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Abstract. Deposition is one of the key terms of the mineral

dust cycle. However, dust deposition remains poorly con-

strained in transport models simulating the atmospheric dust

cycle. This is mainly due to the limited number of relevant

deposition measurements. This paper aims to present an au-

tomatic collector (CARAGA), specially developed to sample

the total (dry and wet) atmospheric deposition of insoluble

dust in remote areas. The autonomy of the CARAGA can

range from 25 days to almost 1 year depending on the pro-

grammed sampling frequency (from 1 day to 2 weeks respec-

tively). This collector is used to sample atmospheric deposi-

tion of Saharan dust on the Frioul islands in the Gulf of Lions

in the Western Mediterranean. To quantify the mineral dust

mass in deposition samples, a weighing and ignition proto-

col is applied. Almost 2 years of continuous deposition mea-

surements performed on a weekly sampling basis on Frioul

Island are presented and discussed with air mass trajectories

and satellite observations of dust. Insoluble mineral deposi-

tion measured on Frioul Island was 2.45 g m−2 for February

to December 2011 and 3.16 g m−2 for January to October

2012. Nine major mineral deposition events, measured dur-

ing periods with significant MODIS aerosol optical depths,

were associated with air masses coming from the southern

Mediterranean Basin and North Africa.

1 Introduction

Mineral dust particles emitted from the Sahara are a factor

in excessive daily air particles concentrations of PM10 (par-

ticulate matter less than 10 µm in diameter) observed in the

Mediterranean Basin and southern Europe (Pey et al., 2013).

In order to estimate these Saharan dust outbreaks over this re-

gion, chemistry-transport models (CTM) could simulate con-

tinuous and forecasted dust concentration fields. Simulations

of mineral dust are validated by comparing the simulated

dust load with numerous available data sets, for instance di-

rect aerosol concentration measurements and aerosol optical

depth (AOD) derived from ground-based and/or satellite ob-

servations. However, this remains insufficient to ensure the

consistency of regional or global dust simulations, because,

due to the lack of quantitative measurements, emission and

deposition can be adjusted quite freely to allow models to

match observed atmospheric dust concentrations. This means

that at least one additional term, emission or deposition mass

flux, has to be measured to correctly constrain the simulated

dust mass concentration.

Large uncertainties remain, for instance, on how dry and

wet dust deposition processes are modelled (Zhao et al.,

2003; Textor et al., 2006; Jung and Shao, 2006; Bergametti

and Forêt, 2014). Few experimental field measurements of

dust deposition have been performed recently (Guieu et al.,
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2010; López-Garcia et al., 2013; Heimburger et al., 2013;

Osada et al., 2014). Accurate measurements of dust mass

fluxes remain scarce whereas they should be conducted con-

tinuously and homogenously over regions impacted by min-

eral dust in order to constrain model dust simulations. One

of the reasons why such a small number of field studies has

been performed is the heavy workload that both sampling and

measurement of dust deposition represent over long periods

of time.

This paper presents a new device designed to perform con-

tinuous dust deposition measurements over long periods and

a weighing and ignition protocol to determine the total insol-

uble mineral dust mass deposited. This automatic collector,

named CARAGA (Collecteur Automatique de Retombées

Atmosphériques insolubles à Grande Autonomie), has been

specially developed to sample total insoluble atmospheric

particles deposition in remote areas and to insure robust auto-

matic sampling with a large autonomy and a minimum need

of man power. Since mid-2010, a collector sampling total

(dry and wet) deposition has be installed on Frioul Island

(43.27◦ N; 5.29◦ E), which is located in the Gulf of Lions

in the north-western Mediterranean Sea, where Saharan dust

outbreaks can be observed (see for example Ridame et al.,

1999). In the following sections, the in situ deposition sam-

pling strategy is presented as well as the lab protocol estab-

lished to quantify mineral dust deposition. Almost 2 years

of mineral deposition measurements on Frioul Island are dis-

cussed and open up the possibility to develop a CARAGA

sampling network of total insoluble deposition in remote ar-

eas.

2 Previous studies of dust deposition sampling

Dry deposition mainly depends on sedimentation, intercep-

tion, impaction and Brownian diffusion processes (Slinn and

Slinn, 1980; Wesely, 1989; Venkatram and Pleim, 1999). Wet

deposition processes correspond to the capture of particles by

droplets either inside or below the clouds (Dana and Hales,

1976; Slinn, 1984; Garcia Nieto et al., 1994). These deposi-

tion processes of atmospheric particles are supposed to be

well understood. However, most of the theoretical under-

standing and parameterizations of deposition were based on

studies and measurements performed under controlled con-

ditions, for instance in wind tunnels (Chamberlain, 1967;

Goossens, 2008) or towers and laboratories (Wang and Prup-

pacher, 1977; Leong et al., 1982; Barlow and Latham, 1983;

Pranesha and Kamra, 1996).

