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Abstract. Stratospheric ozone is of major interest as it ab-

sorbs most harmful UV radiation from the sun, allowing life

on Earth. Ground-based microwave remote sensing is the

only method that allows for the measurement of ozone pro-

files up to the mesopause, over 24 hours and under different

weather conditions with high time resolution.

In this paper a novel ground-based microwave radiome-

ter is presented. It is called GROMOS-C (GRound based

Ozone MOnitoring System for Campaigns), and it has been

designed to measure the vertical profile of ozone distribu-

tion in the middle atmosphere by observing ozone emission

spectra at a frequency of 110.836 GHz. The instrument is de-

signed in a compact way which makes it transportable and

suitable for outdoor use in campaigns, an advantageous fea-

ture that is lacking in present day ozone radiometers. It is

operated through remote control.

GROMOS-C is a total power radiometer which uses a

pre-amplified heterodyne receiver, and a digital fast Fourier

transform spectrometer for the spectral analysis. Among its

main new features, the incorporation of different calibration

loads stands out; this includes a noise diode and a new type

of blackbody target specifically designed for this instrument,

based on Peltier elements. The calibration scheme does not

depend on the use of liquid nitrogen; therefore GROMOS-C

can be operated at remote places with no maintenance re-

quirements. In addition, the instrument can be switched in

frequency to observe the CO line at 115 GHz.

A description of the main characteristics of GROMOS-C

is included in this paper, as well as the results of a first cam-

paign at the High Altitude Research Station at Jungfraujoch

(HFSJ), Switzerland. The validation is performed by compar-

ison of the retrieved profiles against equivalent profiles from

MLS (Microwave Limb Sounding) satellite data, ECMWF

(European Centre for Medium-Range Weather Forecast)

model data, as well as our nearby NDACC (Network for the

Detection of Atmospheric Composition Change) ozone ra-

diometer measuring at Bern.

1 Introduction

Stratospheric ozone protects and allows life on Earth since

it filters most of the harmful ultraviolet radiation emitted by

the sun. It also controls the thermal state of the middle at-

mosphere by heating the stratosphere as a consequence of

this absorption of UV radiation. Ozone is therefore an at-

mospheric molecule of major interest since variations in its

concentration can significantly alter the radiative balance and

consequently influence climate through the resulting temper-

ature and circulation changes (Dall’Amico et al., 2010). On

the other hand changes in the stratospheric temperature due

to an increase of greenhouse gases affect the chemistry of

ozone and hence its abundance. Additionally climate models

predict an acceleration of the Brewer–Dobson circulation in

response to increasing greenhouse gases that would also have

an impact on the ozone distribution (Butchart et al., 2006).

The ozone layer depletion due to anthropogenic chemicals

was an important research topic during the 1980–1990s, with

a special attention to the ozone hole over the Antarctic (Far-

man et al., 1985). Since the Montreal protocol in 1987 and

the banning of emissions of chlorofluorocarbons a moderate

recovery of the ozone layer has been observed (Steinbrecht

et al., 2009), yet models predict a faster recovery should hap-

pen. In addition, unprecedented chemical ozone destruction

over the Arctic comparable to that in the Antarctic has been

observed in 2011 for the first time (Manney et al., 2011); this
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brings the interest of the atmospheric scientific community

back to the study of the spatiotemporal fluctuations of this

molecule.

Ozone can further be used as a tracer to study atmospheric

dynamic processes, as it is shown for example in Flury et al.

(2009), where a decrease of ozone is observed during a sud-

den stratospheric warming.

Different techniques have been developed to measure

ozone profiles. In situ measurements can be performed us-

ing radiosondes, balloons and airplanes. The main draw-

back of these direct methods is the flight altitude limitations

which can hardly reach the upper stratosphere. Remote sens-

ing techniques allow to retrieve ozone profiles in a much

larger altitude range. Satellite-borne radiometers provide a

good vertical resolution; however they only pass a maximum

of 2 times a day by the same position and hence the temporal

resolution is insufficient for dynamic studies (Hocke et al.,

2007). Ground-based instruments are optimal when the re-

quirement is a high temporal resolution at a fixed position.

Lidars have a very good vertical resolution but suffer from

the drawback of measuring only during nighttime and un-

der clear sky conditions (Godin-Beekmann and Nair, 2012).

Ground-based microwave radiometry is therefore the only

method that allows for the measurement of ozone profiles up

to the mesopause, during 24 h and under different weather

conditions, with high temporal resolution.

Microwave radiometry is a passive technique based on the

detection and analysis of radiation emitted by molecules un-

dergoing rotational transitions in the millimetre wave range.

In this frequency range, ozone presents two main emission

lines which are typically used for radiometry: 110.8 and

142.2 GHz. The transition strength of these lines leads to

fairly strong line emission throughout the stratosphere and

mesosphere (Fig. 1).

The first observation of ozone profiles with a passive mil-

limetre wave radiometer was made in 1976 (Penfield et al.,

1976). Nowadays there are a few ground-based ozone ra-

diometers sites in the world. Most of them are gathered un-

der the international organization NDACC (Network for the

Detection of Atmospheric Composition Change) with per-

manent instruments located at observation stations in Ny-

Alesund (Spitsbergen) (Palm et al., 2010), Bern (Switzer-

land) (Studer et al., 2013), Payerne (Switzerland) (Mail-

lard Barras et al., 2009), Mauna Loa (Hawaii), Lauder (New

Zealand) (Boyd et al., 2007) and Rikubetsu (Japan) (Naga-

hama et al., 2007). In addition, other ozone radiometers are

located in Thule (Greenland), Seoul (Korea), Kiruna (Swe-

den), Moscow (Russia) and in Antarctica. Still there are

many world areas not covered by this network of radiome-

ters where high-quality continuous ozone time series would

be needed, what justifies the necessity of building a compact

transportable instrument for measurement campaigns.

