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Abstract. In this paper we present improved methods for dis-

criminating and quantifying primary biological aerosol par-

ticles (PBAPs) by applying hierarchical agglomerative clus-

ter analysis to multi-parameter ultraviolet-light-induced flu-

orescence (UV-LIF) spectrometer data. The methods em-

ployed in this study can be applied to data sets in excess

of 1× 106 points on a desktop computer, allowing for each

fluorescent particle in a data set to be explicitly clustered.

This reduces the potential for misattribution found in sub-

sampling and comparative attribution methods used in previ-

ous approaches, improving our capacity to discriminate and

quantify PBAP meta-classes. We evaluate the performance of

several hierarchical agglomerative cluster analysis linkages

and data normalisation methods using laboratory samples of

known particle types and an ambient data set.

Fluorescent and non-fluorescent polystyrene latex spheres

were sampled with a Wideband Integrated Bioaerosol Spec-

trometer (WIBS-4) where the optical size, asymmetry fac-

tor and fluorescent measurements were used as inputs to

the analysis package. It was found that the Ward linkage

with z-score or range normalisation performed best, cor-

rectly attributing 98 and 98.1 % of the data points respec-

tively. The best-performing methods were applied to the

BEACHON-RoMBAS (Bio–hydro–atmosphere interactions

of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen–

Rocky Mountain Biogenic Aerosol Study) ambient data set,

where it was found that the z-score and range normalisation

methods yield similar results, with each method producing

clusters representative of fungal spores and bacterial aerosol,

consistent with previous results. The z-score result was com-

pared to clusters generated with previous approaches (WIBS

AnalysiS Program, WASP) where we observe that the sub-

sampling and comparative attribution method employed by

WASP results in the overestimation of the fungal spore con-

centration by a factor of 1.5 and the underestimation of bac-

terial aerosol concentration by a factor of 5. We suggest that

this likely due to errors arising from misattribution due to

poor centroid definition and failure to assign particles to a

cluster as a result of the subsampling and comparative attri-

bution method employed by WASP. The methods used here

allow for the entire fluorescent population of particles to be

analysed, yielding an explicit cluster attribution for each par-

ticle and improving cluster centroid definition and our ca-

pacity to discriminate and quantify PBAP meta-classes com-

pared to previous approaches.

1 Introduction

Microorganisms influence climate through their physical and

chemical interactions with the atmosphere. Recently there

has been renewed interest in how primary biological aerosol

particles (PBAPs) interact with and modify clouds. It has

been shown that bacterial aerosol such as Pseudomonas sy-

ringae can act as ice nuclei (IN) at relatively warm temper-

atures (Möhler et al., 2007), which even in low concentra-

tions can cause rapid cloud glaciation via the Hallet–Mossop

process, leading to premature precipitation (Crawford et al.,

2012).

It has been hypothesised that a feedback cycle exists

where PBAPs associated with plants influence the forma-

tion and modification of clouds through ice formation to in-

duce precipitation, creating an environment which is benefi-

cial for plant and microbial growth and thus stimulating fur-
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ther PBAP emission (Sands et al., 1982) – this is known as

the bioprecipitation hypotheses, and potential links between

long-term regional climatology and PBAP emissions have re-

cently been suggested (Morris et al., 2014). One of the key

drivers for new research into bioprecipitation is a need for

more accurate quantification of cloud evolution and precipi-

tation in weather and climate models given its potential im-

pact.

Bioaerosols are now being included as important compo-

nents in global climate models (Heald and Spracklen, 2009;

Jacobson and Streets, 2009). Recently bioaerosol emission

models were tested on European regional scales (Hummel

et al., 2014) using real-time Wideband Integrated Bioaerosol

Spectrometer (WIBS-4) data collected at rural and semi-rural

sites in Germany and Finland (Toprak and Schnaiter, 2013;

Schumacher et al., 2013). Validation of these models is re-

liant on a very limited number of studies, and the authors

highlight the difficulty of applying such models to e.g. urban

environments and cite the general paucity of high-resolution

atmospheric PBAP data to constrain model results. Providing

such data is paramount to improving model predictions and

accurately assessing the impact of PBAP emissions on envi-

ronment and health. Retrieving such data is reliant upon the

applicability of detection methods described in the following

section.