In situ dust deposition measurements of atmospheric par-

ticles are technically difficult and have to be adapted depend-

ing on the aim of the study: dry, wet or total deposition; sol-

uble, insoluble or bulk deposition; short- or long-term sam-

pling, etc. Quantitative estimates of dust deposition remain

challenging (see for example Wiggs et al., 2002; Goossens

and Rajot, 2008). Various techniques have been proposed to

directly measure or to estimate (from atmospheric concentra-

tions) dry deposition of dust on surfaces (Seinfeld and Pan-

dis, 1998; Etyemezian et al., 2003; Goossens, 2005; Sow et

al., 2006). Experimental studies usually show a wide range

in dry deposition values, depending on the sampling device

(Goossens and Rajot, 2008). Even if wet deposition measure-

ments are easier to perform, correctly sampling the first mil-

limetres of a precipitation event is crucial to precisely mea-

sure wet deposition (Claassen and Halm, 1995). In the frame-

work of this study, the sampling of total (dry and wet) Saha-

ran dust deposition is investigated.

Up to now, Saharan dust deposition sampling has required

frequent human intervention to be carried out. Most of the

time, deposition collectors consist of simple passive collect-

ing systems: funnel capped bottles (Markaki et al., 2010;

Prospero et al., 2010), polyethylene bottles (Bonnet and

Guieu, 2006; Markaki et al., 2010), bags (Galy-Lacaux et

al., 2009), buckets (Prospero et al., 2010) or surfaces cov-

ered with glass marbles (Kouvarakis et al., 2001; Sow et

al., 2006). Similar collectors have been used to sample min-

eral dust in other regions, for example in Asia by Osada et

al. (2014) or the Kerguelen islands in the Southern Ocean

(Heimburger et al., 2013). None of these collecting systems

allows the automatical sampling of dust deposition with suf-

ficient autonomy in order to limit human intervention after

each sampling.

In the Mediterranean Basin, Saharan dust deposition was

sampled in Capo Cavallo (NW Corsica) using a CRAPAL

sampler (Bergametti, 1987; Remoudaki et al., 1991), which

is a hemispheric plexiglass collection device (0.1 m2) with

a 10 cm high neck covered by a 1 mm nylon mesh (Lam-

bert and Nezami, 1965). Its base is connected to an acid-

cleaned polyethylene bucket in which the atmospheric de-

position is collected during precipitation and by manual acid

flushing at the end of a 1-week sampling period. Loÿe-Pilot

and Martin (1996) also collected Saharan dust deposition in

Corsica during an 11-year period (1984–1994) using a bulk

plastic collector (Standard Rain Gauge) which has a 400 cm2

aperture. Deposition measurements were also performed on

the two sides of the Ligurian Sea at the Cap Ferrat site in

2004 and 2006 (Bonnet and Guieu, 2006; Pulido-Villena et

al., 2008) and in Corsica in 2003 and 2005 (Ternon et al.,

2010) using the same bulk plastic collector or a funnel and

a polyethylene bottle. The most comprehensive field study

to assess the magnitude and the composition of atmospheric

deposition in the Mediterranean Basin was the ADIOS pro-

gram, during which atmospheric deposition was collected at

10 sampling sites (Guieu et al., 2010; Markaki et al., 2010).

The mass of deposited Saharan dust was estimated from the

measured Al amount. The sampling device collected bulk

samples (dry and wet deposition) using a 1 gallon Nalgene

high-density polyethylene bottle with a polyethylene funnel

(0.011 m2) attached at its top. The sampling duration was 1

month for each sample and it required human intervention.

Total dust deposition was also collected in the Sahelian

region using a CAPYR sampler (Orange et al., 1990; Her-
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rmann, 1996; Rajot, 2001). The CAPYR is a 40 cm high

funnel-shaped sampler with a 0.25 m2 horizontal inlet open-

ing. It was used to collect total dust deposition in Niger from

1996 to 1998 (Rajot, 2001). In Niger, a Frisbee sampler,

which consists of a circular stainless steel collecting bowl

(0.07 m2 and 3.6 cm deep) surrounded by an aerodynami-

cally shaped aluminum deflector ring (Wiggs et al., 2002),

was also used to collect total dust deposition (Sow et al.,

2006). This device requires manual rinsing to collect total

deposition.