The Institute of Applied Physics (IAP) of the University of

Bern has a long experience in microwave remote sensing of

the atmosphere (Kaempfer, 1995). The first ozone radiometer
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Figure 1. The emission spectrum of a midlatitude standard atmo-

sphere in winter (blue) and summer (red), for an elevation angle of

45◦ and an altitude of 500 m, simulated with ARTS. The O3 and

CO lines are highlighted.

built at the institute was in 1984 (Lobsiger et al., 1984). Diur-

nal variations of mesospheric ozone detected by microwave

radiometry at IAP were reported as early as 1989 (Zommer-

felds et al., 1989). Since then several instruments have been

developed and operated in the frame of NDACC for ozone

and water vapour. In addition, we have recently started the

development of a new generation of radiometers to be used

under campaign conditions. GROMOS-C is the third trans-

portable instrument built by the IAP, after the water vapour

radiometer MIAWARA-C (Straub et al., 2010) and the wind

radiometer WIRA (Rüfenacht et al., 2012).

The instrument presented in this paper measures the spec-

tra of the ozone emission line at 110.836 GHz. As it has been

mentioned above the motivation behind the construction of

this new instrument is to have an ozone profiler that can be

easily transported and suited for measurement campaigns all

over the world. It is a total power radiometer that covers an

altitude range between 23 and 70 km, needs no maintenance,

is operated outdoors and remotely controlled.

In the first measurement campaign, GROMOS-C was lo-

cated at the Sphinx station at Jungfraujoch (HFSJ, Switzer-

land), at an altitude of 3580 m, where the very dry tropo-

sphere ensures low absorption of the middle-atmospheric

emissions. Ozone spectra were recorded from January to

March 2014. Vertical profiles have been retrieved from this

data and validated against equivalent profiles from satellite

and model data, as well as our ozone radiometer measuring

at Bern in the frame of NDACC (GROMOS), located 60 km

north-west.

The present paper is organized as follows: Sect. 2 provides

a detailed description of GROMOS-C, focusing on the optics

design and the calibration scheme. Section 3 presents results

of measured spectra and explains the data analysis performed
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Figure 2. GROMOS-C at the terrace of Sphinx during the Jungfrau-

joch campaign (1: Teflon window, 2: Microwave receiver, 3: Cali-

bration targets, 4: Computer and spectrometer).

and the retrieval implementation with Qpack and ARTS soft-

ware. The measurement campaign at Jungfraujoch is pre-

sented in Sect. 4, including the validation of the retrieved

profiles. Finally, Sect. 5 concludes this paper.

2 Instrument measurement principle

GROMOS-C measures the spectral intensity of the pressure

broadened ozone emission line at 110.836 GHz (Fig. 1). This

frequency was chosen over the stronger line at 142.175 GHz

because it is less affected by water vapour fluctuations, and

the observation of a lower frequency allows for the retrieval

of higher altitudes as Doppler broadening is smaller for lower

frequencies. But also because nearby there is a second ozone

emission line, at 109.559 GHz (Fig. 1), which we intend

to use for verifications. The local oscillator of GROMOS-

C can be tuned to select between the two lines. Its fre-

quency can also be shifted to detect the CO emission line

at 115.271 GHz.

Given a measured line, the information of the vertical dis-

tribution of the molecule is retrieved from the pressure de-

pendence of the line width. No information about the ver-

tical distribution can be retrieved above the altitude where

Doppler broadening starts to govern the total line width.

The upper limit for the retrieval of ozone from the line at

110.836 GHz is about 70 km. The lower boundary is given

by the bandwidth of the spectrometer and the retrieval set-

tings.

The radiative transfer theory describes the intensity of ra-

diation propagating in a general medium that absorbs, emits

and scatters radiation. For microwave radiation we can ne-

glect scattering because of the relatively long wavelength.

Considering Planck’s radiation law in the Rayleigh–Jeans ap-

Table 1. Summary of GROMOS-C main characteristics. FFTS

stands for fast Fourier transform spectrometer.

Optical system Ultra-Gaussian feed-horn+

system of elliptic and flat mirrors

Beam width 5◦ (full width at half maximum)

Receiver type Preamplified heterodyne receiver

Operation mode Single side band

Receiver noise temperature 1080 K

Radio frequency range 109–118 GHz

Back end FFTS, 1 GHz bandwidth

Spectral resolution 30.5 kHz

Calibration hot/cold+ noise diode+ tipping curve

Altitude range 23–70 km

proximation for low frequencies:

B =
2 · k · T

λ2
, (1)

where B is the spectral radiance emitted by a blackbody, k

is the Boltzmann constant, λ the wavelength and T the tem-

perature of the blackbody. We define for a non-blackbody

an equivalent temperature of radiation called brightness tem-

perature, Tb, and use it as a measure of intensity of radiation.

In this approximation the radiative transfer equation for mi-

crowave can be expressed as follows:

Tb = Tb0 · e
−τ0 +

τ0∫
0

T · e−τdτ, (2)

where Tb is the brightness temperature measured at the earth

surface, Tb0 the microwave background temperature, T the

temperature profile along a path s and τ the optical thickness,

which is defined as the integral of the absorption coefficient

α through the path s:

τ =

s∫
0

α(s)ds. (3)

The task of a microwave radiometer is to measure Tb. In

the case of GROMOS-C (Fig. 2) a horn antenna collects the

radiation from the atmosphere and feeds it into the front end,

where the signal is amplified, filtered and downconverted to a

lower frequency. Afterwards the signal is spectrally analyzed

by a FFT (fast Fourier transform) spectrometer. The output

is linearly related to the input power. This linear relationship

is determined in the calibration process.