The focus of this study is to evaluate hierarchical agglom-

erative cluster analysis methods applied to WIBS ultraviolet-

light-induced fluorescence (UV-LIF) data sets for the dis-

crimination of primary biological aerosol. In this paper we

describe the detection method and data preparation proce-

dures before evaluating the performance of several common

hierarchical agglomerative cluster analysis linkages and data

normalisation methods using laboratory and ambient data

sets.

Detection methods

The detection, classification and quantification of PBAPs

remain a significant multidisciplinary technical challenge.

Conventional techniques can be split into culturing and non-

culturing techniques, both of which require the collection of

particles onto a medium for offline analysis. Culturing tech-

niques collect particles of interest onto a growth medium

which is incubated for hours to days. The grown colonies

are then counted microscopically, providing species identifi-

cation but not quantification of their atmospheric concentra-

tion, making the technique unsuitable for estimating PBAP

emissions (Gabey, 2011). Non-culturing techniques collect

particles onto filters or in a liquid suspension, which is more

suitable for estimating atmospheric concentrations but is not

typically used for classification (Douwes et al., 2003). The

major limiting factors of non-culturing techniques are that

they are labour intensive, require long sampling periods and

suffer from impactor sampling artefacts (e.g. particle frag-

mentation, obscuration), leading to erroneous enumeration.

This makes it difficult to study emissions at the process level

as some PBAPs, such as fungal spores and bacteria, display

large diurnal variations with significant short-term episodic

emissions, which would require an impractical number of

samples to capture reliably. PBAPs including bacteria can

undergo substantial instantaneous spikes in emissions com-

pared to their baseline state in response to rainfall (Crawford

et al., 2014; Hummel et al., 2014). These rapid emissions are

important not only to capture peak concentrations but also to

derive emission factors accurately and understand the under-

lying mechanisms.

UV-LIF spectrometers have become available which show

early promise of classifying and quantifying bioaerosols

by broad taxonomic class on a single-particle basis (Craw-

ford et al., 2014; Gabey et al., 2013). This instrument is

based on technology developed by the University of Hert-

fordshire Centre for Atmospheric and Instrumentation Re-

search (CAIR). A full technical description of the WIBS

instrument is given later in this manuscript. UV-LIF spec-

trometers work on the principle that PBAPs contain biofluo-

rophores such as NAD(P)H, riboflavin, and tryptophan which

auto-fluoresce when excited with UV radiation with the ex-

citation, and detection bands of the WIBS are optimised to

detect these common biofluorophores (Kaye et al., 2005).

The single-particle, online nature of the technique yields far

superior time resolution to the offline techniques discussed

earlier, making it ideally suited to measuring PBAPs in a

rapidly changing environment. The time resolution is limited

by the counting statistics, with typically 1–5 min integration

periods providing adequate sensitivity depending on ambi-

ent concentrations. This allows for better measurements of

PBAP fluxes, which would be difficult using traditional of-

fline methods.

Whilst UV-LIF spectrometers offer many advantages

over traditional methods, discriminating between different

bioaerosol classes and possible, non-biological fluorescent

interferents remains an ongoing area of research (Toprak and

Schnaiter, 2013). At present, UV-LIF spectrometers lack a

common absolute reference standard, making comparison of

measurements made between instruments difficult. Further-

more the lack of a calibration standard has impeded attempts

to characterise PBAPs of interest which would greatly sim-

plify classification by the utilisation of supervised learning

techniques. In lieu of an absolute calibration method other

techniques must be used to segregate particles by type when

interpreting uncalibrated data sets.

2 WIBS UV-LIF instrumentation

A full technical description of the original WIBS measure-

ment principles and its development is given by Kaye et al.

(2005), Foot et al. (2008), Gabey et al. (2011) and Stanley

et al. (2011). In the versions of the instrument used here am-

bient air is sampled at 2.38 L min−1, with 10 % of the to-

Atmos. Meas. Tech., 8, 4979–4991, 2015 www.atmos-meas-tech.net/8/4979/2015/



I. Crawford et al.: Cluster analysis of WIBS data 4981

tal as aerosol flow drawn through a 1.2 mm (inner diame-

ter) tube to generate a single in-line aerosol beam intersect-

ing a well-defined optical sensing region. The remainder of

the flow is filtered and used as a sheath flow to stabilise the

aerosol beam and minimise possible detrainment contami-

nation of the optical surfaces within the scattering cham-

ber. Single particles passing through the sensing region in-

tercept a 635 nm diode laser beam, and the elastically scat-

tered forward and sideways intensity is measured. A lookup

table based on a standard Mie scattering model (Kaye et al.,

2005) is used to convert the forward-scatter / side-scatter in-

tensity ratio to optical diameter based on the instrument’s re-

sponse to NIST calibration polystyrene latex (PSL) spheres.