To collect dry and wet Saharan dust deposition separately,

ARS MTX or Aerochem Metrics model 301 samplers were

used on the Eastern and Western Mediterranean coasts (Oz-

soy, 2003; Morales-Baquero et al., 2013) and on Canary

Islands (López-Garcia et al., 2013). To perform successive

samples, the collect systems have to be manually replaced.

Wet deposition was also collected with wet-only collectors

in the Eastern Mediterranean (Theodosi et al., 2010), in

Niger (Galy-Lacaux et al., 2009) and Florida (Prospero et

al., 2010). The conservation of the deposition soluble frac-

tion over time strongly limits the autonomy of the sampling

device.

These various approaches (and associated samplers) have

technical drawbacks on the field that have limited their de-

velopment in terms of sampling network expansion or dura-

tion. This is especially due to a short autonomy, as human

intervention is required to replace the collect system after

each sampling period. Therefore, a robust automatic system

is necessary to achieve low costs in the long term and a wide

area network survey system.

3 New sampler and method to study mineral dust

deposition

3.1 The CARAGA collector

The existing deposition samplers are not automatized and/or

not autonomous over long periods. This constitutes a strong

limitation to performing continuous in situ measurements of

atmospheric deposition in the long term and in remote ar-

eas. The ICARE Ingénierie Company and the Laboratoire

Interuniversitaire des Systèmes Atmosphériques (LISA) de-

veloped a collector to automatically sample total insoluble

deposition on filters over long periods without any human

intervention: the Collecteur Automatique de Retombées At-

mosphériques insolubles à Grande Autonomie. It is used to

estimate the mass of deposited dust during a given time pe-

riod in order to better constrain CTM dust simulations. By

focusing on the total insoluble mass of deposited dust, the

sampling device can be significantly simplified, which limits

the issues associated to the change and storage of the sam-

ples. In order to estimate the deposited mass, collecting only

the insoluble part of the dust deposition is justified by the

very large fraction (over 80 %) of insoluble matter in the Sa-

haran dust deposition in the Mediterranean Basin (see for ex-

ample Losno, 1989; Guerzoni et al., 1993; Avila et al., 2007).

The CARAGA is composed of separate modules to facil-

itate its transport and in situ implementation (see Supple-

ment). An open circle funnel (0.2 m2) forms the top part

of the CARAGA collector (Fig. 1). The collecting surface

ensures sufficient sampling during non-intense deposition

events and avoids the saturation of the collecting filter in case

of intense deposition events. Local soil dust contamination

can be a problem for measurements, especially during peri-

ods of high wind speed. In order to minimize this contamina-

tion, the funnel is fixed on a steel structure and an adjustable

tripod 2.5 to 3 m above the ground (Fig. 1). A PTFE strainer

is installed in the funnel to limit the impact of large insects or

vegetal debris (larger than 2 mm) on the sampling. In order

to diminish the risk of bird standing, the top of the funnel is

made thin and sharp. If the temperature drops down to 2 ◦C,

the funnel walls are heated with heating tapes. The funnel is

connected by a short tube to a 25-hole carousel which carries

filters mounted in separate filter holders (Figs. 1 and S1 in

the Supplement).

Two hours and 1 h before the end of each sampling pe-

riod, a device vibrates the funnel walls and 100 mL of pure

water, or a blend of 20 % ethanol in pure water in case of

frost, is sprayed to drive down the atmospheric deposited par-

ticles and collect them on a 47 mm diameter membrane fil-

ter. This sample procedure is identically reproduced for each

sample and does not require any operator intervention. Rain

events are directly collected by the funnel. The filtration is

performed by gravity and only the insoluble matter is col-

lected on the filter; the remaining water is eliminated. An

electronic system can be adapted to control the water level

in the filter holder and periodically closes a pinch valve in-

stalled on the tube at the bottom of the funnel if this level is

too high. This avoids overflow of the filter holder and the loss

of a part of the wet deposition in case of heavy rain.

Twenty-five lab-prepared filters are installed in filter hold-

ers on the motorized carousel (Fig. S1). A new filter is auto-

matically set in the sampling position for each new sampling

period. The sampling duration can be programmed and the

autonomy of the instrument ranges from 25 days for daily

sampling to almost 1 year for sampling on a 2-week ba-

sis. For post-control, an electronic recorder stores the date

at which the rotating unit has worked. A solar panel (20 W)

connected to a battery (12 V, 7 Ah) supplies the power.

The CARAGA system is best suited for the collection of

the non-soluble fraction of dust, but it could also be used for

evaluating other inorganic or organic particles after adapting

the sampling and lab protocols.

