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Abstract. The decomposition of an atmospheric time series

into its constituent parts is an essential tool for identifying

and isolating variations of interest from a data set, and is

widely used to obtain information about sources, sinks and

trends in climatically important gases. Such procedures in-

volve fitting appropriate mathematical functions to the data.

However, it has been demonstrated that the application of

such curve fitting procedures can introduce bias, and thus in-

fluence the scientific interpretation of the data sets. We inves-

tigate the potential for bias associated with the application of

three curve fitting programs, known as HPspline, CCGCRV

and STL, using multi-year records of CO2, CH4 and O3 data

from three atmospheric monitoring field stations. These three

curve fitting programs are widely used within the greenhouse

gas measurement community to analyse atmospheric time se-

ries, but have not previously been compared extensively.

The programs were rigorously tested for their ability to

accurately represent the salient features of atmospheric time

series, their ability to cope with outliers and gaps in the data,

and for sensitivity to the values used for the input parameters

needed for each program. We find that the programs can pro-

duce significantly different curve fits, and these curve fits can

be dependent on the input parameters selected. There are no-

table differences between the results produced by the three

programs for many of the decomposed components of the

time series, such as the representation of seasonal cycle char-

acteristics and the long-term (multi-year) growth rate. The

programs also vary significantly in their response to gaps and

outliers in the time series. Overall, we found that none of the

three programs were superior, and that each program had its

strengths and weaknesses. Thus, we provide a list of recom-

mendations on the appropriate use of these three curve fitting

programs for certain types of data sets, and for certain types

of analyses and applications. In addition, we recommend that

sensitivity tests are performed in any study using curve fitting

programs, to ensure that results are not unduly influenced by

the input smoothing parameters chosen.

Our findings also have implications for previous studies

that have relied on a single curve fitting program to inter-

pret atmospheric time series measurements. This is demon-

strated by using two other curve fitting programs to replicate

work in Piao et al. (2008) on zero-crossing analyses of at-

mospheric CO2 seasonal cycles to investigate terrestrial bio-

sphere changes. We highlight the importance of using more

than one program, to ensure results are consistent, repro-

ducible, and free from bias.

1 Introduction

High-precision, continuous measurements of greenhouse

gases in the atmosphere were initiated over 50 years ago

by Charles Keeling at Scripps Institution of Oceanography,

USA (Scripps), who began measuring atmospheric carbon

dioxide (CO2) mole fraction at the Mauna Loa Observa-

tory, Hawaii, in 1958 (Keeling, 1960). Such data sets of reg-

ular atmospheric observations made at discrete time inter-

vals are known as atmospheric time series (Amritkar and

Kumar, 1995), and typically consist of long- and short-term

variations that reflect biogeochemical fluxes and atmospheric

mixing processes (Thoning et al., 1989). For example, atmo-

spheric CO2 time series typically consist of a long-term in-

creasing trend, which largely results from fossil fuel burn-

ing and land-use change emissions (Keeling et al., 2011),
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seasonal variations that are driven mostly by terrestrial bio-

sphere processes, synoptic-scale variations caused by chang-

ing weather systems and air masses, and irregular variations

caused by volcanic eruptions, large-scale ocean–atmosphere

interactions and climate fluctuations and forcings (e.g. El

Niño Southern Oscillation) (Houghton, 2007).

The interpretation of atmospheric greenhouse gas mole

fraction data plays a fundamental role in quantifying the

sources and sinks of climatically important gas species, such

as CO2 and methane (CH4), interpreting latitudinal concen-

tration gradients, inferring regional fluxes, and also for as-

sessing temporal variability, such as long-term trends and in-

terannual growth rates (Keeling et al., 2011; Dlugokencky

et al., 2011; Houghton, 2007). In order to investigate spe-

cific processes, it is often necessary to isolate and extract

the variation of interest from the complete data set (Mar-

tin and Diaz, 1991). For example, an examination of trends

in the amplitude of the CO2 seasonal cycle (e.g. Chan and

Wong, 1990) requires the seasonal component to be sepa-

rated from any long-term trend and irregular variations, a

technique known as time series decomposition (Pierce, 1979;

Theodosiou, 2011).

The analysis of atmospheric time series is often a com-

plex process because the data are usually highly autocorre-

lated and consist of periodic and irregular variations on both

long and short timescales. Additionally, mechanical failure

of the measurement instruments or down-time for other rea-

sons can result in gaps in the time series, so that data are not

always spaced at regular time intervals (Trivett et al., 1989).

For these reasons, simple curve fitting procedures, such as

moving averages and cubic splines, are generally inadequate

for the analysis of atmospheric time series, which has led

to the development of more sophisticated fitting procedures

(Trivett et al., 1989).

It has been recognised previously that the application of

a particular curve fitting program in the analysis or decom-

position of an atmospheric time series may introduce biases

that could significantly influence the results and conclusions

of an investigation (Nakazawa et al., 1997; Tans et al., 1989).

Thus, scientific conclusions drawn from time series analy-

ses may depend not only on the atmospheric measurements

themselves, but also on the curve fitting program used. Con-

sequently, it has been recommended that more than one curve

fitting program is employed in any given time series study, so

that possible biases can be identified (Nakazawa et al., 1997).

Despite this recommendation, the vast majority of stud-

ies and published papers involving time series analysis of

atmospheric greenhouse gas data appear to rely on a single

curve fitting program. For example, Bacastow (1976) found

a correlation between the Southern Oscillation Index (SOI)

and the residual variation (i.e. any remaining variation left in

a data set, once the long-term trend and seasonal variation

have been removed) from both the South Pole and Mauna

Loa CO2 data sets; the correlation found in that study has

formed the foundation of numerous subsequent studies (e.g.

Reichenau and Esser, 2003; Jones et al., 2001), and yet is

contingent on the results from a single parametric curve fit-

ting program. Keeling and Shertz (1992) inferred the long-

term rate of decline in atmospheric O2 mole fraction based

on the application of the same curve fitting program used

by Bacastow (1976). Piao et al. (2008) suggested that the

Northern Hemisphere terrestrial biosphere may be sequester-

ing less carbon than previously thought, due to an increase

in carbon losses during autumn, resulting from the strong de-

pendence of respiration to rising temperatures; this conclu-

sion was drawn from detrended atmospheric CO2 data de-

rived using a single digital filtering program (Thoning et al.,

1989). More recently, Minejima et al. (2012) investigated the

origin of pollution events at a Japanese island site that were

identified from detrended atmospheric O2 and CO2 data us-

ing the Thoning et al. (1989) program only.

Our intention in this paper is not to dispute the science un-

derpinning any of the above or other studies, but rather to

highlight the absence of any assessment of the suitability of

the curve fitting program used in many applications. The un-

certainty associated with relying on a single curve fitting pro-

gram appears not to have been investigated or quantified in

any of the studies cited above; hence, it is not known whether

the results might have been biased by the curve fitting pro-

gram employed.

The scientific import of relying on a single curve fit-

ting program is that many studies present results showing

very small trends that are barely discernible amongst the

“noise” of the data. This may explain why some studies have

come to contradictory conclusions; for example, Chan and

Wong (1990) and Keeling et al. (1996) disagree regarding

the direction of the trend in the atmospheric CO2 seasonal cy-

cle amplitude at Alert, Canada, and Enting (1987) and Thon-

ing et al. (1989) reach opposite conclusions regarding corre-

lations between the magnitude of CO2 seasonal maxima in

spring and the magnitude of seasonal minima the following

autumn.

There are only a few studies that have investigated the

uncertainty associated with curve fitting analyses, or com-

pared two or more programs on the same time series. To

our knowledge, the first two of such investigations (Tans et

al., 1989; Trivett et al., 1989) were prompted by a meeting

in March 1988 on the treatment and data processing tech-

niques used for CO2 time series, funded by NOAA (National

Oceanic and Atmospheric Administration, USA) and the UN

WMO (United Nations World Meteorological Organization)

(Elliot, 1989). Both of these studies, however, provided only

a preliminary assessment of the differences between some

curve fitting procedures rather than an in-depth analysis. For

example, although Tans et al. (1989) compared six different

curve fitting procedures, they were only applied to 3-year

CO2 flask sample data sets from a single station. In Triv-

ett et al. (1989), the discussion on the differences found be-

tween two curve fitting programs is very brief, simply stating

that the seasonal cycle outputs are comparable between the
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two curve fitting programs, and that the “forward step-wise

multiple linear regression” curve fitting program used by the

authors had limitations, such as sensitivity to outliers.

A more comprehensive analysis is presented by Nakazawa

et al. (1997) who compared a digital filtering program, devel-

oped at Tohoku University, Japan, and a harmonic regression

program. The authors emphasised the importance of using

more than one curve fitting program in analyses of atmo-

spheric time series, stating that an assessment of the global

carbon cycle using one program could be quite different from

that derived using the same data but a different program

(Nakazawa et al., 1997).

Since the study by Nakazawa et al. (1997), there is no evi-

dence in the published literature of subsequent work on curve

fitting bias, either by Nakazawa and colleagues, or by other

authors. Furthermore, the vast majority of studies and pub-

lished papers involving time series analysis of atmospheric

greenhouse gas data have continued to infer scientific conclu-

sions from atmospheric greenhouse gas measurements based

on analyses using a single curve fitting program.

Small trends in atmospheric greenhouse gas mole fraction

time series can have significant consequences for the Earth

system, and therefore may have substantial implications for

climate change policy. Given the political and socioeconomic

implications of climate change and public interest in high-

profile climate science publications, it is essential to ensure

that information and conclusions inferred from atmospheric

time series are reproducible using a number of techniques,

and are not exaggerated or attenuated by artefacts or biases

of the curve fitting programs used.

The general lack of investigation into uncertainty and bias

associated with using a single curve fitting program is sur-

prising, considering their widespread use in atmospheric re-

search over the past 30 years or so. In addition, it is unlikely

that a single curve fitting program can adequately represent

all atmospheric greenhouse gas mole fraction time series;

in other words, a given curve fitting program may be better

suited to examine data sets with particular characteristics, or

for particular types of analyses. The objective of our paper,

therefore, is to address, at least in part, the lack of considera-

tion of curve fitting bias in analyses of atmospheric time se-

ries, by comparing the outputs from three widely used curve

fitting programs, applied to atmospheric time series display-

ing diverse characteristics.