The WIBS utilises a quadrant detector to measure the scat-

tered intensity. The signal from each component quadrant

is used to calculate an “average” optical diameter over the

four scattering solid angles. In addition the standard devia-

tion between the four signal intensities is used to provide a

particle asymmetry factor (AF) as a proxy of particle mor-

phology. AF is reported in arbitrary units (a.u.) and is based

on measurements with calibration particles with different as-

pect ratios; corn starch flour was used to represent irregu-

lar particles, and ellipsoidal haematite particles were used

as an analogue for rod-like bacterial particles as described

in Kaye et al. (2007). AF ranges from 8 to 10 for nearly

spherical particles and 20–100 for a rod- or fibre-like parti-

cles. The detectable particle “average optical diameter” range

for WIBS-4 is 0.5 < Do < 20 µm, with a 50 % detection at

Dp50= 0.8 µm (Gabey et al., 2011). The WIBS size range

is optimised to sample most airborne bacteria and fungal

spores, but only very small pollen. Following initial particle

detection and sizing, two optically filtered Xenon flash-lamps

are sequentially triggered, providing excitation wavelengths

centred at 280±10 and 370± 20 nm. The fluorescence emis-

sion is collected by two spherical mirrors and split into two

channels using a dichroic filter at 410 nm before being mea-

sured by two photomultiplier tubes (PMTs).

Both PMTs record fluorescence during the 280 nm exci-

tation phase because no detection bands overlap the exci-

tation band; however only the 410–650 nm PMT detector

is active during the 370 nm excitation. In subsequent dis-

cussions herein the three fluorescent channels will be re-

ferred to as FL1 (fluorescence between 300 and 400 nm,

following excitation at 280 nm), FL2 (fluorescence between

410 and 650 nm, following 280 nm excitation) and FL3 (flu-

orescence between 410 and 650 nm, following excitation at

370 nm). The autofluorescence arising from the 280 nm exci-

tation in biological material is influenced heavily by proteins

and the bio-molecule tryptophan, whereas fluorescence from

370 nm excitation is influenced by riboflavin and co-enzyme

NAD(P)H (Stanley et al., 2011; Benson et al., 1979; Billinton

and Knight, 2001; Foot et al., 2008; Kaye et al., 2005; Li and

Humphrey, 1991). However, fluorescence emission spectra

are inherently broad, and interrogating complex microorgan-

isms and micron-sized particles results in a complex mixture

of fluorescence emission peaks from many fluorophores that

can be difficult to interpret unambiguously (Crawford et al.,

2014; Pöhlker et al., 2012).

3 Hierarchical cluster methods

Hierarchical agglomerative cluster analysis (HCA) has been

demonstrated to be a powerful tool to classify particles

(Robinson et al., 2013; Crawford et al., 2014; Gabey et al.,

2013); however, the available analysis toolkits are limited by

heavy computational burdens, making the analysis of large

data sets problematic. In HCA each data point is initially in

its own single membered cluster. The clusters are sequen-

tially combined into larger multi-membered clusters until all

data points are in one large cluster at the end of the process.

At each step through the process the two clusters which are

separated by the shortest distance are combined where the

inter-cluster distance is determined by the linkage algorithm.

In this study we trialled several common linkages, which are

now described:

– Single: the distance between two clusters is defined as

the minimum distance between any single data point in

the first cluster and any single point in the second clus-

ter.

– Complete: the distance between two clusters is defined

as the maximum distance between any single data point

in the first cluster and any single point in the second

cluster.

– Average (unweighted average distance): the distance be-

tween two clusters is defined as the average distance

between all data points in the first cluster and all data

points in the second cluster. The weight of each cluster

is proportional to the cluster size.

– Weighted (weighted average distance): similar to aver-

age, but the weight of each cluster is identical irrespec-

tive of size.

– Ward: this linkage is a special case where the clusters

to be merged is determined by finding the pair of clus-

ters which yield the minimum increase in total within-

cluster variance after merging, rather than by minimum

distance between clusters.

– Centroid: the distance between clusters is defined as the

distance between the centres (mean vectors) of clusters.

– Median: the distance between two clusters is iteratively

defined as the distance between the cluster midpoints.