3.2 Filter choice

The mass of mineral dust is considered to be dominated

by large particles (Whitby and Cantrell, 1976) contribut-

ing to PM concentrations in the Mediterranean area (Pey et
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Figure 1. Schema of the CARAGA collector. Height of the collector

can be extended to 1 m more by adding a second pillar spacer.

al., 2013). Sciare et al. (2005) presented average concentra-

tions for PM and chemical species at two sampling sites in

Eastern Mediterranean Sea during the MINOS campaign in

August 2001. They distinguished fine (< 1.2 µm) and coarse

(> 1.2 µm) particles, and showed that 90 to 95 % of dust con-

centrations are in the coarse mode, while 84 to 87 % of the

black carbon and 82 % of the organic carbon are in the fine

mode.

In order to choose the optimal filter for collecting dust

deposition, several tests were performed. Since filtration is

gravity driven only, the water flow through different fil-

ter membranes composed of polycarbonate, quartz or cel-

lulose were tested: (i) AOX Nuclepore© polycarbonate fil-

ter (ø 47 mm, 0.4 µm porosity), (ii) nylon filter (ø 47 mm,

0.45 µm porosity), (iii) cellulose nitrate filter (ø 0.47 mm,

0.45 µm porosity), (iv) AA Millipore© cellulose ester filter

(ø 47 mm, 0.8 µm porosity) and (v) QMA Whatman© quartz

fiber filter (ø 47 mm, 2.2 µm porosity). The test consisted of

determining the time required to drain 100 mL of pure water

through the filter. The AA Millipore cellulose ester filter with

a 0.8 µm porosity is the only filter type for which a reasonable

flow speed is obtained, about 20 mL min−1 (Table 1). More-

over, Sheldon (1972) indicates that Millipore© cellulose ester

filters, with a porosity ranging from 0.45 to 8 µm, have high

percentages of retention of particles of 1 µm ranging from 80

to 100 %.

To test a possible mass loss by dissolution of the filter in

water, six cellulose ester blank filters were weighed before

and after filtration of 250 mL of pure water. In this study,

the weighings were conducted using a Mettler© AE240 elec-

tronic microbalance (sensitivity 10−4 g). For the weighing of

the filters, an aluminium crucible was used to prevent elec-

trostatic issues. Each sample was weighed until two equal

successive displayed values were obtained. After filtration,

different treatments were tested (1 h in an oven at 40 ◦C, 3 h

in an oven at 40 ◦C, 17 h at ambient T ◦C and 23 h at ambient

T ◦C). The results show a mass variation of ±3× 10−4 g.

3.3 Weighing and ignition protocol

To correctly quantify the deposited mass of mineral dust, an

adapted protocol has to be defined that accounts for the com-

plex blending of particles constituting the atmospheric par-

ticulate deposition.

The weighing of the first in situ filters revealed specific

constraints. The particles can have a diameter up to 10 µm

and therefore may not strongly adhere to the filter. Loss of

particles during filter handling is possible, especially for fil-

ters highly loaded with particles. Furthermore, the aim of the

present study being to characterize the deposition mass of

Saharan dust, particles having a biogenic origin (e.g. organic

aerosols) or being derived from emissions of pollutants or

biomass burning can affect the estimate.

In order to eliminate the organic fraction of a sample,

ignition protocols with temperatures ranging from 375 to

850◦C were used in previous studies (Ball, 1964; Hoenig

and Thomas, 2002; Sun et al., 2009). This kind of protocol

reduces the filter handling and eliminates the deposited par-

ticles with medium to high volatility, as is the case for most

of organic aerosols.

In the present study, we followed a weighing protocol af-

ter ignition of the samples. First, blank filters were placed

in ceramic crucibles with their lids ajar in an ashing furnace

(Naberthem© LT15/11). Various programs of temperature in-

crease to reach 350, 550 and 950 ◦C were tested. To prevent

a flame that can lead to loss of material during calcination,

the tests point out the necessity to control the temperature in-

crease between 200 and 350 ◦C at a rate of 1 ◦C min−1. The

residual ash mass of the filters was weighed after different

cycles of ignition at 350, 550 and 950 ◦C. The calcination

of AA Millipore© cellulose ester blank filters showed their

complete destruction between 350 and 550 ◦C. Two tripli-

cates of this test were performed and consecutive weighings

were carried out to control the balance stability. There is no

detectable residue of the filter by weighing after ignition.