Aims and outline of paper

In this paper we investigate bias associated with the appli-

cation of three curve fitting programs, known as HPspline,

CCGCRV, and STL, that are widely used within the atmo-

spheric greenhouse gas measurement community and have

not been extensively compared previously. Specifically, we

assess the performance of each program with respect to the

complete curve fit, representation of the long-term trend and

the growth rate in the long-term trend, representation of the

seasonal cycle, vulnerability to gaps and outliers in the data,

and sensitivity to the input parameter settings of the pro-

grams.

We emphasise that the purpose of employing curve fit-

ting programs to atmospheric time series is not to produce

a fit that passes through the most number of data points as

possible, but to extract the salient features of interest, such

as seasonality, and separate these components from anoma-

lous “noise” or other features within the time series. Thus,

our objective is not to determine which of the three curve

fitting programs examined is “best”, but rather to elucidate

differences in the output from each program when given the

same input data sets. In addition, we assess whether any of

the three programs are better suited to time series exhibiting

particular “characteristics” (e.g. data sets with a relatively

large seasonal cycle), and to specific research applications

(e.g. correlation analyses between CO2 residual variations

and large-scale climate indices).

The outline of the remainder of this paper is as follows:

Sect. 2 describes each of the three curve fitting programs that

are compared in this study, the contrasting data sets that the

three programs have been applied to, including an explana-

tion of why these data sets were chosen, and the experimental

methods that have been employed. Section 3 presents the re-

sults and discusses our findings. Section 4 summarises the

conclusions of this work, and provides specific recommen-

dations on the appropriate use of the three curve fitting pro-

grams evaluated, as well as general recommendations for all

investigations that use curve fitting programs to analyse at-

mospheric time series.

2 Methodology

2.1 Curve fitting programs

2.1.1 HPspline

“HPspline” is the name of a parametric curve fitting pro-

gram written in Fortran, used by the Atmospheric Oxygen

Research Group based at Scripps, and is an implementa-

tion of the previous “Stationfit” program developed in the

1970s by Robert Bacastow of the Carbon Dioxide Research

Group, also at Scripps (Keeling et al., 1986; S. Piper, Scripps,

personal communication, 2014). The current version of HP-

spline was developed by Martin Heimann (Max Planck In-

stitute for Biogeochemistry, Germany) in the 1980s, and

the program is now maintained by Ralph Keeling (Scripps,

USA). The updated procedure includes three routines (svd-

cmp, svdfit and svdvar) from Numerical Recipes in Fortran

(Press et al., 1996) and involves fitting data to a harmonic

function, a polynomial equation, and a stiff cubic spline

(Reinsch, 1967). The data are initially fitted linearly using

the following expression (Keeling et al., 1989):
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S (t)=

h∑
k=1

[
xk sin(2πkt)+ yk cos(2πkt)

]
, (1)

where S(t) is the seasonal variation as represented by a har-

monic function, h is the number of harmonics (typically

four), t is time in years, 2πk is the angular frequency, and

xk and yk are constants.

The long-term trend variation is represented by a polyno-

mial equation, E(t):

E(t)= a0+ a1t + a2t
2
+ ·· ·+ a(n−1)t

(n−1), (2)

where n is the number of polynomial terms (typically three),

and a0, a1, . . .,a(n−1) are constants.

The function E(t) is subtracted from the data to remove

the long-term trend, and the interannual variations are then

fitted to a Reinsch-type cubic spline function, R(t) (Rein-

sch, 1967), to represent any irregular variations (Bacastow

et al., 1985). Simultaneously, the data are fitted to the func-

tion (1+ γ t)S(t), where γ is a time-dependent gain factor.

A non-linear fit is achieved, using the initial estimates of the

harmonic coefficients (xk and yk) from the first fit of S(t),

via an iterative procedure, whereby an estimate of S(t), ob-

tained from a fit ofE(t), is subtracted from the data, and then

R(t) is fit to the residuals. Next, R(t) is subtracted from the

data, and the residuals are re-fit to the function (1+ γ t)S(t).

(1+ γ t)S(t) is then subtracted from the data and R(t) is re-

fit to the residuals, and so the procedure continues, until con-

vergence is obtained, usually after approximately six cycles.

The overall time series can thus be represented as follows

(Keeling et al., 1989):

P(t)= E(t)+ (1+ γ t)S(t)+R(t), (3)

where P(t) is equivalent to the sum of the trend and the sea-

sonal variation. Further information about the mathematical

concepts underlying HPspline can be found in Bacastow et

al. (1985) and Keeling et al. (1986, 1989).

2.1.2 CCGCRV

“CCGCRV” is a digital filtering curve fitting program devel-

oped by Kirk Thoning (Carbon Cycle Group, Earth System

Research Laboratory (CCG/ESRL), NOAA, USA) in the late

1980s. The version of CCGCRV used in this study was writ-

ten in Interactive Data Language (IDL) by Paul Krummel

(Marine and Atmospheric Research Group, Commonwealth

Scientific and Industrial Research Organisation (CSIRO),

Australia). However, there is also a C language version, the

code for which is freely available at: ftp://ftp.cmdl.noaa.gov/

pub/john/ccgcrv/.

Approximations of the seasonal cycle and the long-term

trend variation are made by fitting a polynomial equation

combined with a harmonic function:

C (t)= a0+ a1t + a2t
2
+ ·· ·+ a(n−1)t

(n−1)

+

h∑
k=1

mk [sin(2πkt +ϕk)] , (4)

where t is time in years, n is the number of polynomial terms

(typically three), a0, a1, . . .,a(n−1) are constants, h represents

the number of harmonics in the function (typically four), and

mk and ϕk define the magnitude and phase of each sinusoidal

component respectively. The fit to a data set is achieved with

a linear least squares regression, applying the “LFIT” routine

from Numerical Recipes in Fortran (Press et al., 1996).

The next step is to calculate the residuals of the input

data to C(t) and filter them using a Fast Fourier Transform

(FFT) algorithm, so that short-term and interannual (long-

term) variations can be retained in the fitted curve (Thoning

et al., 1989). This is achieved by transforming the data from

the time domain into the frequency domain using the FFT,

multiplying by a low-pass digital filter to remove variations

of a specified frequency (see below), and then transforming

the filtered data back to the time domain using an inverse

FFT (Thoning et al., 1989). The low-pass filter function used

is a decreasing exponential represented as follows:

H (f )= exp

[
− ln(2)·

(
f
fc

)6
]
, (5)

where fc is the cut-off frequency of the low-pass filter, ex-

pressed in cycles yr−1.

The low-pass filter is applied to the residuals twice, once

with a short-term cut-off value (fc = fs) for smoothing the

data, and once with a long-term cut-off (fc = fl) to remove

any remaining seasonal oscillation and to represent interan-

nual variations in the data that are not represented by the

polynomial part of C(t). Unless otherwise stated, we use

values of 4.56 cycles yr−1 (i.e. a period of 80 days) and

0.55 cycles yr−1 (i.e. a period of 667 days) for fs and fl re-

spectively, as these are the current typically used values (http:

//www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html). Since

the FFT algorithm requires the input data to be equally

spaced and without gaps, the CCGCRV program linearly in-

terpolates between the data points at a user-specified interval

(Thoning et al., 1989). Additionally, the FFT algorithm re-

quires that the number of data points used is equal to an in-

tegral power of two; hence, the program “zero pads” the data

points to obtain the necessary number by extending the data

set by approximately half a year at each end (Thoning et al.,

1989). The residuals are then adjusted by the program so that

the end values are approximately zero. This diminishes any

effect the “zero padding” may have on the ends of the filter,

which especially affects the growth rate at the end points of

the data set (Thoning et al., 1989).

Lastly, the features of interest (for example, seasonal cycle

amplitude and long-term trend) are derived by combining the
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appropriate parts of the fitting procedure: the long-term trend

is obtained by combining the polynomial part only of C(t)

with the fl filter (i.e. long-term trend=C(t)polynomial only+

H(fl)), and the seasonal cycle is obtained by combining

C(t) with the fs filter, and then subtracting the long-term

trend (i.e. seasonal cycle=C(t)+H(fs) – long-term trend).

The CCGCRV fitting procedure is described in more depth in

Thoning et al. (1989), and on the NOAA/ESRL website at:

http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html.

2.1.3 STL

“STL” is an abbreviation for Seasonal Trend decomposi-

tion using LOESS (locally weighted scatterplot smooth-

ing) and was developed by William Cleveland (AT&T

Bell Laboratories, USA) in the 1980s. The version of

STL used in this study was written in “R”, developed

from Cleveland’s Fortran code by Brian Ripley (University

of Oxford, UK) (described at http://stat.ethz.ch/R-manual/

R-devel/library/stats/html/stl.html), and was provided to us

by Sara Mikaloff-Fletcher (National Institute of Water and

Atmospheric Research (NIWA), New Zealand). Unlike HP-

spline and CCGCRV, STL does not employ harmonic func-

tions, but rather is a moving average technique. A sequence

of LOESS smoothers of different moving window frequen-

cies are applied iteratively to extract the variations of interest

(Carslaw, 2005). The implementation consists of two recur-

sive loops: the inner loop applies a seasonal smoother to the

annual cycle-subseries (defined as series containing values

for each month, e.g. the first subseries contains only January

values, the second subseries contains only February values,

and so on), followed by a trend smoother, while the outer

loop computes the fitted values, which are weighted accord-

ing to a “nearest neighbour routine”, with extreme values

down-weighted during the next iteration of the inner loop

(Cleveland et al., 1990). In this manner, the procedure pro-

gressively refines approximations of the trend and seasonal

components until convergence is achieved, which typically

occurs after less than 10 iterations of the outer loop (Carslaw,

2005).