Here the midpoint is defined as the point itself in a sin-

gleton cluster or the average of the midpoints of the

clusters to be merged.

A full mathematical description of these linkages is provided

in Müllner (2013).
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3.1 WASP

The WIBS AnalysiS Program (WASP; Robinson et al., 2013)

uses the average linkage clustering algorithm and is written

in Igor Pro1. WASP performs HCA on a random subset of

the data limited to a maximum of≈ 1× 104 data points, with

analysis taking around 4 h on a high-powered desktop com-

puter2. The choice of the number of clusters to retain is man-

ually selected by the inspection of several metrics, and the

remaining data are attributed to the chosen clusters by com-

parison to the cluster centroids using a distance-based simi-

larity method as described in Robinson et al. (2013). The au-

thors noted that this comparative method can lead to system-

atic misattribution when less populous clusters form poorly

defined centroids which do not reflect the true spread of the

variables. They also noted that particles outside of a specified

distance from a cluster centroid are left unclassified, poten-

tially leading to an underprediction of cluster concentrations.

3.2 Fastcluster

In this manuscript we use open-source HCA methods which

can analyse data sets in excess of 1× 106 points on a desktop

computer. Subsampling and comparative attribution are not

required as each data point is explicitly clustered. We also

test the feasibility of using an automated method for deter-

mining the optimum number of clusters to retain.

In this study we have used the open-source Python pack-

age fastcluster (Müllner, 2013), which features several com-

mon linkages. Of the included linkages the Ward, centroid

and median linkages do not require the distances between

data points to be stored in memory, allowing for memory-

saving modes to be used, greatly increasing the maximum

number of data points that can be analysed from approx-

imately 7× 104 to in excess of 1× 106 points using the

test computer described earlier. In order to take advan-

tage of the memory-saving algorithms, the Euclidean dis-

tance metric must be used. The performance of the memory-

saving linkages are assessed using laboratory-sampled par-

ticles of known type and ambient data previously analysed

with WASP. In a future publication we will assess computa-

tional requirements in more detail, presenting results perti-

nent to “big-data” analysis depending on the amount of data

retrieved during any given campaign.

3.3 Overview of analysis procedure

In this section we provide an overview of the procedure

followed when applying hierarchical agglomerative cluster

analysis to WIBS data (summarised in Fig. 1):

1. load and quality assure data;

1WaveMetrics Inc., OR, USA
23.4 GHz quad core, eight-thread processor, 16 GB RAM, 64 bit

OS.

Figure 1. Schematic of procedure followed to generate cluster prod-

ucts from raw data. Relevant sections for each sub-procedure are

labelled where appropriate.

2. filter data;

a. remove particles Dp < 0.8 µm;

b. remove non-fluorescent particles;

c. remove saturating particles.

3. normalise data;

4. cluster data;

5. validate cluster solutions;

6. generate cluster products.

These procedures are now discussed.

3.4 Data preparation

Prior to analysis it is necessary to prepare the single-particle

data to ensure that they are physically meaningful to prevent

artefacts biasing the cluster solutions such that any poten-

tial to effect the performance of any cluster analysis is min-

imised.

The particle collection efficiency of the WIBS drops be-

low 50 % at ∼ 0.8 µm. We have chosen to integrate number

concentrations of particles > 0.8 µm rather than apply a cor-

rection factor to the concentrations below this size.

The baseline fluorescence of the instrument is measured

during so-called forced trigger (FT) sampling periods where

the instrument triggers the flash lamps and records the re-

sultant fluorescence in the absence of aerosol in the sam-

ple volume. The WIBS-4 instrument automatically makes

such measurements if measured concentrations are lower

than 2 counts s−1 for a sustained period of time, on the ba-

sis that the coincidence of a forced trigger measurement with

a particle in the measurement region is small. The mean flu-

orescence in a FT period is treated as the baseline fluores-

cence of the optical chamber during the sample period. For

Atmos. Meas. Tech., 8, 4979–4991, 2015 www.atmos-meas-tech.net/8/4979/2015/
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a particle to be considered fluorescent it must exhibit a fluo-

rescence greater than a threshold value, defined as the base-

line fluorescence plus 3 SDs (standard deviations). The anal-

ysis software subtracts this threshold value from measured

fluorescence of each sample, with all values greater than 0

being considered significantly fluorescent compared to the

instrument baseline. Fluorescence measurements below the

threshold (i.e. less than 0 after threshold subtraction) are not

considered physically meaningful and are clipped at 0. This

simplifies the segregation between fluorescent (FL) and non-

fluorescent (non-FL) particles.