Comparative tests between direct weighing and weighing

after ignition at 350, 550 and 950 ◦C were performed us-

ing (i) proxies of mineral dust prepared on filters by crush-

ing a desert erodible soil collected in Douz (Tunisia) and a

loess soil collected on Sal Island (Cape Verde), as well as (ii)

the first filters collected at the Frioul site. Each filter is first

Atmos. Meas. Tech., 8, 2801–2811, 2015 www.atmos-meas-tech.net/8/2801/2015/
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Table 1. Flow times to drain 100 mL water using various filter membranes.

Filter AOX Nylon Cellulose nitrate Cellulose esters Quartz

0.4 µm 0.45 µm 0.45 µm 0.8 µm 2.2 µm

Flow time (min) 67 55 12 5 15

Table 2. Masses of crushed soil fraction (Douz in Tunisia and Cape Verde in Senegal) deposited on cellulose ester filters and measured before

and after ignition at 350, 550 and 950 ◦C.

Sample Deposit (g) Filter+ deposit (g) Filter+ deposit (g) Filter+ deposit (g) Filter+ deposit (g)

no ignition 350 ◦C ignition 550 ◦C ignition 950 ◦C ignition

Douz 1 0.126 0.215 0.131 0.122 0.113

Douz 2 0.134 0.217 0.137 0.128 0.119

Douz 3 0.257 0.337 0.260 0.251 0.240

Cape Verde 1 0.012 0.095 0.018 0.011 0.012

Cape Verde 2 0.012 0.098 0.015 0.011 0.012

Cape Verde 3 0.015 0.100 0.020 0.013 0.015

weighed alone, before and after sampling (after sampling fil-

ters are dried 2 h up to 40 ◦C to limit remaining humidity)

and then in its crucible with lid before and after ignition.

Three filters of the Douz crushed soil (0.126, 0.133 and

0.257 g) and three filters of the Cape Verde crushed loess

(0.012, 0.012 and 0.015 g) were prepared after a passive fil-

tration of the soil samples suspended in a water solution. The

results of direct weighing as well as weighing of the sam-

ples after calcination at 350, 550 and 950 ◦C are presented

in Table 2. At 350 ◦C, filters residues are still present and

contribute to the mass of the sample. This is no longer the

case at 550 and 950 ◦C. The masses of the samples after ig-

nition at 550 ◦C are lower than the initial masses (Douz 1:

−3.2 %, Douz 2: −4.5 %, Douz 3: −2.3 %; Cape Verde 1:

−8.3 %, Cape Verde 2: −8.3 %, Cape Verde 3: −13.3 %).

This tendency is reinforced at 950 ◦C (Table 2). The same

tests were conducted for samples collected on Frioul Island

(Table 3). For the three filters with deposition masses vary-

ing over an order of magnitude (F7= 0.011 g, F8= 0.091 g

and F9= 0.145 g), a greater loss on ignition is observed at

550 ◦C (18.2, 9.9 and 9.6 % respectively) compared to the

samples from Douz and Cape Verde. For filters without high

load of particles, the loss is the same order of magnitude as

the uncertainty on the protocol. The six other filters showed

no detectable deposition and are used to test the repeatability

and the uncertainty of the method used to determine the mass

of mineral deposit after ignition.

These tests point out that a temperature of 550 ◦C ensures

the loss on ignition of the filter and of the organic mat-

ter which is destroyed below 450 ◦C (Hoenig and Thomas,

2002). Moreover, Sun et al. (2009) recorded only a small

mass loss (lower than 0.2 %) for quartz, feldspar, calcite and

hematite during ignition at 550 ◦C. Mass losses between 1

and 2.5 % for smectite, chlorite, illite and goethite and up to

18 % for kaolinite were observed (Sun et al., 2009). These au-

thors showed that the structural water loss for 17 soil samples

ranges from 0.56 to 2.45 % at 550 ◦C. This is consistent with

the mass loss results obtained for the Douz soil which con-

tains a significant proportion of quartz and calcite (Lafon et

al., 2014). The larger mass loss observed for the Cape Verde

soil can be partly due to its composition of quartz, potas-

sic feldspars and an assemblage of illite–kaolinite–chlorite

(Rognon et al., 1996; Desboeufs et al., 1999). The larger loss

on ignition observed for the atmospheric deposition suggests

a higher fraction of volatile compounds in the Frioul samples

than in the tested soils.

A maximum temperature of 550 ◦C was chosen for the ig-

nition protocol applied to the collected samples. To ensure a

slow combustion of the membrane filter and the destruction

of the organics, heating was carried out in four steps (Ta-

ble 4): the first segment from 20 to 200 ◦C in 40 min, the

second segment from 200 to 350 ◦C in 150 min, the third

segment from 350 to 550 ◦C in 45 min and the fourth seg-

ment stabilized at 550 ◦C during 120 min. Afterwards, the

crucibles were cooled down inside the furnace at ambient

temperature.