LOESS assigns a neighbourhood weight, υi(x), to each

data point using the tricube weight function, W (Cleveland

et al., 1990), according to the following:

υi (x)=W

(
|xi − x|

λq (x)

)
, (6)

where xi is the measurement of the independent variable, x is

the computed value of the fit and λq(x) is the distance of the

qth farthest xi from x, where q is a positive integer that con-

trols the smoothness of the LOESS regression curve. Next, a

polynomial of degree d is fit to the data with weight υi(x) at

(xi,yi), where yi , is the measurement of the dependent vari-

able. The value of the locally fitted polynomial at x is ĝ(x).

The inner loop of the STL procedure consists of six steps

as follows (Cleveland et al., 1990):

– Step 1: a detrended series is computed by subtracting

the long-term trend variation from the entire time se-

ries. For the initial pass through the inner loop, a value

of zero is used for the trend. This step incorporates the

trend into the cycle-subseries component until step 4,

where it is removed in the detrending process.

– Step 2: the annual cycle-subseries are then smoothed by

LOESS, using a first degree polynomial and q equal to

the value of the seasonal smoothing window (swin in

years; set by the user). Smoothed values are computed

for the range of values v =−n(p)+1 toN+n(p), where

n(p) is the frequency of the input data series (i.e. 12, for

monthly time series) and N is the total number of data

points in the time series. Thus, the number of smoothed

values is 2n(p) greater than the annual cycle-subseries

prior to the LOESS smoothing (v = 1 toN ). This exten-

sion of the smoothed values by n(p) data at each end is

to account for the subsequent loss of n(p) data in Step 3.

– Step 3: a low-pass moving average filter is applied twice

to the smoothed cycle-subseries, where the length of the

moving average is n(p). This is followed by the appli-

cation of a third low-pass moving average filter with

length= 3 and then LOESS smoothing. These three

moving averages result in the loss of n(p) data at each

end of the time series, which is accounted for by the

extension of the seasonal smoothing in step 2 by 2n(p)
data points.

– Step 4: the smoothed cycle-subseries is detrended to

prevent low-frequency variation from being included in

the seasonal component of the decomposition.

– Step 5: a deseasonalised series is computed by subtract-

ing the computed seasonal component from the entire

time series.

– Step 6: this deseasonalised series is smoothed using

LOESS with q equal to the value of the trend smoothing

window (twin in months; set by the user). This produces

a trend component which is used in step 1 of subsequent

iterations of the inner loop.

The outer loop of the STL procedure down-weights any

outliers in the data by assigning robustness weights, ρv , to

the series using a bisquare weight function, B (Cleveland et

al., 1990):

ρv = B (|Rv|/h), (7)

where Rv is the residual component (i.e. the data with

the trend and seasonal components removed) and h=

6×median (‖Rv‖). In subsequent iterations of the inner

loop, the neighbourhood weight, υi(x), used in the LOESS

smoothing of steps 2 and 6, is multiplied by the robustness

weight, ρv , of the preceding pass of the outer loop. For more
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Table 1. Atmospheric time series used in this study, including site location and altitude, gas species, time period and data source. Note that

all data are monthly mean baseline-only data, i.e. representative of “clean” background air.

Station name Location and altitude Gas species Percent of time series interpolated Period Data source

Alert Station 82.45◦ N, CO2 < 2 1988–2009 b

(ALT) 62.52◦W CH4 < 2 1988–2009 b

Canada 210 m a.s.l.

Baring Head 41.41◦ S, CO2 10a 1970–2011 c

(BHD) 174.87◦ E O3 26a 1991–2010 d

New Zealand 85 m a.s.l.

Cape Grim 40.68◦ S, CH4 < 2 1984–2011 e

Observatory (CGO) 144.68◦ E

Australia 94 m a.s.l.

a Percentage interpolation required for BHD data is relatively high, not because the data do not exist, but because only baseline data (i.e. data that are consistent with

the concept of a well-mixed atmosphere) are reported to the WDCGG database. b WDCGG (Doug Worthy, Environment Canada, Canada). c Britton Stephens,

National Center for Atmospheric Research, USA; Gordon Brailsford and Antony Gomez, National Institute of Water and Atmospheric Research Ltd., New Zealand).
d WDCGG (Sylvia Nichol, National Institute of Water and Atmospheric Research Ltd., New Zealand). e Paul Krummel, CSIRO Marine and Atmospheric Research,

Australia, and the Australian Bureau of Meteorology (Cape Grim Baseline Air Pollution Station), website: http://www.csiro.au/greenhouse-gases/.

details regarding the STL program we refer the reader to

Cleveland et al. (1990).

When choosing values to use for the swin and twin param-

eters, Carslaw (2005) points out that the seasonal and trend

components should not compete for the same variation in the

data, and low-frequency fluctuations should be retained in

the trend component and not in the remainder. In this study,

unless otherwise stated, we used a swin value of 5 years and

a twin value of 25 months, which are the values typically

used by our international colleagues (S. Mikaloff-Fletcher,

personal communication, NIWA, 2011).

A major limitation of the currently available STL R pro-

gramming code is that it can only be applied to equally

spaced data with no gaps (Manning et al., 1990). Note that

this is not a limitation of the STL procedure itself, but rather

that missing values are not allowed in the current version

of the R code to limit computational speed requirements.

Such data sets can be derived by pre-treating the original data

set using an interpolation or smoothing technique. However,

such interpolation techniques may create biases or artefacts

in the time series, particularly if there are large gaps. In order

to mitigate this limitation, all comparison tests were carried

out on time series consisting of monthly mean data that were

already equally spaced in time, and had few or no missing

values.

2.2 Time series

The three curve fitting programs described above were ap-

plied to semi-continuous atmospheric measurement data,

provided by international colleagues and available to down-

load from the World Data Centre for Greenhouse Gases

(WDCGG) website at: http://ds.data.jma.go.jp/gmd/wdcgg/

(see Table 1). In order to investigate the ability of each

curve fitting program to represent particular features of at-

mospheric time series, we selected a suite of input data sets

that provide a diverse variety of seasonal and trend charac-

teristics, and that are notable for their long duration (sev-

eral decades). For example, we chose the atmospheric CO2

data set from Alert Station, Canada (ALT), because it has a

relatively large seasonal cycle amplitude and a very regular

but asymmetric seasonal pattern with prolonged and rounded

maxima and contrasting sharp minima, which are character-

istic of high northern latitude CO2 data sets. Previous studies

(e.g. Nakazawa et al., 1997; Tans et al., 1989; Trivett et al.,

1989) have found that curve fitting programs often struggle

to represent the deep troughs of the seasonal minima of such

time series.

Other atmospheric time series we have chosen to exam-

ine exhibit more complex seasonal patterns. For example,

the ALT CH4 data set, shown in Fig. 1a, is characterised by

a double seasonal maximum during winter. In contrast, the

Baring Head, New Zealand (BHD) CO2 seasonal cycle ex-

hibits a variable pattern, such that it can be difficult to deter-

mine seasonal cycle characteristics. This is partly because,

in contrast to the ALT CO2 data set, the BHD CO2 seasonal

cycle has a much smaller amplitude, owing to a considerably

smaller terrestrial biosphere in the Southern Hemisphere. We

also examine the BHD ozone (O3) data set, which exhibits a

seasonal cycle with relatively high interannual variability, in

that the magnitude of the maxima and minima fluctuate sig-

nificantly from year to year, although the shape of the sea-

sonal cycle is relatively consistent.

In addition to complex seasonal patterns, some of the

time series were chosen because they exhibit different trend

characteristics. For example, there is little variability in the

growth rate of the ALT and BHD CO2 long-term trends,

whereas the ALT and Cape Grim Observatory, Australia

(CGO) CH4 long-term trend growth rates vary considerably.
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Table 2. Range of input parameter settings that were used to test program sensitivity. Values in bold text indicate typical settings used by

colleagues and also throughout this study, unless specifically stated otherwise. The right-hand column shows the input smoothing parameter

values that were found to produce the “best fit” to the decomposed components of an artificial data set (discussed in Sect. 3.5).

Program name Parameter Range of values tested Artificial data “best fit” values

HPspline Spline stiffness parameter, SD2, in ppm yr−2 1, 30, 99999, 500

Number of harmonic terms 2, 4, 4

Degree of polynomial function 1, 3, 5 3

CCGCRV Short-term cut-off period (fs), in days 5, 80, 200 250

Long-term cut-off period (fl), in days 100, 667, 1200 1500

Number of harmonic terms 2, 4, 6 4

Degree of polynomial function 1, 3, 5 3

STL Seasonal smoothing window (swin), in years 1, 5, 50 8

Trend smoothing window (twin), in months 5, 25, 500 45

As mentioned above, the currently available version of

STL requires equally spaced data, so we only used monthly

mean time series and we interpolated the data to fill any

gaps (see Table 1). Interpolation was carried out by apply-

ing HPspline to the original time series, and using values of

the curve fit as surrogate data where there were missing val-

ues. Since our objective is to investigate bias associated with

curve fitting programs, and not to infer scientific conclusions,

interpolating missing data has not had any influence on our

results and conclusions. In using monthly mean data, how-

ever, we were not able to assess the programs with respect to

fitting higher-frequency variations such as diurnal cycling or

synoptic-scale variability.

2.3 Experimental methods

The three curve fitting programs were tested for their abil-

ity to represent each time series as a whole, and for under-

estimation and over-estimation of the curve fits at the sea-

sonal maxima and minima. We also assessed the proportion

of data “captured” by the curve fitting programs, defined as

when the curve fit passes within the ±1σ standard deviation

uncertainties of the data (SD). The decomposed components

of the time series (i.e. seasonal, long-term trend, growth rate

of the long-term trend and residual components) were also

compared, and the programs were assessed for their ability

to cope with outliers and gaps in the data, which were in-

troduced artificially. Each of the programs was also tested

for sensitivity to the input parameters of the fitting programs,

such as the number of harmonics used in the fit. Table 2 lists

the range of input parameter setting values that we have used,

but to ensure the robustness of our conclusions on the be-

haviour of the three curve fit programs, we also tested many

intermediate values of these input parameter settings. Anal-

yses of the seasonal cycle amplitude of the detrended time

series were performed using the ALT CO2 and BHD CO2

time series only, allowing for both Northern and Southern

Hemisphere representation of the terrestrial biosphere sea-

sonal cycle, whereas all the other curve fitting program tests

were performed on all five time series.