The main parameters and specifications of GROMOS-C

are summarized in Table 1. In the following sections we de-

scribe the optics, the front end and the calibration method in

detail.
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Figure 3. GROMOS-C optics (1: Horn antenna, 2: Ellipsoidal mir-

ror, 3: Flat rotating mirror, 4: Linear translation stage 5: Ellipsoidal

mirror, 6: Calibration target).

2.1 Optics design and verification

The optical system of GROMOS-C is shown in Fig. 3. The

first optical component encountered by the incoming radia-

tion is a flat mirror that can be rotated to select the viewing

angle and scan the atmosphere in elevation from horizon to

horizon. Next element is a 45◦ off-axis ellipsoidal reflector

which redirects and focuses the beam into the feed-horn.

GROMOS-C antenna is an ultra-Gaussian feed-horn

(Cruickshank et al., 2007) which produces an aperture field

distribution with 99.6 % of the power coupling to the funda-

mental Gaussian beam mode. The high Gaussicity leads to

reduced spillover and standing wave effects due to the sig-

nificantly decreased side-lobe levels, compared to a normal

corrugated feed-horn.

Two additional ellipsoidal mirrors are mounted symmetri-

cally beside the horn and used to redirect and focus the beam

into the calibration targets.

The rotating mirror is mounted on a linear translation stage

that allows for the axial movement of the mirror, used for

baseline cancellation. If standing waves were formed within

the optics, shifting the reflector by λ/4 and taking the mean

spectra of both positions will cancel out the baselines. This

axial movement of λ/4 is applied to all measurements per-

formed with GROMOS-C.

To be able to measure in all weather conditions, the dif-

ferent components of the radiometer are protected inside a

sealed aluminum housing thermally insulated. A microwave

window with very low losses has been built above the optics

system (see Fig. 2). It has been conceived with a shape of

a section of a cone, what ensures a constant incidence an-

gle when scanning the atmosphere. The chosen material has
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Figure 4. Reflection parameter for 1 mm thick teflon, simulated

with Fresnel equations at the nominal frequency and for different

incidence angles. The red line corresponds to the case of transverse-

magnetic (TM) polarization and the blue to transverse-electric po-

larization (TE). We observe in both cases a strong resonance at 29◦.

For the TM mode the second resonance corresponds to the Brewster

angle.

been teflon because of its low losses at the frequency range of

interest but also because of its stiffness and resistance to out-

door conditions. Simulations using Fresnel equations have

shown that a window of teflon with a thickness of 1 mm and

mounted at an angle of 29◦ is the optimal configuration to

minimize reflections stemming from the interfaces. Figure 4

shows the reflection parameter (S11 = 10log10R, where R is

the reflectivity) for different angles of incidence. We observe

in both cases a deep resonance at 29◦ arising from the de-

structive interference among the reflected signals at the two

interfaces.

Subsequent measurements were performed to investigate

the microwave losses caused by the teflon window. It is de-

scribed in detail in Fernandez et al. (2013). Measurements at

horizontal incidence show a very high transmittance, 0.9988,

and this value is used to correct the sky measurements (de-

scribed in Sect. 3.1). It has to be mentioned that the transmit-

tance depends on the polarization, which varies when scan-

ning the atmosphere. Nevertheless the variation is very small

and we use a constant value for the correction.

2.1.1 Antenna pattern

A narrow antenna beam is required for middle atmospheric

radiometric measurements, since the intensity of the received

radiation depends on the path length through the atmosphere,

which is determined by the elevation of the antenna beam.

The narrower the antenna beam the smaller the elevation

range that contributes to the received signal. Typical eleva-

tion angles for ozone observations are between 20 and 45◦, as

a compromise to optimize the middle atmosphere contribu-

tion and minimize the tropospheric attenuation. GROMOS-C

optics have been designed to obtain a beam width of 5◦.

Atmos. Meas. Tech., 8, 2649–2662, 2015 www.atmos-meas-tech.net/8/2649/2015/
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Figure 5. Farfield antenna pattern for the GROMOS-C beam

pointed at horizon.

We measured the antenna pattern of GROMOS-C in the

laboratory using a vector network analyzer (VNA). In order

to do that we set up an open-ended waveguide probe con-

nected to the VNA emitting a signal at 110.8 GHz in front

of GROMOS-C optics. The waveguide was mounted on a

translational stage that allows for movement in the x and

y direction. GROMOS-C horn antenna was connected to the

VNA receiver, and with this configuration we measured the

received radiation during a sweep of the waveguide in x and

y. Results of the antenna pattern in 1-D and 2-D are shown

in Figs. 5 and 6. The antenna beam of GROMOS-C resulted

to have a full width at half maximum (FWHM) of 5.15◦, ac-

cording to the expected value. Side lobes are below −40 dB,

except for a small asymmetry in the scanning direction that

can be attributed to the off-axis geometry of the ellipsoidal

mirror. GRASP simulations (TICRA, 2010) show that 99.8 %

of the radiation hits this reflector, the remaining 0.2 % may

hit the frame and create the diffraction pattern observed in

Fig. 5. Nevertheless this asymmetry is not critical for the

measurements because it lies below the −30 dB level.

