 but with reduced side lobes. This latter feature

virtually eliminates high-frequency artifacts in the smoothed signal in upper panel. Color code like Fig. 2, H ≈ 1 for 0<ω/π<4× 10−3.

Figure B2. Left plot: example of the dSG4 ·SG4 cascade (both with N = 20) showing low-amplitude side lobes while preserving the pass-

band extension of the dSG4 filter. H ≈ 1 for 0<ω/π<10−2. Right plot: same frequency responses plotted in decibel scale.

Operatively, one possible and efficient solution to compute

“equivalent” cascade of two smoothing filters (L1 ·L2) is to

design the frequency response of the filter L2 to have a cut-

off frequency, ωc, large enough to include the pass band of

L1 up to the beginning of its stop band (see Sect. 3.3). The

following study shows an “equivalent” cascaded filter built

from two SG filters. In this case, if the pass band must be

preserved, it is useful to introduce the following relationship

among P ,N and ωc. For SG filters, the location of the cut-off

frequency, ωc, taken atH−3dB (i.e., at ωc = ω (H ≈0.7)) can

be written (Schafer, 2011) as

ωc = π
P + 1

3.2N − 4.6
,P = 0,2,4· · ·,N ≥ 25,P < N. (B2)

By using Eq. (B2) it can be seen that good results for an

“equivalent” cascaded filter are obtained with the simple rule

of using two SG filters with the same N and 1P = 2. As a

consequence, in the resulting cascade filter, the stop band is

much less affected by the presence of side lobes, and its pass

band is nearly the same of the SG filter with the lower poly-

nomial order (the “single” filter), as can be seen in Fig. B1.

Moreover the simple rule applies also forN<25, i.e., beyond

the validity limits of Eq. (B2).

However, the transient zone of the cascade filter increases;

this means that if N is the same in the two considered

smoothing filters, the loss of information at the boundaries

of the output signal is doubled when compared to the case

with a single filter application. Efficient “equivalent filters”

are obtained cascading an SG filter and a dSG filter with the

same P and N , as shown in Fig. B2. Anyhow the difference

in pass band between the cascaded and the “single” filter is

slightly more pronounced than in the previous case. The lat-
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ter “equivalent” cascaded filter shows side lobes with ampli-

tude close to 0.02, i.e., almost negligible for practical pur-

poses. Moreover, it is also computationally efficient because

both the needed impulse and frequency responses are calcu-

lated simultaneously by the SG algorithm (see Appendix A).

To summarize, operating with such cascaded filters retains

all the advantages of the SG filters with an added value in

terms of efficiency for the high-frequency damping without

introducing high-frequency artifacts, though the transient

zone increase could be a potential problem for lidar applica-

tions. If not otherwise stated, the value of N associated with

a cascade of two smoothing filters is the same for both filters.

Appendix C: Windowed filters

Figure C1. Left panel: frequency response of an SG2 filter with

N = 5, which exhibits unwanted side lobes (blue line). This prob-

lem is practically removed using a Blackman-type window. The re-

sulting SG2-windowed filter frequency response (red line) shows an

efficient suppression of the high frequencies, but it has an enlarged

transition band (about a factor of 2, for any N).

The impulse response of the ideal low-pass filter is of in-

finite length (Mitra, 2001); for the FIR design it must be

truncated. This could be done by the multiplication of the

impulse response by a rectangular window function (Mi-

tra, 2001). However, the frequency response H(ω) calcu-

lated by Eq. (3) with the impulse response truncated in this

way will exhibit unwanted oscillations in both its pass band

and stop band, i.e., side lobes: the Gibbs phenomenon (Mitra,

2001). In order to reduce this phenomenon several types of

window functions are reported in literature (Harris, 1978).

However, each window function involves a trade-off be-

tween the requirements of high spectral selectivity (i.e., a

narrow transition band) and strong suppression of noise (low

side lobes) (Mitra, 2001). Eisele has successfully introduced

a Blackman-type window function in lidar signal’s analy-

sis (Eisele, 1998; Trickl, 2010):

wBlk(k)

=

{
0.42+ 0.5cos (π

k

N
)+ 0.08cos (2π

k

N
),−N ≤ k ≤N

0,elsewhere.
(C1)

As an example of the application of the window method,

a Blackman-type window like the one shown in Eq. (C1)

has been applied to an SG2 impulse response. The result

in Fig. C1 shows a frequency response with very small

side lobes (maximum amplitude ∼ 0.001); see also Fig. D1

(lower panel). It is also evident that using the same N , the

pass-band extension of the SG2-windowed filter is nearly the

same as the SG2.