The use of statistical analyses in the few existing atmo-

spheric curve fitting comparison studies has been limited,

with previous authors relying heavily on visual interpretation

of graphical representations of the curve fit outputs in order

to describe the differences between programs (e.g. Nakazawa

et al., 1997; Tans et al., 1989; Trivett et al., 1989). We have

attempted to employ some statistical techniques in our analy-

sis. However, time series are complex and highly autocorre-

lated, which makes the use of many statistical tests redun-

dant or inappropriate. For example, t-tests can be used to

determine whether the means of two populations are signifi-

cantly different, but this is somewhat meaningless when ap-

plied to an atmospheric time series, which consists of three

components: a long-term trend, seasonal cycle, and residual

variations. Therefore, we have cautiously employed t-tests in

comparisons of the individual decomposed components only,

such as the mean long-term trend, and also for the analysis

of quantifiable seasonal characteristics, such as the mean sea-

sonal cycle amplitude.

Carslaw (2005) states that it is difficult to assess the rela-

tive performance of different curve fitting programs, as there

is no obvious point of reference against which different pro-

grams can be compared. Thus, in order to provide a robust,

quantitative framework for comparing outputs from the three

curve fitting programs, we have used ±1σ standard devia-

tions of the monthly mean data as an uncertainty estimate

of the data, and to provide a quantitative point of reference,

to which we have compared differences in the curve fitting

program outputs. Differences between curve fitting program

outputs that were larger than the uncertainty of the data were

deemed to be significant within the context of the data set.

www.atmos-meas-tech.net/8/1469/2015/ Atmos. Meas. Tech., 8, 1469–1489, 2015
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3 Results and discussion

3.1 Curve fits

We first ran all three curve fitting programs on all five data

sets listed in Table 1, using the input parameters shown in

bold in Table 2. The differences between the three program

curve fits are smallest for the BHD CO2 and CGO CH4 time

series. These two time series are the least challenging for

the programs, owing to the relatively small seasonal cycle

amplitudes of the data. The largest differences between the

program curve fits are for the ALT CO2 and ALT CH4 time

series (with differences of up to 2 ppm and 15 ppb respec-

tively), which both have relatively large seasonal cycle am-

plitudes (ALT CH4 shown in Fig. 1a). The programs produce

much more similar curve fits to each other for the ALT CO2

data than for the ALT CH4 data, and this is likely because

of the more complex seasonal pattern exhibited by CH4 as

mentioned in Sect. 2.3 above. Figure 1b shows the residu-

als of the ALT CH4 curve fits, which are distributed around

zero for all three programs, and are almost always largest for

HPspline and smallest for CCGCRV.

Across all five time series, the differences between

the curve fits are notably largest between HPspline and

CCGCRV, and the smallest differences are either between

HPspline and STL (for ALT CO2 and BHD CO2), or

CCGCRV and STL (for ALT CH4, BHD O3, and CGO CH4).

The largest curve fit differences between the three programs

most often coincide with the timing of the seasonal maxima

and minima (as shown in Fig. 1a), where the curve fitting

programs have a tendency to either under- or over-estimate

the seasonal inflexion points. As shown in Fig. 2, the differ-

ences between the curve fits generated by the three programs

are often significant because they exceed the uncertainty of

the monthly mean measurements (as represented by the 1σ

standard deviations of the monthly means).

Comparing how closely the programs fit to the data points

can provide useful insight into the appropriate use of a curve

fitting program, even though the purpose of fitting curves to

atmospheric time series is not to fit as closely to the data

points as possible, as mentioned previously. The curve fits

from CCGCRV are consistently closest to the data points for

all five time series (see Table 3). In the case of the BHD CO2

time series, the CCGCRV curve fit is within ±1σ standard

deviation for 99.4 % of the data. The HPspline curve fits are

the most distant from the data for all five time series; the clos-

est agreement between the HPspline curve fit and the data is

for the BHD CO2 time series, where the curve fit captures

90.0 % of the data. This pattern is congruent with the residu-

als of the curve fits, which are smallest for CCGCRV, largest

for HPspline, and intermediate for STL across all five time

series (shown in Fig. 1b for ALT CH4).

It is important not to arrive at the erroneous conclusion that

CCGCRV performs “better” than STL or HPspline because it

produces a curve fit that is closest to the input data points. As
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Figure 1. (a) HPspline (red line), CCGCRV (blue line) and STL

(green line) curve fits to monthly means of CH4 mole fraction

(black dots) measured at Alert, Canada (ALT). The inset shows a

single year of data, with the SD of the observed monthly means

represented by the black error bars. Error bars are not shown on the

full size plot to retain clarity. In general, all three curve fits lie within

the SD limits. HPspline exceeds the SD limits for 34.1 % of the data,

STL exceeds the SD limits for 16.3 % of the data, and CCGCRV ex-

ceeds the SD limits for 2.3 % of the data. As with CO2, the curve

fitting programs tend to exceed the SD limits at the seasonal max-

ima and minima, where the programs over- or under-fit the seasonal

inflexion points. (b) Residuals of the HPspline (red line), CCGCRV

(blue line) and STL (green line) curve fits to monthly means of CH4

mole fraction measured at ALT. HPspline produces the largest resid-

uals, CCGCRV produces the smallest residuals, and STL produces

intermediate residuals.

stated previously, the purpose of applying curve fitting pro-

grams to atmospheric time series is to separate the time series

into trend, seasonal and residual components. By producing

a curve fit that is closer to the data, CCGCRV retains more

short-term variation in the seasonal and trend components of

the fit, thus resulting in smaller residuals. In contrast, HP-

spline is much less “flexible”, meaning that the curve fits do

not follow closely to the original data points as often, partic-

ularly for time series with large interannual variations in the

seasonal cycle, such as the ALT CH4 time series. Hence, for

HPspline, a larger proportion of the variation in the data set

Atmos. Meas. Tech., 8, 1469–1489, 2015 www.atmos-meas-tech.net/8/1469/2015/
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Figure 2. Comparison of the curve fit mole fraction differences be-

tween HPspline and CCGCRV (pink), CCGCRV and STL (cyan),

and HPspline and STL (purple) for a subset of the CH4 time series

at Cape Grim, Australia (CGO) (between 1985 and 1995). The SD

of the monthly mean measurements (grey shading) are also shown

for comparison. The SD consist of discrete data points at monthly

intervals, however, we have chosen to represent them as a continu-

ous band to aid visual comparison to the curve fit differences. The

largest differences are between HPspline and CCGCRV (pink), al-

though differences between all three programs sometimes exceed

the SD of the observations.

is assigned to the residual component of the decomposition

compared to the CCGCRV and STL decompositions. This

lack of flexibility in the HPspline curve fits is attributed to

the spline stiffness component of the program.

Carslaw (2005) states that seasonality is a concept that

cannot be explicitly defined, and there is no definitive bound-

ary between what constitutes seasonal and residual variation,

hence it is vulnerable to subjective interpretations. A curve

fitting program that incorporates some interannual variabil-

ity within the seasonal component of the fit cannot be said

to perform either better or worse than a program that assigns

the same interannual variation to the residual or long-term

components of the fit. Even so, some curve fitting programs

may be better or worse suited to certain types of analyses,

or for decomposing certain types of data, based on how the

trend, seasonal and residual variations in a time series are ex-

tracted. What is apparent from our analyses is that CCGCRV

and STL attribute more interannual and short-term variabil-

ity in the data to the seasonal component of the time series,

whereas HPspline attributes more of such variability to the

residual component.

3.2 Long-term trends

Overall, the long-term trend curves produced by the three

programs agree well when the mean slopes of the trends

for the entire time series are compared (e.g. for ALT CH4,

see Fig. 3b). This is not surprising for CCGCRV and HP-

Table 3. Percentage of data points “captured” by HPspline,

CCGCRV and STL for the five atmospheric time series. “Captured”

points are those for which the fitted curve passes within ±1σ stan-

dard deviations of the monthly mean for each data point.

Gas CCGCRV STL HPspline

Station species (%) (%) (%)

ALT CO2 95.8 88.6 76.9

CH4 97.7 83.7 65.9

BHD CO2 99.4 95.9 90.0

O3 83.5 73.4 67.5

CGO CH4 99.1 94.5 73.6

spline, which both use third-degree polynomial functions as

part of the trend calculation. It is reassuring that the STL

trend curves also agree well, since STL decomposes the trend

variation using a very different process. There are, how-

ever, some large differences in the trends apparent on short-

term timescales, particularly for the more variable ALT CH4

(see Fig. 3a) and BHD O3 data sets (differences of up to

10 and 1.5 ppb respectively). For these time series, the HP-

spline trends are smoother than those produced by CCGCRV

and STL, which incorporate more high-frequency variation

into the trend component of the fit. Many of these short-

term differences between the HPspline trends and those of

CCGCRV and STL are statistically significant. Additionally,

these short-term differences may bias estimates of the mean

long-term trend of a time series when they occur at the ends

of the time series, although this is not the case for the five

time series we have examined here. Our results indicate that

the stiffness of the spline component of HPspline causes the

program to produce smoother trends than those produced by

CCGCRV and STL.

Figure 4 shows the long-term trend growth rate results for

CGO CH4 mole fraction, which are analogous to the long-

term trend results. Again, the HPspline growth rates are much

smoother than those produced using CCGCRV and STL; this

result also applies to the ALT CH4 and BHD O3 time se-

ries (with differences between programs of up to 19.5 and

3 ppb yr−1 respectively), owing to the exclusion of high-

frequency variations from the trend component by the stiff

cubic spline. Figure 4 also shows a “ringing effect” superim-

posed on the HPspline growth rate curve that increases in am-

plitude towards the ends of the time series, and is an artefact

of the stiff spline. The largest differences in growth rate are

between the HPspline and CCGCRV curves, many of which

are statistically significant on short-term timescales. There

are, however, no significant differences between the mean

growth rates of the entire data set for any of the five time se-

ries. We also find that STL sometimes produces growth rate

curves that have relatively very large spurious variations at

the ends of the data sets, which likely arise due to the loss

www.atmos-meas-tech.net/8/1469/2015/ Atmos. Meas. Tech., 8, 1469–1489, 2015
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Figure 3. (a) Long-term trends of monthly mean CH4 observa-

tions at ALT produced by HPspline (red line), CCGCRV (blue line)

and STL (green line). (b) Although there are large differences be-

tween the long-term trends of the three curve fitting programs over

short timescales, the mean slope of the long-term trends (long-term

growth rate) for the entire time series are very similar for all three

programs. Error bars shown indicate the standard error of the re-

gressions of the mean long-term trends.

and subsequent extension of the data during Step 3 of the

STL fitting procedure (see Sect. 2.1.3 above).