2.1.2 Instrument pointing

The angular extent of the Sun observed from Earth is ∼ 0.5◦,

10 times smaller than the FWHM of the antenna beam of

GROMOS-C. The ephemeris of the Sun is well known; there-

fore it can be used to determine the elevation pointing of a

radiometer by scanning a certain range around the elevation

of the Sun passing through the antenna beam, assuming the

Sun to be a point source. Apart from calculating the pointing

offsets of GROMOS-C, the scanning of the Sun constitutes

an alternative technique to obtain the antenna pattern.
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Figure 7. Pointing offsets obtained from the Sun scanning of

GROMOS-C at Jungfraujoch.

We perform the scanning when the Sun is at its highest el-

evation, starting 1 h before and stopping 1 h after. After each

scanning in elevation, a hot–cold calibration is realized. The

antenna pattern obtained with this method agrees with the

one measured in the laboratory, showing as well a FWHM of

5◦. When setting up the instrument at a specific location, it

is important to know the pointing offset to take into account

in the data analysis. This is particularly true for campaigns.

The elevation and the azimuth pointing angles of GROMOS-

C are the angles of maximum power. To calculate them pre-

cisely each sweep in elevation was fitted to a Gaussian, and

the same was done for each sweep in azimuth. The difference

between the maximum of the Gaussian and the Sun position

maximum, calculated with the ephemerides, gives the point-

ing offset.

Results for the setup at Jungfraujoch are shown in Fig. 7.

The slope is due to the asymmetry in the scanning direction

observed in Fig. 5. The red line represents the average of

the offsets in azimuth and in elevation. For Jungfraujoch we

found an elevation offset of 0.07◦ and the azimuth pointing

turned out to be 8.22◦ from south to east.
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Figure 8. Block diagram of GROMOS-C receiver.

2.2 Front end

The block diagram of the GROMOS-C receiver is displayed

in Fig. 8. The radiation collected by the horn is fed into the

waveguide and processed by the front end. At a first step

it encounters a 15 dB coupler which couples the signal of a

noise diode, used for calibration. Then the signal is amplified

by low noise amplifiers, filtered (bandpass 109–118 GHz)

and downconverted to the intermediate frequency (IF) with

a balanced mixer and a local oscillator (LO). It is therefore

a single side-band heterodyne receiver. The same LO is used

for a second downconversion with an IQ-mixer, which pro-

vides two baseband signals with equal power and frequency.

These two signals with a bandwidth of 500 MHz must be

spectrally analyzed in order to get the spectral line informa-

tion. Spectral analysis is performed with a FFT spectrom-

eter, which consists of two parts: first an analog to digital

converter samples the electric field of the incoming signal,

and then the samples are directly processed by a field pro-

grammable gate array which calculates the FFT in real time.

The spectrometer has a bandwidth of 1 GHz and a resolution

of 30.5 kHz.

The LO frequency can be tuned, offering the possibil-

ity to observe different emission lines: O3 at 109.559 and

110.836 GHz, and CO at 115.271 GHz.

The noise temperature of the receiver is currently 1080 K.

It would be significantly lower if we would remove the cou-

pler, but we intend to use the noise diode for calibration.

The front end is thermally stabilized and insulated from

the rest of the instrument to keep gain fluctuations small. Al-

lan variance measurements revealed that gain variations start

to dominate over noise level for integration times longer than

20 s.

2.3 Calibration

Calibration is essential for high accuracy measurement in mi-

crowave radiometers. A way to determine the relation be-

tween the unknown brightness temperature of the sky and

the output quantity of the radiometer is the commonly named

hot–cold calibration, and consists of the measurement of the

signal of two well defined targets, ideally blackbodies, at

known temperatures:

Tb =
Th− Tc

Vh−Vc

· (V −Vh)+ Th, (4)

where Th, Tc are the temperatures of the blackbodies, Vh, Vc

the corresponding output voltages, V the voltage measured

by the radiometer when looking at the sky and Tb the sky

brightness temperature.

The absolute accuracy depends directly on the perfor-

mance of the calibration targets; thus they become a cru-

cial part of a radiometer development and maintenance. One

of GROMOS-C main features is the multiple calibration

methods existent, which allows us to perform a comparison

among them, to see whether they are coherent and which

would be more accurate to use under different conditions.

The most accurate way to carry out the calibration us-

ing the hot–cold concept is with a cold load at a tempera-

ture close to or lower than the one measured. A simple way

to reach these cryo-temperatures is to cool a piece of mi-

crowave absorber with liquid nitrogen (LN2). Yet for a cam-

paign instrument this cannot be operated continuously and a

different type of cold target has been built. We developed a

new concept of cold target based on Peltier elements, which

reaches 240 K. The hot load was also designed specifically

for GROMOS-C, and it is heated with resistors to 350 K. Ad-

ditionally we have a noise diode used as a super-hot load.

Tipping curves (Han and Westwater, 2000) are performed

by the instrument every 15 min in order to calculate the sky

opacity. Furthermore the zenith sky can be used as a cold

target. At the beginning of each campaign we perform liq-

uid nitrogen calibrations to compare the different calibration

methods.

To verify the linearity of GROMOS-C we plotted the

counts of the different targets vs. their physical temperature.

Results are shown in Fig. 9. The integration time was 4 h and

Atmos. Meas. Tech., 8, 2649–2662, 2015 www.atmos-meas-tech.net/8/2649/2015/
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measured by the spectrometer. The linear regression by least-square

fit gives an R2
= 0.9999.

for each target the mean of 3000 channels counts was done.

In order to quantify the linearity a linear regression was per-

formed by least-square fit. The resulted coefficient of deter-

mination, R2, was 0.9999 which is an outstanding value.

In the next sections we explain in detail each calibration

element.