As shown in the right plot of Fig. C1, the transition band,

defined as (ω|H=0.1−ω|H=0.9)/π (Cappellini and Emiliani,

1986), in the SG2-windowed filter, is larger (about a factor of

2) than the one of SG2 filter (left plot in Fig. C1). The SG2-

windowed filter, in Fig. C1, shows a worse signal preserva-

tion in the pass band (i.e., for ω/π<0.2) with respect to the

SG2 filter.

Appendix D: The Gaussian filter

The Gaussian filter (G) is widely adopted to smooth sig-

nals especially in image processing (ter Haar Romeny, 2003).

This filter is characterized by a single parameter (σ , the stan-

dard deviation), and its impulse response (a zero mean Gaus-

sian) has the advantage that it can be written analytically as

hσ (k)= (2πσ
2)−1/2e

−
k2

2σ2 ;−∞≤ k ≤∞

h
(1)L
σ (k)=

dhσ (k)

dk
=−

k

σ 2
hσ (k);−∞≤ k ≤∞.

(D1)

In Eq. (D1), hσ (k) is the impulse response of the Gaussian

filter and h
(1)L
σ (k) is that for the Gaussian first-derivative

filter. The convolution of a signal with a Gaussian first-

derivative filter is equivalent to differentiating the signal be-

fore (or after) the low-pass filtering operation. This means

that, as seen for SG derivative filters, the Gaussian derivative

filter also has a low-pass filtering behavior inherently embed-

ded. Moreover, the frequency response of the low-pass filter

embedded in the Gaussian first-derivative filter is a Gaussian

filter with the same parameter σ (Hale, 2011). The Fourier

transform of a Gaussian function is everywhere non-zero

and, therefore, cannot be sampled without some aliasing. The

aliasing will become negligible if σ ≥ 1 (Hale, 2011), al-

though even a slightly lower value is allowed by some au-

thors (ter Haar Romeny, 2003). The impulse responses in

Eq. (D1) must be truncated. However, the Gaussian curve

has a very strong decay to zero and for this reason it can be

truncated without appreciable effects: for |k| ≥ 4σ , hσ (k) is

<0.4 ‰ of its maximum value (Hale, 2011; Young and van

Vliet, 1995), while |h
(1)L
σ (k)| is < 3 ‰. These latter condi-

tions imply that in order to properly truncate the impulse

responses it is sufficient to set N equal to 4σ (actually the

nearest integer to 4σ) in Eq. (2).

When σ increases, the pass band reduces its extension and

provides a stronger smoothing effect, although a Gaussian

filter has a transition band quite wider than the SG filter with
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Figure D1. Comparison among filters designed with parameters

making their pass bands similar. The upper-left panel shows the dif-

ferences in the stop-band regions, due to the presence of side lobes;

the SG2 filter (black squares line) has the worst behavior. In the

upper-right panel there is a close-up view of the upper-left plot, and

the different behavior in the pass bands and transition bands is quite

evident. The cascaded SG2 ·SG4 and the SG2 filters have the best

performances. In the bottom plot, the same frequency responses of

the upper plots are reported in decibel scale.

similar pass band. A Gaussian filter is also less flat in the pass

band (van Vliet et al., 1998) than an SG filter with P ≥ 2, but

it has the advantage of having almost no side lobes.

Figure D1 summarizes the performances of the low-pass

filters described so far in Appendix A–C. It can be seen

that the Gaussian filter exhibits a behavior quite similar to

the SG2 with a Blackman-type window and that they both

have very small side lobes (visible only in the lower panel

of Fig. D1, decibel scale). Figure D1 also shows that the

SG2 has a better behavior in the pass band (ω/π<0.08) than

Gaussian/SG2-windowed filters, i.e., less distortion in the

pass band though it is heavily affected by side lobes. Both the

Gaussian and the SG2-windowed filters also exhibit a much

slower transition to the stop band as compared to the others.

Finally, the cascaded filter shows good pass-band behavior

and reduced side lobes but at the expense of a larger tran-

sient.
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