For both the trends and growth rates, the CCGCRV curves

consistently display more interannual variation than the STL

curves, which is likely due to the shorter typical CCGCRV

trend smoothing period (fl) of 667 days, compared to a

typical STL trend smoothing value (twin) of 25 months

(∼ 760 days). Although there are large differences between

the trend and growth rate curves on short-term timescales for

some of the time series, it is reassuring that there are no sig-

nificant differences between the trend and growth rate means

for the whole time series, since for some atmospheric green-

house gases, such as CO2, even very small differences in the

long-term atmospheric accumulation over the past decades

could propagate into very large differences in future projec-

tions of atmospheric CO2 mole fraction. Our findings do in-

dicate, however, that care must be taken in studies that exam-

ine and report the most recent behaviour in the accumulation

of greenhouse gases in the atmosphere, for example by the
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Figure 4. Growth rates of the long-term trend in monthly mean CH4

observations at CGO produced by HPspline (red), CCGCRV (blue),

and STL (green). As with the long-term trends, the mean growth

rates calculated for the whole time series are similar for all three

curve fitting programs, although there are large differences on short

timescales. HPspline calculates a growth rate that is much smoother

than those calculated by CCGCRV and STL, due to the stiffness

of the spline component of the HPspline fitting procedure. The

“ringing” effect superimposed on the HPspline growth rate curve

is caused by the stiff spline and increases in magnitude towards the

ends of the time series.

WMO (2014) and the Global Carbon Project (Le Quéré, et

al., 2014), since such results are sensitive to the curve fit pro-

gram used, both because of the short timescales involved (a

few years or less) and because of possible end effects.

3.3 Seasonal cycles

Comparing how effectively the curve fitting programs repre-

sent interannual variations in the seasonal cycle demonstrates

that HPspline is least able to follow interannual variability in

the magnitude of the seasonal minima and maxima for all

five time series; e.g. the HPspline curve captures less than

50 % of the ALT CO2 maxima and CGO CH4 minima data

points (see Fig. 5). CCGCRV is able to capture interannual

seasonal variability the most effectively, and STL has inter-

mediate effectiveness, capturing at least 70 % of the max-

ima and minima for all the time series. Unlike Nakazawa et

al. (1997), Trivett et al. (1989) and Tans et al. (1989), we

find that CCGCRV and STL are able to adequately represent

the deep summer CO2 minima at ALT (the programs fitted

91 % and 95 % of these minima respectively), a feature that

is characteristic of high-latitude Northern Hemisphere sta-

tions; HPspline was also able to represent 78 % of the deep

summer CO2 minima at ALT, but under-estimated some of

the deepest CO2 minima significantly.

Comparison of the magnitudes of the seasonal cycle max-

ima and minima show that HPspline produces higher sea-

sonal maxima values and lower minima values, whilst con-

Atmos. Meas. Tech., 8, 1469–1489, 2015 www.atmos-meas-tech.net/8/1469/2015/
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Figure 5. Percentage of seasonal maxima (a) and seasonal min-

ima (b) “captured” by HPspline (red bars), STL (green bars) and

CCGCRV (blue bars) for all five time series. The term “captured”

refers to the curve fit passing within the ±1σ standard deviation

limits of the monthly mean data at the seasonal inflexion points.

With one exception (ALT CO2 minima), CCGCRV always cap-

tures the greatest number of seasonal maxima and minima (approx-

imately 94 % across all five time series), STL captures approxi-

mately 86 % across all five time series, and HPspline captures the

least: approximately 68 % across all five time series. This difference

between the three programs reflects their comparative “flexibility”,

which is partially determined by the input smoothing parameters of

the program settings.

versely, STL produces lower seasonal maxima values and

higher seasonal minima values; CCGCRV produces interme-

diate values of both the seasonal maxima and minima. The

differences between the mean magnitudes of the seasonal in-

flexion points are statistically significant to the 95 % confi-

dence level in some cases. For example, the differences in

the mean seasonal maxima calculated by HPspline and STL

for the ALT CO2 and BHD CO2 time series are significant

at 0.23 and 0.10 ppm respectively. In addition, the STL sea-

sonal minima occur on average 6 days earlier than those of

HPspline, which is also statistically significant.

Figure 6a shows the differences in the ALT CO2 seasonal

cycle amplitude produced by the three curve fitting programs.

The mean seasonal cycle amplitudes produced by HPspline,

CCGCRV and STL for the ALT CO2 data set are 15.3, 15.2

and 15.1 ppm, respectively. As with the seasonal maxima and

minima, overall, HPspline produces the largest seasonal cy-

cle amplitudes, STL produces the smallest, and CCGCRV

produces intermediate values, for both the ALT and BHD

CO2 time series. The mean seasonal cycle amplitudes pro-

duced by HPspline, CCGCRV and STL for the BHD CO2

data set are 1.24, 1.18 and 1.06 ppm, respectively; the dif-
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Figure 6. (a) Seasonal cycle amplitude of monthly mean CO2 ob-

servations at ALT produced by HPspline (red), CCGCRV (blue) and

STL (green). (b) Mean linear trends in the seasonal cycle amplitude

of monthly mean CO2 at ALT, calculated using the detrended out-

put of the three curve fitting programs. Even though there are rela-

tively large differences between the amplitudes of individual years,

the mean trends are not significantly different from one another, as

shown by the black error bars, which denote the standard error of

the mean amplitude linear regressions.

ference in the HPspline and STL amplitudes of 0.18 ppm is

statistically significant. For both time series, all three pro-

grams indicate that the value of the seasonal maxima is in-

creasing and the value of the seasonal minima is decreasing;

hence, the three programs also show that the seasonal cycle

amplitude of CO2 is increasing in magnitude over time at

both ALT (see Fig. 6b) and BHD. These positive trends in

the seasonal cycle amplitude are statistically significant for

all three programs at both sites, except for the HPspline ALT

CO2 amplitude trend, which is not significant. There are no

significant differences between the CO2 seasonal cycle am-

plitude trends produced by the three programs, either at ALT

(indicated by the error bars in Fig. 6b) or at BHD, which in

part is owing to the relatively large interannual variability in

the seasonal cycle amplitude.

Many of the differences in the seasonal output from the

three programs are also scientifically significant in addition

to being significant based on statistics alone. Previous stud-
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Figure	7.		

	 	

Figure 7. A subset of HPspline (red dashed line) and CCGCRV

(blue dashed line) curve fits to monthly mean CO2 observations at

ALT (black dots), where data from October 1997 to August 1998

have been removed in order to create an artificial 11-month gap in

the time series (solid grey dots). The curve fits for the two programs

with no artificial gap are also shown by the two solid lines for com-

parison. Error bars indicate the SD limits of the monthly mean ob-

servations. Since STL is unable to recognise gaps in the time series,

the program processes the data as if no gap exists and so it can-

not be plotted against the other two program outputs. CCGCRV is

severely affected by the gap as indicated by the significant increase

in the seasonal maximum. HPspline is relatively robust to the gap

in the time series, which only causes a small change in the curve fit.

ies that have examined changes in the seasonal cycle of

greenhouse gases over long time periods, such as Piao et

al. (2008), typically find small trends, for example of less

than a day per year in the shift in phasing of the seasonal

cycle. Therefore, differences in the phasing of the program

outputs on the order of several days (e.g. as found for CO2

seasonal minima) indicate that results from such studies may

be significantly biased by the choice of curve fitting pro-

gram. In addition, the current WMO/GAW (Global Atmo-

sphere Watch) compatibility goal for measurement stations is

±0.1 ppm (±0.05 ppm in the Southern Hemisphere) for CO2

and±2 ppb for CH4 (Brailsford, 2012); thus, introducing un-

certainties greater than these values during the data analysis

process simply because of the choice of curve fitting program

is scientifically significant and should be avoided if possible.

3.4 Gaps and outliers

The programs were assessed for their ability to cope with

gaps in the time series by introducing artificial gaps with du-

rations from 3 to 11 months into the time series. Figure 7

shows the effect of an 11-month gap in the ALT CO2 time

series on the HPspline and CCGCRV curve fits. STL is not

shown in Fig. 7, since the programming code requires that

the data are regularly spaced and is unable to recognise the

artificial gap. This is effectively because STL does not take
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Figure	8.		Figure 8. A subset of HPspline (red dashed line), CCGCRV (blue

dashed line) and STL (green dashed line) curve fits to monthly mean

CO2 observations at ALT (black dots) from 1996 to 2000, where the

monthly mean for March 1998 has been replaced with an artificial

outlier (black cross) that has a value 1 % greater (∼ 4 ppm) than

the original measured value. The curve fits for the three programs

with no artificial outlier are also shown by the three solid lines for

comparison. Error bars indicate the SD limits of the monthly mean

observations, and the y axis has been scaled to aid visual compari-

son of the curve fit differences. As shown, both CCGCRV and STL

are significantly affected by the outlier at the point of occurrence.

Additionally, the timing of the seasonal maximum has shifted two

months earlier for the STL and CCGCRV curves, to coincide with

the occurrence of the outlier in March 1998. STL is also affected by

spurious variation in the adjacent years, which shifts the timing of

the seasonal maximum earlier by two months in 1997. HPspline is

relatively robust to the influence of the outlier, however, the timing

of the seasonal maximum is also shifted earlier in the year by two

months during 1998.

into consideration the time stamps of the data, only the fre-

quency of the input data, n(p), which is defined by the user

(see Sect. 2.1.3) and is assumed to be constant throughout

the time series. When run with exactly a year of data miss-

ing, STL processes the data as if there were no gap at all,

whereas gaps that are shorter or longer than 12 months cause

very large fitting anomalies in all output after the gap.