Sufficiently fluorescent particles (such as pollens) will sat-

urate the PMT, and as such it is not possible to accurately

measure their true fluorescence. Data from saturating par-

ticles are not physically meaningful and are excluded from

analysis.

3.4.1 Cluster validation indices

In order to remove the subjective nature of the method em-

ployed by Robinson et al. (2013) to determine the optimum

number of clusters to retain, we have chosen to use the

Calinski–Harabasz criterion (CH), which is defined as being

the ratio of the overall between-cluster variance to the overall

within-cluster variance (Calinski and Harabasz, 1974). We

calculate the CH index for the first 20 cluster solutions and

select the solution with the highest CH value as being the

optimal solution.

3.4.2 Data normalisation

In the Robinson et al. (2013) study the prepared data were

z-score-normalised prior to analysis. This was performed to

minimise the effect of the different ranges of scale of each

parameter biasing the clustering; i.e. the fluorescent intensi-

ties are of the scale 0–2092, size 0.8–20 and AF 0–100. We

investigate the effect of normalisation on clustering perfor-

mance using the following standard procedures:

1. No normalisation.

2. Subtract mean; divide by standard deviation (z-score).

The mean value of the normalised distribution is 0,

where the z-score value of a data point is the number

of standard deviations from the mean. This can be posi-

tive or negative.

3. Standardise by range. Subtract minimum value; divide

by the maximum value. Normalises data to new range

of 0–1.

4. Divide by sum. Divide each of the variables by its sum.

The sum of the normalised distribution is 1. Since our

original data are positive, the normalised values will

also be positive.

Table 1. Properties of the polystyrene latex spheres sampled.

PSL Size Doping Sample

sample [µm] size

1 4.17 None 8927

2 3.1 Green 7976

3 2.2 Red 8942

4 2.1 Blue 8796

5 1 Green 5055

5. Rank. Replace each data point by its rank. The data

under this normalisation will be integers from 1 to N ,

where N is the number of data points.

These are the procedures considered in Milligan and Cooper

(1988) but excluding procedures which produce identical re-

sults for the Euclidean metric. They concluded the range nor-

malisation to be the best performing. We considered proce-

dures proposed by Gnanadesikan et al. (2007) which consid-

ered better-performing alternatives to the above procedures.

However it seems unlikely that the procedures will scale in

terms of performance for large data.

4 Data sets and data preparation

To assess the performance and suitability of the available

clustering linkages, we first look at a laboratory data set of

known particle types so that the cluster solutions can be com-

pared to the known result. We then trial the best-performing

methods on ambient data from the BEACHON-RoMBAS

(Bio–hydro–atmosphere interactions of Energy, Aerosols,

Carbon, H2O, Organics and Nitrogen–Rocky Mountain Bio-

genic Aerosol Study) experiment, which has been studied

previously using similar methods (Robinson et al., 2013;

Crawford et al., 2014). These data sets are now described

in detail.

4.1 Fluorescent polystyrene latex spheres

To test the applicability and performance of the memory-

efficient hierarchical agglomerative clustering linkages avail-

able in the Python package fastcluster, five different PSL

spheres3 were sampled using the WIBS-4. They were of dif-

ferent sizes, and four of them had been doped with a fluo-

rescent coating. The properties of the tested PSLs are sum-

marised Table 1.

The three fluorescence measurements (FL1–3), size and

asymmetry factor were chosen as inputs. The PSLs exhibit

strong fluorescence, with some saturating the PMTs in multi-

ple channels; as such we have chosen to keep saturating parti-

cles in the analysis to maximise sample size. Non-fluorescent

3Manufactured by Polysciences Inc., PA, USA, and Duke Sci-

entific Corp., CA, USA.
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Table 2. Performance of the different linkages and normalisation

procedures for the full data set in terms of the percentage of data

points placed into the same cluster as the known clustering. In bold

are the best-performing normalisations for each linkage.