2.3.1 Calibration targets

Peltier load

Figure 10 shows the novel design of a calibration load cooled

with Peltier elements. A full description of this target is

given in (Fernandez et al., 2015). The chosen geometry was a

wedge cavity because the absorption is enhanced by multiple

bouncing, with a half angle of 12◦.

A metallic wedge structure was built to backup the ab-

sorber material (Eccosorb MMI-U, described in detail in Fer-

nandez et al., 2012). The target is cooled with Peltier ele-

ments, including a system of liquid circulation to remove the

heat generated on the hot surface. The liquid circulates in a

closed circuit, and it is cooled in a chiller. Three Peltier el-

ements are used to cool down the system, locating one on

each of the external surfaces of the wedge and one on the

baffle reflector. The system is insulated from the environment

with a thick layer of Cryogel, a silica aerogel material with

extremely low thermal conductivity (0.039 W (m·K)−1). The

microwave window is made of Plastazote (De Amici et al.,

2007) and tilted by 10◦ to avoid the formation of standing

waves between the window and the mirror. This material is

highly transparent at microwave frequencies, opaque for vis-

ible light and with an infrared emissivity of 0.5. A 45◦ mirror

was included to reflect the microwave radiation from the ex-

terior to the wedge, and absorb the infrared part. This was

achieved by painting the mirror with an infrared black paint.

Figure 10. Schematic representation of the Peltier calibration target.

The main elements are emphasized in red, the absorber material is

marked in green, and the sensor positions are encircled .

The mirror is mounted on the wedge with an aluminium baf-

fle that optimizes the insulation, and avoids the direct view

of the exterior from the wedge.

Because of the low temperature reached in the inner part

of the wedge (240 K) the frost point can be reached. In this

case the presence of frost on the surface of the absorber could

modify the characteristics of the blackbody. To prevent this

situation the calibration load is first evacuated and then filled

with nitrogen gas. The structure is airtight.

Figure 11 shows the averaged spectra of the Peltier load

from the two linear positions. The data was integrated during

almost 4 h, and channels were binned to reduce the noise in

the spectra. The spectra obtained in this way is quite flat over

frequency, but we can still see a residual baseline with an

amplitude of roughly 0.1 K. The red line is the average tem-

perature measured by the thermometers of the wedge. The

cyan line represents the mean brightness temperature, and is

very close to the mean temperature. This shows that the tar-

get has an emissivity very close to 1, and thus is an excellent

blackbody target.
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Figure 11. Peltier load brightness temperature integrated during 4 h,

calibrated with liquid nitrogen and a hot load. The red line rep-

resents the average temperature measured by the sensors on the

wedge, and the cyan line is the average brightness temperature.

Hot load

GROMOS-C integrates a hot load heated with resistors up to

350 K. The absorber material is the same as for the Peltier

load (Eccosorb MMI-U) and it presents as well a similar

wedge geometry. The wedge is mounted inside a box with

an internal fan to keep a constant and homogeneous temper-

ature. Several sensors monitor the temperature at different

locations of the load. An average is taken for the calibration.

Backscatter measurements

In order to investigate the reflections originating in the op-

tics of GROMOS-C from the different calibration targets,

we removed the front end and connected the feed-horn di-

rectly into the vector network analyzer input. The S11 pa-

rameter was registered over a sweep in frequency from 100

to 112 GHz. More details can be found in Fernandez et al.

(2015). The reflection coefficients measured for the hot,

Peltier and liquid nitrogen targets are shown in Fig. 12. At

the frequency range of interest the S11 is lower than −65 dB

for both Peltier and hot loads, which constitutes a very ac-

ceptable value of low reflectivity.

For the liquid nitrogen the incidence angle was perpendic-

ular, and the resulting S11 parameter is quite high, higher than

−25 dB at the frequency of interest. The backscatter origi-

nates mainly at the air–nitrogen interface due to the reflec-

tivity of the surface of almost 1 % (Maschwitz et al., 2013).

We have verified that looking at the liquid nitrogen at an an-

gle different than orthogonal reduces considerably the level

of reflections.

This results justifies the use of the Peltier load over the

traditional liquid nitrogen target: even if we can not reach

cryogenic temperatures the induced error is compensated by

a much lower reflection level.

101 102 103 104 105 106 107 108 109 110 111 112
−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency [GHz]

S
1

1
 [

d
B

]

 

 

Peltier load

Hot load
LN2

Figure 12. S11 measured for the Peltier, hot and liquid nitrogen

targets with the vector network analyzer for the frequency interval

100–112 GHz.

2.3.2 Noise diode

Additionally a noise diode can be used as a super-hot target

to calibrate GROMOS-C (super hot in this context means a

temperature well above any physical temperature of the at-

mosphere). The noise is injected into the receiver before the

RF amplification with a 15 dB coupler, that couples the signal

with the radiation collected by the antenna. The additional

brightness temperature sensed by the detector when the noise

diode is on is called noise diode temperature (Tnd). The noise

diode is calibrated periodically with hot and cold loads (LN2

calibrations sporadically), and its temperature is calculated

with

Tnd =
Th− Tc

Vh−Vc

· (Vhnd−Vh), (5)

where Th, Tc are the temperatures of both loads, Vh, Vc the

output voltages, and Vhnd the voltage measured by the ra-

diometer when looking at the hot load with the noise diode

on.

The spectrum of GROMOS-C noise diode obtained this

way is shown in Fig. 13. It presents a strong frequency de-

pendance. The different colours correspond to the calibration

of the noise diode while the mirror is pointing at the three

different loads. The fact that the sensed noise is equivalent

(differences smaller than 0.5 %) corroborates the linearity of

the receiver. The spectra is stable on time as long as the front

end temperature is kept constant. We have observed that the

noise is very sensitive to temperature fluctuations; therefore

this calibration method is not ideal for unstable conditions,

otherwise the diode should be recalibrated very frequently.