CCGCRV curve fits are significantly affected by gaps in

the time series, as are the long-term trend and growth rate

components of the CCGCRV decomposition. In contrast,

HPspline is relatively unaffected by gaps in the time series

for all components of the decomposition. This indicates that

the Reinsch spline part of HPspline is more robust to gaps

than the CCGCRV filtering, since if either the polynomial or

harmonic functions were the vulnerable component, which

are common to both programs, one would expect the HP-

spline trend to be affected similarly to CCGCRV. Varying the

time of year of the gaps has no effect on the response of the

curve fitting programs, with the exception of the ALT CO2

time series, for which the anomalies caused by the gaps are
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larger when the gaps incorporate the seasonal maxima. This

is most likely owing to the asymmetric shape of the ALT CO2

seasonal cycle in which the seasonal maximum constitutes a

large proportion of the year. We also note that our tests were

conducted on relatively long time series of 20 or more years;

for shorter time series, we would expect both HPspline and

CCGCRV to be less robust to gaps.

The three programs were also tested for vulnerability to

outliers by replacing one of the time series data points with a

data point that was either 1 % greater or less than the original

value. These tests reveal that all three programs are affected

to some degree by even such relatively small outliers, and

by only a single outlier in time series of 20 or more years’

duration. Across all five time series, CCGCRV is generally

the most sensitive of the three programs to outliers, although

STL is also significantly affected, and sometimes more so

than CCGCRV (see Fig. 8). In addition, anomalies in the

CCGCRV curve fits only occur at the point in the time se-

ries where the outlier also occurs, whereas the STL curve fits

are characterised by anomalies in the preceding and subse-

quent years also. The detrended output of the decomposition

is more severely affected by the outliers than the trend and

growth rate outputs for both CCGCRV and STL, which sug-

gests that the fs and swin smoothers are more susceptible to

outliers than the fl and twin smoothers.

As with the artificial gaps, HPspline is the most robust pro-

gram to outliers in the time series, although some of the out-

lier anomalies in the HPspline curve fit are significant (see

Fig. 8). Importantly, an outlier that occurs near to the in-

flexion points of the seasonal cycle can influence the mag-

nitude and/or the timing of the seasonal maximum or min-

imum for any of the programs (see Fig. 8), and can cause

significant biases in the seasonal analysis of a time series.

Although HPspline is relatively robust to outliers, the curve

fit reveals small anomalies that “echo” throughout the entire

data set, coincide with the timing of the outlier within the

seasonal cycle, and diminish in magnitude with increasing

time (both forwards and backwards in time from the occur-

rence of the outlier). We believe that this “echo” is an artefact

of the spline, since it is not present in the trend (which is in-

dependent of the spline), and disappears from the curve fit

and detrended outputs when the flexibility of the spline is in-

creased (that is, by increasing the spline stiffness parameter,

SD2). Therefore, while less severely affected, a larger pro-

portion of the HPspline curve fit could be biased by a single

outlier in the time series which may not be obvious on first

inspection, whereas the effect of an outlier will be more eas-

ily recognisable in the CCGCRV and STL outputs (and thus,

it is likely to be easier to filter the outlier as a spurious point

and re-compute the curve fits).

The “echo” effect resulting from outliers in the HPspline

curve fits becomes more apparent when an outlier is placed

at the beginning of the time series (i.e. within the first sea-

sonal cycle). Both CCGCRV and STL are affected by such

an outlier at the time that it occurs, but the curve fits for

the rest of the time series remain unaffected. HPspline, how-

ever, is more severely affected by this outlier, both at the

time that it occurs, and throughout the rest of the time se-

ries than when it occurs in the middle of the time series. This

effect, where a curve fitting program is more susceptible to

time series anomalies when they occur at the ends of the data

set, is known as an “end effect”. HPspline is not the only

curve fitting program found to be susceptible to end effects,

as STL also occasionally exhibited significant end effects in

the long-term trend growth rate (Sect. 3.2 above).

3.5 Program input parameters

The ranges of input parameters tested are shown in Table 2.

These ranges were chosen to test the limits of the three curve

fitting programs, and are therefore not necessarily appropri-

ate for all analyses of atmospheric time series. The input pa-

rameters tested include the “stiffness” of the spline compo-

nent of the HPspline fitting program (i.e. the SD2 setting), the

fs and fl smoothing parameters for CCGCRV, the swin and

twin smoothing parameters for STL, and the number of har-

monic and polynomial terms included in the HPspline and

CCGCRV programs. For the five time series that we used

in these tests, our results show that changing the number of

polynomial terms in the CCGCRV and HPspline fitting pro-

cedures has no significant effect, while changing the num-

ber of harmonics only has a small effect on the HPspline

curve fits and residuals but no effect on the CCGCRV out-

put. Hence, only the spline stiffness (HPspline) and smooth-

ing parameters (CCGCRV and STL) have any significant in-

fluence on the curve fits and decomposed outputs from the

programs.

Reducing the spline stiffness of HPspline (increasing SD2)

significantly increases the flexibility of the program, allow-

ing a much greater amount of interannual variability to be

incorporated into the curve fits (see Fig. 9a, red lines), al-

though still less than the interannual variability that is incor-

porated into the CCGCRV and STL curve fits (with typical

smoothing values for the latter two programs – see bold val-

ues in Table 2). This results in significant differences in other

components of the decomposition, such as the seasonal cycle

amplitude (see Fig. 9b) and the long-term trend (see Fig. 10).

For CCGCRV, using a smaller period for fs only affects

the curve fit and detrended output significantly when a very

small value is used (see Fig. 9a and b, blue lines), since

CCGCRV is already able to track much of the variability in

the data sets. Increasing fs, however, has a greater effect (also

shown in Fig. 9a and b, blue lines). Varying fl has a signif-

icant effect on the long-term trend (see Fig. 10, blue lines)

and growth rate components of the fit, particularly when rela-

tively small values (e.g. fl = 200) are used, and some higher-

frequency variations are included in the trend.

The STL curve fits and decomposed outputs can also

be significantly influenced by varying the program input

smoothing parameters. Using larger values for both swin and
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Figure	9.	Figure 9. (a) HPspline (red), CCGCRV (blue) and STL (green)

curve fits to monthly means of CH4 mole fraction (black dots) mea-

sured at ALT. For clarity, only the subset 1991–1993 is shown. Solid

lines denote curve fits produced with the typical input smoothing

parameter settings (see bold values in Table 2). Dotted lines de-

note curve fits produced with the following input parameter set-

tings: SD2= 750 for HPspline (red), fs : fl= 5 : 667 for CCGCRV

(blue), and swin : twin= 1 : 25 for STL (green). Dashed lines de-

note curve fits produced with the following input parameter settings:

SD2= 99 000 for HPspline (red), fs : fl= 200 : 667 for CCGCRV

(blue), and swin : twin= 25 : 25 for STL (green). (b) Seasonal cycle

amplitude of monthly mean CH4 observations at ALT produced by

HPspline (red), CCGCRV (blue) and STL (green), using the typical

input smoothing parameter values (solid lines). Dotted and dashed

lines for HPspline (red), CCGCRV (blue) and STL (green) are pro-

duced using the same input parameter settings as in (a).

twin shifts the curve fit upwards, resulting in higher val-

ues for the annual mean mole fractions, as well as higher

seasonal maximum and minimum values; correspondingly,

using smaller values for the swin and twin parameters re-

sults in lower values of annual means and seasonal maxima

and minima. Decreasing only the swin parameter produces a

more flexible curve fit, while increasing the swin parameter

produces a less flexible curve fit (see Fig. 9a, green lines).

Changes in the swin parameter can cause large differences

in the seasonal cycle amplitude, as shown in Fig. 9b (green
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Figure	10.	

	

Figure 10. A subset of the long-term trends of monthly mean CH4

observations at ALT produced by HPspline (red), CCGCRV (blue),

and STL (green), using the typical input smoothing parameter val-

ues (solid lines; see bold values in Table 2). Dotted lines denote

long-term trends produced with the following input parameter set-

tings: SD2= 750 for HPspline (red), fs : fl= 60 : 200 for CCGCRV

(blue), and swin : twin= 5 : 5 for STL (green). Dashed lines de-

note long-term trends produced with the following input parame-

ter settings: SD2= 99 000 for HPspline (red), fs : fl= 80 : 1200 for

CCGCRV (blue), and swin : twin= 5 : 500 for STL (green).

lines). In contrast, decreasing the twin parameter has only a

moderate effect on the long-term trend output, and increasing

the twin parameter has almost no effect (see Fig. 10, green

lines).

In order to more directly compare the three curve fitting

programs, we manipulated the input smoothing parameters in

an attempt to make the programs produce curve fits and de-

composed outputs that were as similar to each other as possi-

ble. One combination of input smoothing parameter settings

that resulted in very similar results across all three programs,

whilst still maintaining a relatively high level of flexibility in

the curve fits, was: SD2= 99 999 for HPspline; fs= 91 days

and fl= 667 days for CCGCRV; and swin= 3 years and

twin= 22 months for STL. It should be noted that there are

many other combinations of input smoothing parameter set-

tings that can also generate very similar results from the three

curve fitting programs, and that we have presented just one

combination in this work. In general, the three programs can

be forced to produce relatively similar curve fits, although

the level of agreement depends on the interannual variabil-

ity of the input time series. Notably, we find no combination

of smoothing parameter values that produces similar curve

fit results as well as similar decomposed components of the

fitting procedure, since one combination of smoothing pa-

rameter values may produce similar curve fits but different

trend and detrended outputs, and vice versa.

