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Abstract. The EPA PMF (Environmental Protection Agency dimensionsn by m, in which n samples andn chemical
positive matrix factorization) version 5.0 and the underlying species were measured. Rows and columns ahd of re-
multilinear engine-executable ME-2 contain three methoddated matrices are indexed bynd j, respectively. The goal
for estimating uncertainty in factor analytic models: classicalof modeling with PMF is to identify the number of factors
bootstrap (BS), displacement of factor elements (DISP), ang, the species profilgf; of each factork, and the amount
bootstrap enhanced by displacement of factor elements (BSef massg; contributed by each factdr to each individual
DISP). The goal of these methods is to capture the uncersample (Eq. 1):
tainty of PMF analyses due to random errors and rotational )
ambiguity. It is shown that the three methods complement. e
each other: depending on characteristics of the data set, one’ — Zg’kfk’ teij = cij e, (1)
method may provide better results than the other two. Results -
are presented using synthetic data sets, including interpretavheree;; is the residual and;; denotes the modeled part for
tion of diagnostics, and recommendations are given for pa€ach sample/species. The method is described in greater de-
rameters to report when documenting uncertainty estimatetail elsewhere (Paatero and Tapper, 1994; Paatero, 1997). Re-
from EPA PMF or ME-2 applications. garding notation, capital bold-face letters denote entire ma-
trices, g denotes columns of the factor contribution matrix
G, and f; denotes rows of factor profile matrix
Original versions of PMF2, ME-2, and EPA PMF provided

1 Introduction uncertainty estimates férand sometime&. However, these
estimates did not explicitly include rotational uncertainty of
1.1 EPAPMF and ME-2 the results. The present work corrects this deficiency for ME-

o ) 2 and EPA PMF, presents three methods for estimating un-
The multivariate factor analysis tools PMF2, ME-2, and EPA certainty, and discusses each method's strengths and weak-

PMF (Environmental Protection Agency positive matrix fac- nesses. The error estimation methods described in this work
torization, which is built on ME-2) are widely used for nu- p5y6 peen implemented in version 5.0 of EPA PMF, to be re-

merous applications, particularly for analyses of ambient aifqased in 2013. Sefetp:/Mmww.epa.gov/heasd/research/pmf.
quality data (Poirot et al., 2001; Reff et al., 2007; Kim and 1 and Norris et al. (2008) for detalils.

Hopke, 2007; Engel-Cox and Weber, 2007; Norris et al.,

2008; Ke et al., 2008; Ulbrich et al., 2009; Brown et al., 1.2 Two interpretations of Eq. (1)

2012). Each tool performs a positive matrix factorization

(PMF) that decomposes a matrix of speciated sample dat&quation (1) may be employed in two ways. One is when

into two matrices — factor contributions and factor profiles. F andG contain known values. This approach is used when

A speciated data set may be viewed as a data mxtrof generating simulated data that mimic real measurements. In
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this case, thalata errorse;; are pseudorandom values, of-  Uncertainty in PMF analyses arises from three main
ten generated from normal distributions with mean zero andcauses, as described below: (1) random errors in data values;
standard deviation equal $g;. Thesedata uncertainties;; (2) rotational ambiguity; and (3) modeling errors.
are known values specified in a simulation. Multiplyikg Random errors in data values are those that arise from
and G and addingE producesX, the simulated matrix of the measurement process, even if measurement systems have
measurements to be modeled by PMF. Fitted valuels &ord been properly calibrated so that no systematic bias is present.
G can then be compared to the true values that were used tall measured data contain random errors — measure some-
simulateX. thing twice and two different values will be obtained.
Alternatively, Eq. (1) may be employed when the mea- Uncertainty caused by rotational ambiguity is specific to
sured (or simulated) matriX is known and the matrix of factor analytic models. Rotational ambiguity arises because
estimated data uncertainties; has been estimated. This ap- bilinear factor analytic models are ill-posed, meaning there
proach is used to determine the values of unknown matricesre multiple solutions @, F) with the same value oD
F andG. In simulations, data uncertaintiag; may be set  (Henry, 1987). In some special cases, a rotationally unique
equal to uncertainties;. When analyzing real data, data un- solution is possible if there are a sufficient number of zero
certaintiesy;; are estimated by the users so thgtapprox-  values in true matrice§ andF (Anderson, 1984). In analyt-
imate the unknown true uncertaintigs. In some situations, ical chemistry (AC), presence of zero values is often known
adjusted data uncertaintiesre used. For example, to down- a priori. For example in chromatograms, each component
weight specieg, one may set;; ~ 3s;; for a chosen species (“peak”) shape begins with a number of zero values. Non-

j. zero values are not possible at a large distance before the
peak proper. In comparison, presence of zero values in true
1.3 Details of the PMF model factors is less predictable in environmental measurements. In