The atmospheric brightness temperature calibrated using

the noise diode is obtained with the following equation:

Tb =
V

G
− Tr, (6)
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Figure 13. Noise diode temperature calibrated with the Peltier, hot

and liquid nitrogen targets.

where the gain (G) and the receiver temperature (Tr) are

given by

Tr =
Th(Th+ Tnd)−VhndTh

Vhnd−Vh

, (7)

G=
Vhnd−Vh

Tnd

. (8)

2.3.3 Tipping curve

Another conventional method to realize a cold reference is by

means of a tipping curve (Han and Westwater, 2000), which

consists of measurements of the brightness temperature of

the sky under different elevation angles. From these measure-

ments it is possible to determine the zenith opacity, and there-

fore the sky temperature so that the sky itself can be used as a

cold target. Assuming a one-layered atmosphere with mean

temperature Tm, the brightness temperature sensed at each

angle θ will be

Tb(θ)= Tb0 · e
−τ(θ)

+ (1− e−τ(θ)) · Tm, (9)

where Tb0 the microwave background temperature (2.7 K)

and τ the opacity. We can solve for τ and find the zenith

opacity by an iterative process.

This requires a horizontally stratified atmosphere, and

hence this type of calibration is only reliable under clear-sky

conditions. This approach requires an estimation of the sky

mean temperature, which we obtain from the ground temper-

ature according to Ingold (Ingold et al., 1998):

Tm = Tground+1T, (10)

where 1T depends on the frequency range and on the loca-

tion (mainly the altitude), being for Jungfraujoch −16 K at

110 GHz.

The problem related to the presence of clouds in the sky

gets worse for shorter wavelengths because the absorption

coefficient of atmospheric liquid water increases with fre-

quency. Yet GROMOS-C has the other loads available which

are more reliable under cloudy conditions.

3 Data processing and results

The operational cycle of GROMOS-C works as follows:

measurements are taken at sky 30◦ elevation north at two lin-

ear positions separated λ/4, and the same is done for zenith

and 30◦ elevation south. Then the optics point to the hot and

Peltier loads, and at each load a measurement with the noise

diode on and off is taken, again at two linear positions. That

makes a total of 14 measurements per cycle, with 1 s inte-

gration time at each position. A tipping curve is performed

every 15 min. On average a calibration cycle takes 15 s, of

which approximately 43 % is dedicated to the line measure-

ment.

Before feeding the spectra to the inversion model a pre-

processing is performed in order to correct the data for the

attenuation originating from the microwave window and the

tropospheric absorption.

Window correction

The incident radiation at the air–window interface will be ei-

ther transmitted, absorbed or reflected. The measured bright-

ness temperature can be expressed as follows:

Tbw = t · Tb+ a · Tw+ r · Tenv, (11)

where Tb is the brightness temperature measured without

window, Tbw with window, Tw the physical temperature of

the window and Tenv the temperature of the environment

inside the instrument. Assuming Tenv ' Tw, and given that

t + a+ r = 1, we can express

Tbw = t · Tb+ (1− t) · Tw. (12)

We performed measurements in the laboratory of the

brightness temperature of a LN2 target with and without

window, keeping the temperature constant. The temperature

of the window is monitored with a sensor inside of the in-

strument. Solving for the transmittance we have obtained

t = 0.9988.

Based on this result we apply Eq. (12) to correct every

atmospheric spectrum.

Tropospheric correction

The contribution of the tropospheric emission to the mea-

sured brightness temperature is substantial and it can signif-

icantly vary depending on the atmospheric conditions. Wa-

ter vapour inhomogeneities in the troposphere are difficult to

model; therefore it is important to correct the measured spec-

tra for the tropospheric effect, and locate the lower boundary

of the retrieval at the tropopause level.
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Figure 14. Ozone measured spectra calibrated with different com-

binations of cold and hot loads.

According to Eq. (9), the brightness temperature that the

radiometer would measure at the tropopause level, Tb(ztrop),

would be

Tb(ztrop)=
Tb(z0)− Ttrop · (1− e

−τ )

e−τ
, (13)

being Tb(z0) the brightness temperature measured at the sur-

face and Ttrop the mean temperature of the troposphere, cal-

culated with Eq. (10). The tropospheric opacity can be cal-

culated with different methods; in our case we opted for con-

sidering only the wings of the measured spectra, which corre-

spond to the continuum emission due to tropospheric oxygen

and water vapour. Neglecting the ozone emission, the radia-

tion registered at the tropopause level would be only the cos-

mic background. Solving Eq. (13) for τ , the zenith opacity is

calculated with

τ =− ln

(
Ttrop− Tb(z0)

Ttrop− Tbg

)
. (14)

In Fig. 14 we show an ozone spectrum calibrated using

different combinations of calibration loads. The measure-

ment was performed the 20 February at Jungfraujoch. The

integration time was 4 h and binning is performed every 10

channels, resulting in a resolution of 300 kHz. To calculate

the liquid nitrogen temperature we read the pressure from

the meteorological station and applied Clausius–Clapeyron

equation. The noise diode was calibrated the same day, dur-

ing 1:30 h. It is noticeable that the noise level is higher for the

ozone spectrum calibrated with the noise diode. This is ex-

pected because the noise diode spectrum itself is noisier than

the spectrum of the other calibration targets, and because the

errors are amplified by the extrapolation towards the colder

atmosphere.