None z-score Range Sum Rank

Single 48.065 24.384 48.065 47.996 42.160

Complete 87.996 96.039 87.531 85.126 82.390

Average 87.432 97.791 87.406 65.772 96.990

Weighted 85.439 89.675 64.843 82.798 65.056

Ward 72.606 98.136 98.036 97.726 98.011

Centroid 87.423 97.264 87.446 65.772 96.805

Median 82.361 80.575 82.974 84.912 65.501

particles and particles smaller than 0.8 µm have been ex-

cluded from the analysis due to low collection efficiency. AF

and size are typically log-normally distributed. In keeping

with the analysis performed in Crawford et al. (2014) and

Robinson et al. (2013) we convert these variables to log space

prior to analysis. As memory saving is used, this limits anal-

ysis to using only the Euclidean distance metric.

4.2 The regional BEACHON-RoMBAS experiment

The WIBS was deployed at the the Manitou Experimen-

tal Forest Observatory (MEFO), located 35 km northwest

of Colorado Springs, Colorado, USA (Ortega et al., 2014;

Kim et al., 2010), as part of the Rocky Mountain Biogenic

Aerosol Study project (BEACHON-RoMBAS) during sum-

mer 2011. Details of the experiment and sampling arrange-

ment are given in Crawford et al. (2014). In the Crawford

et al. (2014) study HCA was performed on a subset of the

WIBS data (≈ 1× 104 particles) using the average linkage,

with the remaining particles attributed to a cluster by compar-

ison to the cluster centroid. Details of the attribution method

and the process of selecting the number of clusters to re-

tain are provided in Robinson et al. (2013). This analysis

yielded clusters which were behaviourally consistent with

fungal spores and bacteria. We perform analysis of this data

set using the methods described in this manuscript, which we

compare to the Crawford et al. (2014) results.

5 Results

5.1 Fluorescent polystyrene latex spheres

The fastcluster package was run with the seven available

linkages, each with the different normalisation procedures.

Note that only the single, Ward, centroid and median link-

age are available when the memory-efficient version of the

fastcluster package is used.

Table 3. Performance of the Ward linkage for varying sample size.

Sample 500 1000 5000 10 000 20 000

size

z-score 79.330 85.696 94.746 97.543 97.132

Range 95.664 97.671 98.041 98.065 98.074

We use the CH index to identify the “optimal” number of

clusters and attempt to construct a best match between the

desired clusters and proposed clusters. Then, to evaluate the

performance of the algorithm, we calculate the proportion

of the data points placed into the same cluster for both the

desired and proposed clustering. The results are given in Ta-

ble 2.

For the full data set we can see that the z-score is the best-

performing normalisation for all but the single and median

linkages, where the performance is poorer across all normal-

isations.

However in Table 3 we repeat the tests for varying sample

size, where we see that as sample size decreases the range

normalisation starts to outperform the z-score.

It appears that when using the full data set the z-score nor-

malisation with either the Ward linkage or average linkage is

the preferred option. When sampling, however, we see that

range normalisation may be better.

An explanation for this behaviour could be that the range

normalisation suffers with outliers which we are much more

likely to encounter for large samples, so we would expect

better performance for the smaller samples. Contrast this

with the z-score where our measurement of the mean and

the standard deviation is more accurate with large samples.

Figure 2 shows the cluster centroids for the Ward link-

age with range and z-score normalisation. It can be seen that

both methods yield similar clusters to the known solution;

e.g. the average values of the 4.17 µm sample are accurately

captured by the fifth cluster using range normalisation and

the third cluster using z-score normalisation. Similarly the

3.1 µm green PSL sample is captured by the fourth range-

normalised and first z-score-normalised clusters. Figures 3

and 4 show a time series of the FL1–3 and size input pa-

rameters (AF omitted from figure), which are colour-coded

by the cluster assignments in Fig. 2. The bottom panel of

each figure shows the fraction of each cluster assigned to

each sample, where it can be seen that both normalisation

methods achieve a high level of attribution accuracy, with a

minimum of 96 % of data points being correctly attributed

with no significant misattribution. The results of this exper-

iment suggest that both range and z-score normalisation are

appropriate when clustering WIBS data using the Ward link-

age, with each yielding an optimal five-cluster solution cor-

rectly attributing 98 and 98.1 % of the data points respec-

tively. The centroid linkage with z-score normalisation also

Atmos. Meas. Tech., 8, 4979–4991, 2015 www.atmos-meas-tech.net/8/4979/2015/
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Figure 2. Top panel: average FL1–3 detector intensites (blue, green and brown bars, left axis), size (diamond, right axis) and asymmetry

factor (cross, right axis) for the five PSL samples. Middle and bottom panels: the same as for the top panel but for the Ward linkage solution

centroids using range (middle) and z-score (bottom) normalisation.