Direct weighing of filters and their weighing after ignition

lead to the same level of accuracy (mass uncertainty less than

10−3 g). However, direct weighing of filters is more restric-

tive for samples containing large amounts of coarse particles

and organic residues. Weighing after ignition limits filter ma-

nipulations and therefore the possible loss of a part of the

sample. Moreover, this protocol focuses on the mineral frac-

tion of the deposition, most of the organic particles being

volatilized or oxidized when the final temperature reaches

550 ◦C.

Other insoluble aerosols from anthropogenic activities

and biomass burning are also present in the Mediterranean

atmosphere and can affect the deposition measurements.

Field studies performed in the Eastern Mediterranean Basin

www.atmos-meas-tech.net/8/2801/2015/ Atmos. Meas. Tech., 8, 2801–2811, 2015
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Table 3. Masses collected on cellulose ester filters on Frioul Island before and after ignition at 350, 550 and 950 ◦C.

Sample Deposit (g) Filter + deposit (g) Filter + deposit (g) Filter + deposit (g) Filter + deposit (g)

no ignition 350 ◦C ignition 550 ◦C ignition 950 ◦C ignition

Filter F7 0.011 0.089 0.017 0.009 0.009

Filter F8 0.091 0.165 0.090 0.082 0.068

Filter F9 0.145 0.221 0.139 0.131 0.106

Filter F10 0.000∗ 0.076 0.003 0.000 0.001

Filter F11 0.000∗ 0.075 0.007 0.000 0.001

Filter F12 0.000∗ 0.077 0.002 0.000 0.001

Filter F13 0.000∗ 0.077 0.001 0.000 0.000

Filter F14 0.000∗ 0.078 0.003 0.001 0.001

Filter F15 0.000∗ 0.078 0.003 0.001 0.000

∗ In situ control filter without any deposit.

Table 4. Ignition gradient protocol.

T ◦ range 0–200 ◦C 200–350 ◦C 350–550 ◦C 550 ◦C

Time 40 min 150 min 45 min 120 min

T ◦ gradient 5 ◦C min−1 1 ◦C min−1 4.5 ◦C min−1 –

pointed out that these particles are mainly in the fine submi-

cron aerosol fraction (Lelieveld et al., 2002) and that their

mean mass concentrations are 1 order of magnitude lower

than natural dust ones (Sciare et al., 2005). From atmospheric

measurements performed in Corsica for elements indicat-

ing the major aerosol sources (natural and anthropogenic),

Bergametti et al. (1989) concluded that strong daily varia-

tions of concentrations were mainly due to Saharan dusts in-

puts (for the crustal elements) and to the removal of aerosols

by precipitation events. These results point out that anthro-

pogenic aerosols and biomass burning present in the Mediter-

ranean atmosphere could constitute a background deposition

flux. However, mineral deposition sampled on filters during

Saharan dust outbreaks is mainly due to Saharan dust.

4 Deposition measurements on Frioul Island

A CARAGA collector was installed mid-2010 on Frioul Is-

land (43.27◦ N; 5.29◦ E), situated in the Gulf of Lions off

Marseille. One of the main constraints with Saharan dust

sampling is that their transport from source regions towards

the Mediterranean Sea and Europe is sporadic. The sampling

time needs to be short enough to catch dust transport events

individually but long enough to provide sufficient autonomy

to the CARAGA. Dust fallout events are brief and usually

less than 3 days long (Loÿe-Pilot and Martin, 1996). A sam-

pling duration of 1 week is adapted for collecting mineral

particles corresponding to dust transport and deposition over

the Mediterranean Basin. This sampling frequency also guar-

anties a large autonomy of the collector (up to 25 weeks de-

pending on the desired number of in situ blank filters).

In order to collect the deposited particles on the filter, the

funnel vibrates and is rinsed with 100 mL of pure water twice

(2 and 1 h before the filter change). To bring back the samples

to the laboratory, a suitcase designed to keep 25 filter holders

with their lids in an upright position is used. Figure S2 visu-

alizes the filters set collected on Frioul Island between July

and December 2011. The different colours of the filters illus-

trate the variation in mass and the nature of the deposition

from one week to another. Insects, vegetal debris, pollens or

other organic matters collected on the filters are manually re-

moved only if this manipulation does not affect the sample.

If the removal of these elements could damage the sample,

we leave them on the filter and the ignition of the samples at

550 ◦C eliminates these organic matters. The mineral mass

fluxes of the weekly total (dry and wet) insoluble deposition

for samples collected from February 2011 to October 2012

are reported in Fig. 2. The precipitation rates measured on

Frioul Island are also presented in Fig. 2 in order to point out

the potential wet deposition occurring during precipitation

events.