Differences between the spectra are shown in Fig. 15.

Looking closely at the difference between the calibrated

110.3 110.4 110.5 110.6 110.7 110.8 110.9 111 111.1 111.2 111.3
−2

−1

0

1

2

3

re
s
 [

K
]

 

 

LN2/peltier − peltier/hot

110.3 110.4 110.5 110.6 110.7 110.8 110.9 111 111.1 111.2 111.3
−2

−1

0

1

2

3

re
s
 [

K
]

 

 

 hot/ND − peltier/hot

110.3 110.4 110.5 110.6 110.7 110.8 110.9 111 111.1 111.2 111.3
−2

−1

0

1

2

3

re
s
 [

K
]

Frequency [GHz]

 

 

hot/ND − peltier/ND

Figure 15. Residuals, corresponding to differences between the

spectra calibrated with different loads in Fig. 14. The first always

indicates the corresponding load used as cold load whereas the sec-

ond indicates the hot load. Note the hot load can be used as a cold

load and vice versa.

spectra with and without LN2 (blue line) one can perceive

a frequency dependence of the offset. It could be due to a

window effect produced by a frequency dependent reflection

coefficient, while we are considering a constant value for the

correction within the whole bandwidth.

3.1 Retrieval implementation

The vertical distribution of ozone is calculated from the

observed emission spectrum through an inversion process.

For the ozone profiles retrievals of GROMOS-C, the At-

mospheric Radiative Transfer Simulator ARTS2 (Eriksson

et al., 2011) is used as the forward model. It simulates atmo-

spheric radiative transfer and calculates the spectral intensity

of the pressure broadened ozone emission line of interest for

a model atmosphere using an a priori ozone profile. The asso-

ciated Matlab package Qpack2 (Eriksson et al., 2005) makes

use of ARTS2 by comparing the ozone modelled spectrum

with the one measured by GROMOS-C. The best estimate

of the vertical profile of ozone volume mixing ratio is done

by means of the optimal estimation method (OEM) (Rodgers,

1976), considering uncertainties in the measured ozone spec-

trum and in the a priori profile.

In the standard retrieval of GROMOS-C, the spectrometer

channels are not binned using the whole frequency resolution

of 30.5 kHz. Averaging of spectra is performed by integration

in time, using typically a time resolution of 30 min. Ozone

profiles can be retrieved from the resulted averaged spectra,

yielding to a reliable profile of ozone from approximately

23–70 km with a vertical resolution of around 10–12 km in

the stratosphere, which increases with altitude to 20 km in
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Figure 16. Above, measured and simulated 1-day ozone spectrum;

below, residuals between simulation and measurement.

the mesosphere, corresponding to the width of the averaging

kernels (see below).

4 Validation campaign on Jungfraujoch

The Sphinx Observatory is located at Jungfraujoch, at

3580 m a.s.l, and belongs to the High Altitude Research Sta-

tions. GROMOS-C was installed in the terrace of Sphinx in

mid-January 2014, and transported back to Bern at the end

of March 2014.

The goal of this first measurement campaign was to evalu-

ate the performance of the instrument under extreme weather

conditions, as well as to collect high-resolution ozone spec-

tra at high altitude, retrieve vertical profiles and validate

the instrument by comparing with ozone profiles from other

sources.

At high altitudes the atmosphere is very dry, hence the

tropospheric opacity is very low. Therefore the measured

spectra is less attenuated, and the line amplitude is larger

than those measured at low altitudes. During the campaign,

the weather was mainly cold with minimum temperatures of

−23 ◦C and maximum close to 0 ◦C. Wind has often been

very strong, affecting the thermal regulation of GROMOS-

C housing. Additional heaters where installed to solve this

problem, but still the very cold and windy days the thermal

stability was not as good as expected, affecting the stability

of the noise diode. However this does not pose a problem as

different calibration schemas are still feasible.

The presence of snow on the microwave window modi-

fies its opacity. This was observed as higher brightness tem-

peratures measured at zenith than at lower elevations during

snowfalls. A system of warm air blown onto the surface of

the window was designed to solve the snow problem by pre-

venting its deposition on the surface.

Atmospheric opacity was calculated periodically with the

tipping curves, and resulted to be between 0.05 and 0.1 under

good weather conditions.

The top plot of Fig. 16 shows a typical 1-day ozone spec-

trum after applying the tropospheric correction. The red line

corresponds to the calculated spectrum by the forward model

based on the retrieved ozone profile. The bottom plot shows

the residuals between the measured and the estimated spec-

trum. Notice the absence of baseline features.

Figure 17 shows an ozone profile retrieved from a 1-day

spectrum with 300 MHz bandwidth around the line centre.

The chosen date corresponds to a typical day with very low

opacity. For the retrieval, a temperature–altitude–pressure

profile is required, that we take from the ECMWF model for

the given location and time, interpolating the pressure to the

precise altitude. For the a priori profile, we use a climatology

from MLS (Microwave Limb Sounding on the Aura satel-

lite) data 2004–2013, monthly mean. The covariance matrix

of the measurement is obtained by first computing the noise

level of the measurement, considered constant for all chan-

nels. The matrix is built as a diagonal matrix where the el-

ements in the diagonal are the square of the noise, and the

other elements are set to zero. The covariance matrix of the

a priori profile is built by considering a Gaussian correlation

decay at neighbouring layers with a maximum value at the

diagonal of 0.4 ppm. Spectroscopic data about the absorption

species is needed for ARTS to calculate the absorption coef-

ficient for the radiative transfer. For water and oxygen, the

continuum and the peaks are simulated with the Rosenkranz

model (Rosenkranz, 1998). The water vapour profile is taken

from ECMWF, interpolated to the pressure grid. Oxygen and

nitrogen profiles are taken as constant profiles. The spectro-

scopic parameters for the ozone line are taken from the JPL

(Jet Propulsion Laboratory) catalog merged with the broad-

ening parameters from the HITRAN catalog.