Altering the input smoothing parameters of the three pro-

grams causes many of the outputs from some of the previ-

ous tests in Sects. 3.1 to 3.4 to change. For example, we find
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Figure	11.		Figure 11. Four plots demonstrating the dependency of the curve fits on the program input smoothing parameters. (a) Excursions in the

ALT CO2 curve fits caused by an outlier (1 % greater than the original data point) in March 1998, where for HPsplineA, SD2= 30; for

HPsplineB, SD2= 9999; for CCGCRVa, fs : fl= 80 : 667; for CCGCRVb, fs : fl= 200 : 667; for STLa, swin : twin= 5 : 25; and for STLb,

swin : twin= 25 : 25. (b) Excursion in the ALT CO2 curve fits caused by an 11 month gap during 1998, where the program input smoothing

parameters are varied as for (a). Note that the STL R program cannot fit across gaps and for this reason was not included in this plot.

(c) Differences in the BHD O3 1998 seasonal maximum generated by varying the input smoothing parameters with the following values:

HPspline: SD2 values of 30 and 1000; CCGCRV: fs : fl periods of 80 : 667 and 200 : 667; STL: swin : twin values of 5 : 25 and 25 : 25.

(d) Differences in the BHD O3 2001 long-term trend growth rate generated by varying the input smoothing parameters with the following

values: HPspline: SD2 values of 30 and 99 999; CCGCRV: fs : fl periods of 80 : 667 and 80 : 200; STL: swin : twin values of 5 : 25 and 5 : 5.

that using the input smoothing parameter values that result in

the most similar curve fits, STL is the most flexible program

and CCGCRV is only slightly less flexible, which is converse

to the previous result, when the typical smoothing parame-

ter settings were used. With smoothing parameters produc-

ing the most similar curve fits, STL is also more severely

affected by outliers than CCGCRV, which again is in con-

trast to the previous outlier test results using typical values.

Figure 11 summarises four examples of how the curve fit-

ting outputs can be substantially influenced by changing the

input smoothing parameters of each program, and demon-

strates how it is possible to obtain entirely different results

from a time series using the same curve fitting program with

different input smoothing parameter values. Furthermore, as

demonstrated in Fig. 9a and b, the differences in curve fitting

output caused by changing the input smoothing parameter

values are often greater than those that result from using dif-

ferent programs. Thus, not only might a time series analysis

be biased by the choice of curve fitting program, but also by

the choice of input smoothing parameters.

Figure 11 also indicates that in a few circumstances, the

curve fitting programs produce the same outputs, despite us-

ing very different values of the input parameter smoothing

values. For example, it appears that STL has an almost iden-

tical response to a 1 % outlier when the swin value is varied

from 5 to 25 years (Fig. 11a), and CCGCRV has a very sim-

ilar response to an 11-month gap in the time series when the

fs period is varied from 80 to 200 days (Fig. 11b).

To test the difference in fitting behaviour between the three

programs further, we applied each program to an artificially

created data set, composed of a relatively large seasonal cycle

amplitude that varies interannually, a slowly varying long-

term trend, and random noise (with a normal distribution).

The black dots of Fig. 12a and b respectively show the long-

term trend and seasonal cycle components of this artificial

data set. The purpose of this test was first to determine how

accurately each of the programs could decompose an artifi-

cial time series into its component parts, which are known

for an artificial data set (unlike the decomposed components

of a real time series, for which the “true” decomposed com-

ponents are unknown), and second to assess which input

smoothing parameter settings produce the most accurate de-

compositions.

We find that using the typical input smoothing parame-

ter values, CCGCRV and STL assign too much short-term

variation in the long-term trend and seasonal cycle com-

ponents. The following input smoothing parameter values

are found to produce the most accurate decomposition for

the trend, seasonal and residual components of the time se-

ries composition: SD2= 500 for HPspline; fs= 250 days

and fl= 1500 days for CCGCRV; and swin= 8 years and

twin= 45 months for STL (see Table 2 for how these val-

ues compare to the typically used values). For CCGCRV and
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STL, both the seasonal and trend smoothing parameters are

increased compared to the typical values (making the pro-

grams less flexible), in order to produce the most accurate

decomposition of the data. For HPspline, changing the SD2

parameter has little effect on the decomposition, although a

higher value (more flexible) produces a slightly more accu-

rate decomposition.

Using these non-typical input smoothing parameter set-

tings, all three programs are able to successfully represent

the long-term trend, with the largest differences occurring at

the ends of the time series (see Fig. 12a). For the seasonal

variation, CCGCRV and STL are able to represent the sea-

sonal cycle slightly more successfully than HPspline, which

includes too much short-term variation in the seasonal com-

ponent (see Fig. 12b). The differences between the three pro-

grams for the seasonal component are much larger than those

for the trend component.

The means of the residual component are similar across

the three programs (not shown), although there are large dif-

ferences on short timescales, and we expect that any correla-

tion of the residual component with climate indices (e.g. the

El Niño Southern Oscillation index) would produce very dif-

ferent results for each of the three programs. The curve fits

are also relatively similar to each other, but do not produce a

close fit to the artificial time series data points. These results

emphasise that the purpose of time series decomposition is

not necessarily to fit the data as closely as possible, since this

may introduce more short-term variation into the trend and

seasonal components than is actually present in the data, and

may also underestimate the magnitude of the residual compo-

nent. Thus, although we have found HPspline to be the least

flexible of the three curve fitting programs examined, the in-

put smoothing parameter values for both CCGCRV and STL

had to be substantially altered from the typical values used

in the community in order to produce an accurate decompo-

sition. In contrast, the typical smoothing value for HPspline

was only changed by a relatively small amount in order to

produce the best fit to the decomposed data, and this change

had little effect on the results compared to the typical value.

3.6 Re-analysis of zero-crossing trends of Piao et

al. (2008) using HPspline and STL

In order to demonstrate the importance of whether scien-

tific conclusions are unduly influenced by the choice of

curve fitting program, we have used HPspline and STL to

replicate the zero-crossing analysis in Piao et al. (2008),

who used CCGCRV. In brief, Piao et al. (2008) used

CCGCRV to detrend CO2 time series from 10 North-

ern Hemisphere field stations from the Globalview-CO2

database (GLOBALVIEW-CO2, 2004), linearly interpolated

the detrended data to obtain values of the spring downwards

zero-crossing dates (SDZ) and the autumn upwards zero-

crossing dates (AUZ), and then for each year, subtracted the

SDZ from the AUZ to obtain the carbon uptake period (CUP)
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Figure	12.	 	Figure 12. (a) Long-term trends produced by HPspline (red),

CCGCRV (blue) and STL (green) for an artificial data set. The

actual values of the long-term trend component used to gener-

ate the artificial data set are shown by the black dots. The input

smoothing parameter values used to achieve these long-term trends

are: SD2= 500 for HPspline, fs : fl= 250 : 1500 for CCGCRV and

swin : twin= 8 : 45 for STL. (b) A subset of the seasonal cycles pro-

duced by HPspline (red), CCGCRV (blue) and STL (green) for the

artificial data set. The actual values of the seasonal component used

to generate the artificial time series are shown by the black dots.

The input smoothing parameter values used to achieve these sea-

sonal cycles are the same as in (a).

of the terrestrial biosphere. Trends in the CUP were deter-

mined using linear regressions, and the probability that these

trends were statistically significant was calculated.

Figure 13 shows the results of Piao et al. (2008) along-

side our re-analysis of the CUP trends with exactly the same

input time series, but using STL and HPspline output in-

stead of CCGCRV output. Trends that are positive indicate

that the CUP is getting longer, and suggest that the net ter-

restrial biosphere carbon sink is getting larger, while nega-

tive trends indicate the opposite. There are small differences

between the CUP trends calculated using the three different

curve fitting programs at all of the stations, and a statistically

significant difference between the STL and HPspline trends
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Figure	13.	
Figure 13. Carbon update period (CUP) trends calculated

from 10 atmospheric CO2 time series in the Globalview-CO2

(GLOBALVIEW-CO2, 2004) database. Blue bars indicate the orig-

inal trends taken from Piao et al. (2008), who used CCGCRV, with

green and red bars indicating the re-analysed CUP trends using STL

and HPspline respectively. The atmospheric measurement stations

are: Cape Kumukahi, USA (KUM), Mauna Loa, USA (MLO), Sand

Island, USA (MID), Niwot Ridge, USA (NWR), Mt. Cimone, Italy

(CMN), Schauinsland, Germany (SCH), Cold Bay, USA (CBA),

Barrow, USA (BRW), Mould Bay, Canada (MBC) and Alert Sta-

tion, Canada (ALT). Stations are all in the mid-to-high latitudes of

the Northern Hemisphere, presented in order of increasing latitude

from left to right. The mean standard error of the HPspline linear

regressions is ±0.3 days yr−1, and the mean standard error of the

STL linear regressions is ±0.1 days yr−1.

at SCH (determined based on the standard error of the lin-

ear regressions used to calculate the CUP trends). No other

station showed statistically significant differences in the out-

put from the three different curve fitting programs, and at

all 10 stations, the mean CUP trends agree well for all three

curve fitting programs.

Our re-analysis does, however, reveal that the number of

stations exhibiting negative and statistically significant CUP

trends is dependent on the curve fitting program used. The

analysis of Piao et al. (2008) found that nine out of the ten

stations have negative CUP trends (see Fig. 13), and that

three of these nine negative CUP trends are statistically sig-

nificant. In contrast, only eight of the STL trends are nega-

tive, although five of these are statistically significant (as is

one of the positive trends), and for HPspline, 7 of the trends

are negative, only one of which is statistically significant.

Although we have found the conclusions from the curve

fitting analysis in Piao et al. (2008) to be robust when using

any of the three curve fitting programs presented here, the

analyses of individual stations are dependent on the curve

fitting program used. This one example highlights the impor-

tance of investigating the influence of curve fitting bias on

the scientific conclusions of an analysis by employing more

than one curve fitting program wherever possible.