The insoluble mineral deposition measured on Frioul Is-

land is 2.45 g m−2 for February to December 2011 and

3.16 g m−2 for January to October 2012, which corresponds

to low deposition amounts without very strong dust events

in this area of the Mediterranean Basin. Loÿe-Pilot and Mar-

tin (1996) measured an average annual dust deposition flux

of 12.5 g m−2 in Corsica for an 11-year period between 1984

and 1994, with annual deposition fluxes varying from 4.0

to 26.2 g m−2 yr−1. They mentioned that high magnitude

events drive the variability of dust fallout at an annual and

interannual scale. They also showed that most of Saharan

events in Corsica are associated to wet deposition. Ternon

Atmos. Meas. Tech., 8, 2801–2811, 2015 www.atmos-meas-tech.net/8/2801/2015/
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Figure 2. Weekly total insoluble deposition (g m−2 with an uncertainty of±5× 10−3 g) and weekly precipitation rate (mm) on Frioul Island

from February 2011 to October 2012. The filter was not automatically changed between the end of October and mid-November 2011. The

accumulated deposited flux for this 3-week period is 0.26 g m−2 and is not reported on the figure (black crosses).

et al. (2010) found an average annual deposition value of

11.4 g m−2 at Cap Ferrat and Corsican sites between 2003

and 2006. Their measurements showed a high range of fre-

quency and intensity of Saharan dust deposition events: very

low (5 10−2 g m−2) dust flux events occurred relatively of-

ten (27 events in 4 years), and there was only one extreme

event of 22 g m−2 representing almost 90 % of the deposition

in 2004.

The weekly total insoluble deposition fluxes of mineral

dust at the Frioul site also exhibit a large variability rang-

ing over 2 orders of magnitude, from no noticeable depo-

sition (in the range of the uncertainty) to 3.3× 10−1 g m−2

(Fig. 2). About 60 % of the measured deposition fluxes at

the Frioul site are lower than 5× 10−2 g m−2. This indicates

that, most of the time, mineral deposition on Frioul Island

can be attributed to low deposition due to atmospheric par-

ticles background. Nine major events with mineral depo-

sition fluxes ranging from 1.5× 10−1 to 3.3× 10−1 g m−2

have been recorded on this site between (a) 07 and 14 July

2011, (b) 20 and 27 October 2011, (c) 26 April and 03 May

2012, (d) 17 and 24 May 2012, (e) 14 and 21 June 2012,

(f) 28 June and 5 July 2012, (g) 23 and 30 August 2012,

(h) 30 August and 06 September 2012 and (i) 27 September

and 04 October 2012. In 2011 and 2012, major deposition

events occurred more frequently in late spring and summer.

Precipitations ranging from 1.0 to 80.8 mm were measured

on Frioul Island for seven of these event periods (a, b, c, d, g,

h and i), precipitation data being totally or partly missing for

two event periods (e and f respectively).

The monthly average insoluble deposition fluxes measured

at the Frioul site from February 2011 to October 2012 are

presented in Fig. 3. The range of these fluxes (from 100

to 470 mg m−2) is comparable to measurements previously

performed in Cap Ferrat (Bonnet and Guieu, 2006; Pulido-

Villena et al., 2008) in 2004 and 2006 and Corsica in 2003

and 2005 on both sides of the Ligurian Sea (see more details

in Ternon et al., 2010). The measurements performed in Cor-
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Figure 3. Monthly average insoluble atmospheric deposition in

mg m−2 (a) measured at the Frioul site from February 2011 to

October 2012 in the framework of this study and (b) measured in

Cap Ferrat and Corsica for 2003–2006 as presented in Ternon et

al. (2010) (the scale for February, on the right y axis of panel (b),

is different in order to take into account an extreme Saharan event

occurring in February 2004; Ternon et al., 2010). The standard de-

viations of the mean monthly values are reported (bars) except for

January, November, and December because no measurements were

performed in 2011 or 2012.

sica between 1984 and 1994 by Loÿe-Pilot and Martin (1996)

show higher monthly deposition amounts ranging from about

200 to 2500 mg m−2. The monthly deposition measurements

on Frioul Island show a maximum in early spring (April–

May) in agreement with the measurements of Loÿe-Pilot and

www.atmos-meas-tech.net/8/2801/2015/ Atmos. Meas. Tech., 8, 2801–2811, 2015
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4. HYSPLIT backward air mass trajectories computed for 72 h at multiple locations in the surrounding of Frioul site for the nine main

deposition events recorded on Frioul Island: (a) 11 July 2011, 12:00 UTC, at 2500 m a.g.l.; (b) 25 October 2011, 00:00 UTC, at 2500 m a.g.l.;