Figure 3. Time series of PSL samples with data points coloured by cluster assignment for Ward linkage and range normalisation. Bottom

panel shows the fraction of each cluster assigned to each sample with the most populated cluster annotated above.
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Figure 4. Same as Fig. 3 but for Ward linkage and z-score normalisation.

Figure 5. Same as Fig. 2 but for BEACHON-RoMBAS ambient data.

performed well, correctly attributing 97.3 % of the particles

into five significant clusters.

5.2 BEACHON-RoMBAS

Data from the BEACHON-RoMBAS experiment

(≈ 8.2× 105 fluorescent data points) were analysed

using the Ward linkage with both range and z-score nor-
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Figure 6. Time series of BEACHON-RoMBAS cluster concentrations using Ward linkage with range (top panel) and z-score (middle panel)

normalisation as compared to the solutions obtained using WASP (bottom panel) for the period 00:00 MST (Mountain Standard Time) on

26 July 2011 to 12:00 MST on 28 July 2011. Clusters with similar centroids have been combined. See text for details.

Figure 7. Size distribution of BEACHON z-score-normalised clus-

ters produced using the Ward linkage for the period 00:00 to

06:00 MST 27 July 2011.

malisations and also the centroid linkage with z-score

normalisation. The centroid linkage yielded a solution with

only one significantly populated cluster, suggesting that

it is inappropriate for analysing ambient data. Figure 5

shows the cluster centroids of each Ward normalisation

where the range yields a five-cluster solution and z-score a

4-cluster solution. It can be seen that the solutions of each

are broadly similar; range cluster 4 (hereby notated as R4)

is similar to z-score cluster 1 (hereby notated as Z1); R2 is

similar to Z4. Additionally R1, R3 and R5 are similar to R2,

suggesting that they are of similar origin, with the difference

in fluorescence being due to size, morphology or particle

age. This is also observed in the z-score result in clusters Z2,

Z3 and Z4. A time series (not shown) of cluster concentra-

tions shows these internally similar clusters to respond in a

similar fashion to meteorological events such as rainfall. For

ease of interpretation the concentrations of similar clusters

have been combined. Figure 6 shows a time series of the

combined cluster concentrations for each method and also

the cluster concentrations obtained using WASP. It can be

seen that the concentrations of clusters R1+R3+R5, R2,

Z2+Z3 and Z4 all behave in a similar fashion to the WASP

cluster C3, which was determined to be representative of

bacteria owing to its strong positive response to rainfall

(Crawford et al., 2014). The response of clusters R4 and Z1

is similar to the WASP cluster B3, which was determined

to be representative of fungal spores owing to its diurnal

response to relative humidity. The size distributions for each

of the z-score clusters (Fig. 7) show the bacterial clusters

to be small with sub-micron modes for clusters Z2 and

Z3, which is consistent with the bacteria observed at the

site, while the fungal cluster (Z1) mode is approximately

1.5–2 µm as might be expected. Caution must be taken when

www.atmos-meas-tech.net/8/4979/2015/ Atmos. Meas. Tech., 8, 4979–4991, 2015
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Figure 8. Left panel: comparison of Ward linkage cluster concentrations using range and z-score normalisation for BEACHON-RoMBAS.

Right panel: comparison of Ward linkage cluster concentrations (z-score normalisation) to WASP cluster concentrations.

interpreting or assigning a bioaerosol meta-class to a cluster

to avoid conflation of different particle types; e.g. emissions

of some fungal spore species are positively correlated rain-

fall, which could be conflated into the bacterial meta-class in

this case. Supporting measurements are needed to determine

which species are present so that possible conflations can be

identified and caveated appropriately.

Figure 8 compares the concentrations of the similar clus-

ters for each normalisation method. Comparison of R5 to

Z4 (left panel, blue circles, representative of fungal spores)

shows each method to yield similar concentrations. Compar-

ison of the bacterial cluster concentrations yields poor corre-

lation between methods when comparing the traces in Fig. 6

(left panel, black diamonds and red squares); however when

the concentration of all clusters representative of bacteria

are combined (left panel, magenta crosses) the correlation is

excellent (Nzscore= 1.00×Nrange− 1.42, R2
= 1). This sug-

gests that the major difference between the two different nor-

malisation methods is how particles of similar types are par-

titioned between the clusters.