4 Conclusions and recommendations

We have investigated bias in the application of three com-

monly used curve fitting programs to monthly mean atmo-

spheric time series from three stations: Alert Station, Canada,

Cape Grim Observatory, Australia, and Baring Head, New

Zealand. Our comparisons show that there are often signifi-

cant differences between the outputs of these three programs,

and that the outputs are also very sensitive to the choice of

program input smoothing parameters. We have also found

that the differences between the program outputs depend on

the amount of interannual variability in the time series and

the seasonal cycle amplitude. For time series with gradual

year-on-year changes and/or a relatively small seasonal cy-

cle amplitude, the programs produce much more similar out-

puts to each other than for time series that are characterised

by relatively high interannual variability and/or a relatively

large seasonal cycle amplitude. More specifically, we draw

the following conclusions from our study:

1. CCGCRV was found to be the most flexible program,

HPspline was the least flexible, and STL demonstrated

intermediate flexibility, where flexibility describes the

amount of short- and long-term variability in the time

series that the three programs are able to represent.

Hence, the HPspline and CCGCRV curve fits were

found to be consistently the least similar across all

five time series. The difference in flexibility is also

reflected in the residual components of the decompo-

sition, which were consistently largest for HPspline,

smallest for CCGCRV, and intermediate for STL. Even

when the SD2 spline stiffness setting of HPspline was

increased to its maximum value (minimum stiffness),

it was not possible to make the HPspline curve fits as

flexible as the CCGCRV and STL curve fits. The fact

that HPspline was the least flexible program does not

necessarily mean that it is not the most appropriate pro-

gram to use, as we have demonstrated by applying the

three programs to an artificial data set; both CCGCRV

and STL produced decompositions of the artificial data

set with too much short-term variation in the long-term

trend and seasonal components of the decomposition.

2. The mean slopes of the long-term trend and associated

growth rate curves agreed well between all three pro-

grams over long time periods, although there were some

significant differences between the curves for individual

years. HPspline tends to generate smoother trend and

growth rate curves than the other two programs, as it as-

signs a greater proportion of the long-term variability to

the residual component of the decomposition.

3. For some time series, statistically significant differences

were found between the HPspline and STL magnitudes

of the seasonal maxima, minima and amplitudes, and

the timing of the seasonal inflexion points. This is in
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part attributable to STL assigning a smaller proportion

of the variation in the time series to the seasonal com-

ponent of the decomposition. STL and CCGCRV over-

and under-estimated the seasonal maxima and minima

less frequently than HPspline, which for some time

series captured less than 50 % of the seasonal inflex-

ion points. All three programs, however, found that the

magnitude of the CO2 seasonal cycle amplitude at both

ALT and BHD has increased over time.

4. The current version of STL cannot be used when gaps

exist in the time series, and requires the data to be at

evenly spaced intervals. CCGCRV was significantly af-

fected by gaps of 11 months, whereas HPspline was rel-

atively robust to gaps in the time series.

5. All three programs were found to be vulnerable to rel-

atively small outliers (1 % larger or smaller than the

original data point) in the time series, although, in gen-

eral, CCGCRV was found to be the most vulnerable,

and STL was more severely affected than HPspline. All

three programs were more vulnerable to outliers that oc-

curred near the seasonal inflexion points, and HPspline

was the most vulnerable program to outliers that oc-

curred at the ends of the time series.

6. Changing the number of harmonic and polynomial

terms in the fitting procedures had no significant effect

on the program outputs; however, changing the values

of the input smoothing parameters did significantly af-

fect the outputs from all three curve fitting programs.

It was not possible to force the three curve fitting pro-

grams to produce the same decomposed components of

the time series (i.e. trend, seasonal, and residual com-

ponents) as well as the same curve fits by manipulating

the input smoothing parameters.

7. Changing the input smoothing parameters of the pro-

grams caused changes in some of the outputs of the pre-

vious curve fitting tests, including which program was

the most flexible and which was the most susceptible

to outliers. Importantly, differences between the results

produced by the same curve fitting program run with

different input smoothing parameter values were often

greater than differences between the results produced

by different programs using the typical input smoothing

parameter settings.

8. Using STL and HPspline with the typical input parame-

ter settings, we carried out a re-analysis of trends in the

terrestrial biosphere carbon uptake period (CUP), deter-

mined with an atmospheric CO2 seasonal cycle zero-

crossing analysis as given in Piao et al. (2008), who

used CCGCRV. We found that the overall scientific re-

sults from Piao et al. (2008) were robust for all three

curve fitting programs, but the difference in the HP-

spline and STL CUP trends at one measurement station

was statistically significant, and the number of negative

and statistically significant CUP trends across the suite

of 10 stations was dependent on the choice of curve fit-

ting program.

Based on the results of our study, we provide the follow-

ing list of general recommendations on the use of HPspline,

CCGCRV and STL with atmospheric time series of particular

characteristics, and for certain types of analyses. Although

these recommendations are based on a reasonably compre-

hensive suite of analyses and comparisons that have been

summarised in this paper, they are, however, based on results

from examining only five atmospheric time series of monthly

averaged data, and therefore may not hold true for all time se-

ries. The five time series we used, however, were specifically

selected to represent a broad range of characteristics, such as

relative magnitude of the seasonal cycle amplitude, and in-

terannual variability in both the seasonal and trend variation.

1. We strongly recommend that users choose appropriate

values of the input smoothing parameters based on the

characteristics of the time series, and not based on the

values that are typically used by colleagues, or that have

been used historically. We also highly recommend that

users conduct sensitivity tests to ensure that the scien-

tific results of an analysis are not unduly biased by the

choice of input smoothing parameter settings.

2. Advice on how to choose appropriate input smoothing

parameter settings for CCGCRV and STL is provided

in Thoning et al. (1989) and Cleveland et al. (1990) re-

spectively. We recommend that the fs versus fl and swin

versus twin values are sufficiently different from each

other so that the CCGCRV and STL short- and long-

term smoothing procedures do not compete for the same

variation in the data.

3. We strongly recommend that users employ more than

one curve fitting program, to ensure that the results of an

analysis will not be unduly biased by the choice of curve

fitting program. This is particularly important for anal-

yses that are more vulnerable to curve fitting bias, such

as those that examine relatively small trends or changes

in time series that are very variable, and for analyses

where a high degree of accuracy is required, such as a

comparison of time series from two locations, for exam-

ple.

4. For analyses where it is appropriate or useful to as-

sign more variation to the residual component of a

time series decomposition, and less variation to the

trend and seasonal components, we recommend the use

of HPspline. A key example is investigating correla-

tions between atmospheric time series and large scale

climate phenomena or climate indices such as the El

Niño/Southern Oscillation.
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5. For analyses where it is important that year-to-year vari-

ations in the seasonal and trend components are re-

tained, we recommend CCGCRV, for example in stud-

ies such as Piao et al. (2008) examining changes in fea-

tures of the seasonal cycle. STL is also appropriate for

such analyses, although the user should be aware that

STL assigns less variation to the seasonal component,

and more variation to the trend component compared to

CCGCRV, depending on the input smoothing parameter

settings used.

6. For analyses where it is important to accurately rep-

resent the magnitude or timing of the seasonal inflex-

ion points, and/or the seasonal cycle amplitude, we rec-

ommend CCGCRV and STL for all time series data,

including analyses where the time series is charac-

terised by deep, short minima or maxima, such as high-

latitude Northern Hemisphere atmospheric CO2 time

series. We only recommend the use of HPspline in the

above-mentioned seasonal analyses for time series with

a relatively constant seasonal cycle shape and phasing

throughout.

7. For analyses where it is important to fit the data as

closely as possible, we recommend the use of CCGCRV,

and discourage the use of HPspline.

8. For studies reporting the most recent growth rate in the

accumulation or decline of gases in the atmosphere, we

strongly recommend the use of more than one curve fit-

ting program, since growth rate calculations are partic-

ularly sensitive to possible end effects.

9. For calculations of mean long-term trends, results can

be sensitive to trend values at the ends of the time se-

ries, which in turn can sometimes be quite different

across the three curve fitting programs. Therefore, for

such calculations, we recommend the use of more than

one curve fitting program.

10. For analyses of interannual variations of the long-term

trend, particularly for time series with variable long-

term trend growth rates, such as atmospheric CH4 time

series, we recommend CCGCRV and STL, but not HP-

spline. We also warn users that STL occasionally gen-

erates spurious variations at the ends of the long-term

trend growth rate curves.

11. For analyses where the time series contains gaps, or the

data are not evenly spaced through time, we recommend

HPspline, but not CCGCRV or STL. In particular, users

should be aware that the currently available R version

of STL is unable to fit across gaps in time series. For

analyses including time series with gaps, and where the

focus of the investigation is such that another recom-

mendation in this list advises use of CCGCRV or STL,

it may be appropriate to first use an interpolation tech-

nique to populate the gaps in the time series, and then

carry out the analyses with CCGCRV or STL.

12. For analyses where the time series contains outliers, if

the purpose is to identify the outliers and remove them

from the time series, we recommend CCGCRV, because

the program is sensitive to outliers, but only at the time

they occur, meaning that outliers are easily recognisable

and can subsequently be removed.

13. If the purpose of an analysis of a time series contain-

ing outliers is to produce curve fits, or to decompose the

data without removing the outliers, we recommend STL

or CCGCRV. This is because although HPspline tends

to be affected to a lesser degree than STL at the time

of the outlier occurrence, the program output is affected

throughout a much larger proportion of the time series

than the STL and CCGCRV outputs. Additionally, for

time series that contain outliers near the ends, we dis-

courage the use of HPspline because it is sensitive to

end effects caused by outliers.

Key examples of further work that would improve our un-

derstanding of possible curve fitting bias include comparing

curve fitting program outputs using higher-frequency time

series, such as weekly, daily or hourly averages, conducting

curve fitting comparisons using additional curve fitting pro-

grams to the three tested here, and conducting comparisons

on shorter time series.

Our results clearly show that significant bias and uncer-

tainty can be introduced in the application of curve fitting

programs to atmospheric time series. It is thus important that

investigators ensure that curve fitting programs are appropri-

ate for the application for which they are used, use more than

one program to analyse the same data so that any biases can

be identified, and test the sensitivity of the results to the input

smoothing parameters chosen.

Great care is taken by experimental scientists to ensure that

atmospheric greenhouse gas measurements are very precise,

reproducible, and compatible with other measurement sites.

The same care and attention is essential in the analysis of

these data, and in the application of curve fitting programs,

to ensure the robustness and reproducibility of scientific in-

terpretation and conclusions drawn.
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