(c) 30 April 2012, 12:00 UTC, at 2500 m a.g.l.; (d) 20 May 2012, 18:00 UTC, at 500 m a.g.l.; (e) 20 June 2012, 12:00 UTC, at 2500 m a.g.l.;

(f) 01 July 2012, 12:00 UTC, at 2500 m a.g.l.; (g) 25 August 2012, 12:00 UTC, at 500 m a.g.l.; (h) 05 September 2012, 12:00 UTC, at

2500 a.g.l.; (i) 29 September 2012, 12:00 UTC, at 2500 m a.g.l.
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Martin (1996) in Corsica. Ternon et al. (2010) showed max-

imum deposition in February 2004 due to a huge dust event

and in late spring (June). These seasonal differences can be

explained by the large dust deposition variability caused by

intense sporadic events observed in the northern Mediter-

ranean Basin (Loÿe-Pilot and Martin, 1996; Ternon et al.,

2010).

For the major deposition events measured at the Frioul site,

AOD from MODIS AQUA and TERRA observations ranged

from 0.3 to 0.7, suggesting significant atmospheric loads in

particulate matter. The origins of the air masses reaching

the Frioul site for the nine main deposition events measured

were analyzed using the HYSPLIT model backward trajecto-

ries (https://ready.arl.noaa.gov/HYSPLIT.php) (Fig. 4). The

HYSPLIT trajectories computed for the major mineral depo-

sition events (a, b, c, d, e, f, g and i) indicate air masses orig-

inating from the southern Mediterranean Basin and North

Africa. For one event (h) the air mass trajectories suggest a

stagnant meteorological situation over the Gulf of Lions and

the Western Mediterranean Basin.

5 Conclusions

An automatic collector (CARAGA) has been specially de-

veloped to sample total (dry and wet) insoluble atmospheric

deposition, and a protocol for the treatment of the collected

samples implying ignition and weighing has been tested.

This protocol enabled us to focus on the mineral fraction of

the deposition, most of the organic particles being volatilized

or oxidized at 550 ◦C.

The present study on the estimates of Saharan dust deposi-

tion on Frioul Island, a site located in the Gulf of Lions, illus-

trates the use of a CARAGA. The collector has worked con-

tinuously for almost 2 years and provided weekly total de-

position samples. Insoluble mineral deposition measured on

Frioul Island is 2.45 g m−2 for February to December 2011

and 3.16 g m−2 for January to October 2012, which corre-

sponds to low deposition amounts without very strong dust

deposition events in the north-western Mediterranean Basin.

The weekly deposits of insoluble mineral particles range over

2 orders of magnitude. Nine major events with mineral de-

position ranging from 1.5× 10−1 to 3.3× 10−1 g m−2 were

recorded on Frioul Island. During this period, the major de-

position events occurred more frequently during spring and

summer. Precipitations, ranging from 1.0 to 80.8 mm, are

associated to seven of these dust event periods, precipita-

tion data having not totally or partly being recorded for the

two other dust event periods. Nine main mineral deposition

events are measured in periods during which MODIS aerosol

optical depth is high. Air masses passing over the Frioul site

during these periods came from the southern Mediterranean

Basin and North Africa. These elements strongly indicate

that the higher deposition events measured on Frioul Island

are due to Saharan dust transport associated to local precipi-

tation.

In order to improve Saharan dust deposition monitor-

ing in the Mediterranean Basin and the south of France,

CARAGA collectors are now deployed over eight sta-

tions located in France, Spain, Italy and Tunisia: Frioul

(43.27◦ N; 5.29◦ E), Le Casset (44.99◦ N; 6.47◦ E), Mon-

tandon (47.28◦ N; 6.82◦ E), Cap Corse (43.00◦ N; 9.36◦ E),

Mallorca (39.27◦ N; 3.05◦ E), Sierra Nevada (36.95◦ N;

3.43◦W), Lampedusa (35.52◦ N; 12.63◦ E) and Medenine

(33.50◦ N; 10.64◦ E). These constitute an operating and stan-

dardized network of total insoluble dust deposition. As such,

it should provide us with a promising basis to document the

multiannual spatial and temporal variability of mineral dust

deposition and to constrain CTM dust simulation over the

Western Mediterranean region.

The Supplement related to this article is available online

at doi:10.5194/amt-8-2801-2015-supplement.
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