The right panel of Fig. 8 compares the z-score concen-

trations to those obtained using WASP. It can be seen that

the WASP fungal concentration is overestimated by a fac-

tor of approximately 1.5 compared to the z-score result (Z4

and B3, blue circles). The WASP bacterial concentration is

underestimated by approximately a factor of 5 compared to

the z-score result. Figure 9 shows the hourly average diur-

nal cycles of the fungal (top panels) and bacterial (bottom

panels) cluster concentrations for the z-score result (left pan-

els) and WASP (right panels) over the period 27 July 2011–

7 August 2011. Each method displays a similar trend, with

the fungal clusters exhibiting a minimum during the day ow-

ing to the diurnal response of fungal spores to relative hu-

midity and the bacterial clusters responding to the frequent

afternoon rain storms (Crawford et al., 2014). Again it can

be seen that WASP overestimates the fungal concentration

by approximately a factor of 1.5–2 and underestimates the

bacterial concentration by a factor of 5–6 compared to the

z-score result. The most likely explanation for the observed

discrepancies between the WASP and z-score concentrations

is the introduction of artefacts caused by the subsampling and

comparative attribution methods used in WASP. In the fun-

gal spore case, misattribution due to a poorly defined cen-

troid can lead to an overestimation when compared to the

new method as observed here. WASP yields only one cluster

representative of bacteria, while the z-score method yields

three and the range method four. This results in WASP fail-

ing to attribute data points potentially representative of bac-

teria to its single bacterial cluster, leading to the observed

underestimation when compared to the new method. WASP

does not return diagnostic information about the cluster attri-

bution; however, the sum of the concentration of WASP clus-

ters B3, C3 and D3 only accounts for approximately 24 % of

the fluorescent aerosol concentration, suggesting that many

particles are left unattributed by WASP.

6 Conclusions

Several hierarchical agglomerative cluster analysis linkages

and normalisation methods were trialled using several labo-

ratory samples of known particle type and a previously pub-

lished ambient data set which was analysed using similar

methods. The Ward linkage with range and z-score normal-

isation was found to successfully resolve the five test PSL

samples with a high level of accuracy, correctly attributing

98 and 98.1 % of the data points respectively. Analysis of the

BEACHON-RoMBAS WIBS-3 data yielded similar results

using the Ward linkage with the range and z-score normal-

isation methods. Each method produced one cluster repre-

sentative of fungal spores and several clusters representative

of bacterial aerosol where the fungal concentrations and the

sum of the bacterial aerosol concentrations agreed well. The

BEACHON-RoMBAS results were compared to the WASP

Atmos. Meas. Tech., 8, 4979–4991, 2015 www.atmos-meas-tech.net/8/4979/2015/
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Figure 9. Top panels: hourly average diurnal cycle of fungal cluster concentration for z-score normalisation (left panels) and WASP (right

panels) over the period 27 July 2011–7 August 2011. Bottom panels: same as for top panels but for the bacterial clusters. Whiskers denote

5th and 95th percentiles. Mean value indicated by x marker. Note change in scale for bacterial panels.

results for the same data set (Robinson et al., 2013; Crawford

et al., 2014), where it was found that WASP overestimated

the fungal spore concentration by a factor of 1.5 and under-

estimated the bacterial aerosol concentration by a factor of

5 compared to the methods trialled here. This is likely due to

errors arising from misattribution due to poor centroid def-

inition and failure to assign particles to a cluster as a result

of the subsampling and comparative attribution method em-

ployed by WASP. The methods used here allow for the entire

fluorescent population of particles to be analysed, yielding

an explicit cluster attribution for each particle. This improves

cluster centroid definition (e.g. allowing for several bacterial

clusters compared to just one in WASP) and removes the po-

tential for underestimation by failing to attribute a particle to

a cluster.

In this paper we have demonstrated that WIBS single-

particle UV-LIF spectrometer data can be successfully segre-

gated using the Ward hierarchical agglomerative cluster anal-

ysis linkage with z-score and range data normalisation. The

explicit clustering method employed in this study can be ap-

plied to large data sets, removing potential clustering aret-

facts associated with the subsampling and attribution method

used in previous approaches, improving our capacity to dis-

criminate and quantify PBAP meta-classes. These improved

techniques will be of importance for interpreting data from

future multi-parameter UV-LIF instruments with improved

fluorescence resolution and for extending the measurement

technique to real-time quantification for ambient monitoring

networks.

The Supplement related to this article is available online

at doi:10.5194/amt-8-4979-2015-supplement.
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