The error bars included in the left panel of Fig. 17 repre-

sent the total retrieval error, that is, the standard deviation for

the sum of the observation and smoothing error.

A comparison of the GROMOS-C-retrieved profile with

the MLS and ECMWF profiles is shown in the middle plots

of Fig. 17, as well as the profiles obtained from GROMOS,

the brother NDACC instrument of GROMOS-C in Bern

(60 km from Jungfraujoch). MLS profiles present a higher

vertical resolution than GROMOS-C retrievals; we therefore

have to convolve the MLS profiles with the averaging kernels

of our inversions (Tschanz et al., 2013) according to Eq. (15):

xMLS,conv = A · (xMLS− xa)+ xa, (15)

where A is the averaging kernel matrix, x stands for O3 pro-

file, with xa being the a priori profile of our retrievals. The

convolution decreases the vertical resolution of the satellite

profiles and allows for an adequate comparison.
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Figure 17. Example of an ozone vertical profile retrieved from a daily mean spectrum (21 January 2014), plotted together with the a priori

profile and the total error limits. A comparison of the profile with MLS, GROMOS and ECMWF is shown in the middle plots. The averaging

kernels and the measurement response are shown on the right side plot. The shadow covers the altitudes where the measurement response is

bigger than 0.8.

The mean relative difference profile was calculated in per-

cent and with respect to GROMOS-C as follows:

1O3 =
O3(compared)−O3(retrieved)

O3(retrieved)

· 100. (16)

Results show an agreement with the radiometer in Bern

within the 10 % at all levels. Comparing with MLS the pro-

files agree up to the lower mesosphere, from where our re-

trieval seems to overestimate the volume mixing ratio of

ozone. The overestimation gets more pronounced when we

compare with the model. Nevertheless in the mesosphere the

ozone concentration becomes so low that a small discrepancy

affects the relative difference in a significant way.

The averaging kernels and the measurement response are

shown on the right side plot of Fig. 17. The shaded area cov-

ers the altitudes where the measurement response is larger

than 0.8. We can conclude that for GROMOS-C, ozone vol-

ume mixing ratio profiles are retrieved with less than 20 %

a priori contribution from 30 to 0.03 hPa, which corresponds

to altitudes between 23 and 70 km.

The retrievals were run each day, with 30 minutes inte-

gration time, from the 15 January to the 4 March. Figure 18

shows the mean volume mixing ratio of ozone for three se-

lected pressure levels and its evolution on time compared to

the correspondent MLS and GROMOS values.
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Figure 18. Time series of ozone volume mixing ratio for three pres-

sure levels, retrieved by GROMOS-C and compared with MLS con-

volved, during the Jungfraujoch campaign.
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5 Conclusions

GROMOS-C is a new ground-based radiometer for middle

atmospheric ozone designed for measurement campaigns. It

combines a preamplified heterodyne receiver and an FFT

spectrometer with a sophisticated optical system. Its com-

pact design and remote control makes it suitable for cam-

paign use, even at remote places.

The different parts of the instrument have been thoroughly

designed and characterized. The antenna beam of GROMOS-

C presents a half power beam width of 5◦. The receiver

has been optimized to reduce the receiver noise temperature,

which is currently 1080 K. The changeable LO frequency al-

lows the possibility to observe different emission lines, in-

cluding two O3 and one CO line.

Calibration is performed with the hot–cold concept, using

a new type of calibration load specifically designed for this

instrument. The calibration scheme does not depend on the

use of liquid nitrogen. The additional calibration methods,

noise diode and tipping curve agree, leading to very simi-

lar spectra. The big advantage of having several calibration

modes lies on the possibility to choose the optimal for each

situation. For example, when the troposphere is rather cloudy

the tipping curve would be less accurate. Under unstable con-

ditions the noise diode is not ideal as its emission depends on

temperature. The Peltier and hot loads are better thermally

stabilized and not weather dependent. However, they span a

temperature range much smaller than when using the sky as

cold load or the diode as hot load.

The validation campaign at Jungfraujoch proved that

GROMOS-C can provide ozone profiles in the middle atmo-

sphere, specifically between 23 and 70 km.

Comparisons show a very good overall agreement with the

NDACC radiometer GROMOS, as well as with MLS pro-

files, being in more discrepancy with the model ECMWF.

The accordance between the retrievals of GROMOS and

GROMOS-C is within 10 % at all levels, and with MLS for

pressure altitudes between 30 and 0.3 hPa.

The measurement response for the single day retrievals of

GROMOS-C is higher than 80 % for pressure levels between

30 and 0.03 hPa. The averaging kernels peak at the right level

for the stratosphere but not in the upper mesosphere, where

discrepancies with MLS and ECMWF arise.

The time evolution in daily mean ozone concentration is

similar for the measurements of MLS, GROMOS and the ra-

diometer under test, at the plotted levels, except for a few

days in February with strong snowfall.

We have currently added a second spectrometer to

GROMOS-C, which presents a very high spectral resolution

(3 KHz channel−1). An additional external mirror has also

been installed which allows for four-directional observations.

These two new updates have been implemented with the pur-

pose of measuring wind profiles, based on Doppler shift, ac-

cording to the concept of Rüfenacht et al. (2012). This will

be tested in the next campaign in La Reunion island, located

in the Indian ocean.
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