most cases, some rotational ambiguity remains in environ-
In PMF, factor elements are constrained so that no samplenental modeling.
can have a significantly negative factor contribution. Also, The problem of rotations has been discussed in Paatero
PMF allows each data value to be |nd|V|dua”y Welghted et al. (2002) and recenﬂy in more detail in Paatero and
This feature allows analysts to adjust the influence of eaCh—|Opke (2009) The present work offers numerical methods
data point, depending on the confidence in the measuremenfor estimating the rotational non-uniqueness for any given
For example, data below detection limit can be retained forgata set where unknown numbers of zero values may be
use in the model with the associated Uncertainty adjusted t@resent in true factors. However, the present work does
give these data points less influence on the solution than datggt explicitly consider the effect of inserting additional nu-
above the detection limit. The PMF solution minimizes the merical constraints on factorS, as suggested by Paatero and
object functionQ (Eq. 2) based upon the estimated data un-Hopke (2009) and demonstrated by Amato et al. (2009) and
certainties (or adjusted data uncertaintieg)and with factor  phy Amato and Hopke (2012).
matrix elements;; and fi; subject to non-negativity con-  The extent of possible rotations is limited by non-
straints. negativity constraints imposed on the solution and by the
number of zero values present in the fitec&ndF (Paatero
et al., 2002). With a small number of zero values, this uncer-
k @) tainty may dominate other typgs of uncertainty. In extreme
uij cases, presence of large rotations may prevent well-defined
modeling altogether, as discussed later in detail. With larger
numbers of zero values, rotations may be present in small

ME-2 performs iterations via the conjugate gradient algo-amounts, so that a useful albeit non-unique solution is possi-

p 2
nom | Xij T Z gikfk,/
=1

0= >

i=1j=1

rithm until convergence to a minimui@ value. ble. Sometimes, rotational uniqgueness may be observed, es-
pecially if only a small number of factors is fitted. It is seen
1.4 Origins of uncertainty in PMF analyses that measurements should be arranged so that variation be-

tween individual samples is as large as possible, e.g., mak-
F1 andG! are used to denote a solution of Eq. (1) obtaineding sure that measurements are performed during different
by solving Eq. (2). Uncertainty analysis of PMF modeling weather patterns. Note that the terms “rotational ambigu-
attempts to estimate a range or interval of plausible valuesty” and “rotational uncertainty” are used here to represent
around each element of mati¢. This interval is estimated ~ slightly different ideas. “Rotational ambiguity” denotes the
so that with a high probability it will include the true value of concept that multiple mathematical solutions can yield the
F. The ends of the range will be calleghper and lower in-  same or practically the same fit (one with almost ident@al
terval estimatesf F or simplyupper and lower estimatex values). “Rotational uncertainty” is used when discussing the
F. The uncertainty analysis must take into account all aspectamount of rotational ambiguity in a more quantitative sense.
of solving Eq. (2), such as non-negativity constraints.
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Modeling errors are those caused by using a model thatis 4.5 Significance of differentQ values when comparing
simplification of the true physical-chemical phenomena. The alternative models of a data set
PMF model describes what is believed to happen in nature.

How_eve_r, modeling errors can arise if_the real process in NaThe difference ofQ values obtained from alternative PMF
ture is different from what is captured in Eq (1). Some exam-mqels is often used as a criterion for rejecting models with
ples include vgnauon of sourcg proﬂle_s with t|me (e.q., pe- “too high” Q values. Examples include comparison of mod-
cause of chemical transformations during transit or chemicals yith different numbers of factors and rejection of compet-
variations in the source |t§elf), incorrectly spegﬁed numbering solutions obtained from repeated random starts of PMF
of factorsp, incorrectly estimated data uncertaintigs con-  odeling. In error estimation) values are used for simi-
tamination of sgmples, correlated (i.e., non-randor_n O SYStar purposes: acceptable solutions must not have “too high”
tematic) errors in data values, and weak or sporadic SOUrceg) yalues. The obvious question is: how high is “too high”?
that cannot be represented by dedicated factors. Adjustmenigntortunately, this question does not have a clear answer. If
to measured data may also introduce modeling error. For Xghere were absolutely no modeling errors, then a change in
ample, if data below detection level are censored, then the reép (dQ) by, for example, 20 units might be considered “too
sulting matrixX will not be in relationship to matricéS and  pigh» "and this limit would be independent of the number of
F as stipulated by Eg. (1). Wrong decisions about outlier staata values in the data set. In real life, modeling errors com-
tus may also introduce modeling error, as pointed out by arhjicate the situation because modeling errors differ in dif-
anonymous reviewer. For example, in difficult snow condi- ferent types of measurements. Even in one type of measure-
t!ons, _h|g'hway traffic would be non-gmstent and hence, traf'ment, modeling errors may depend on details of individual
fic emissions unusually low. Such high-snow samples wouldgyperimental situations. It may be assumed that the effect of
be valuable for determining correct rotations, especially formadeling errors is dependent on the number of data values. It
the traffic-emissions factor. However, such high-snow saM-appears likely that the variation i@ values caused by mod-

ples may appear to be outliers. If they are downweighted agjing errors is proportional to the number of data values and
outliers, then a serious modeling error is made, leading tg,ance also proportional 10 values.

loss of critical information. - . It follows that no a priori percentage value may be given
Effects of modeling errors are difficult to estimate becauses, assessing variations @f values. In some data, a signifi-

the causes of such errors generally cannot be explicitly forant variation ofQ might be 1%. In other data, it might be
mulated. As emphasized by an anonymous reviewer, itis €Xg o4 or 0.5%. It seems that an understanding of the signifi-
pected that in environmental data, modeling errors are muchance ofp variations must be based on empirical evidence.
more significant than in AC measurements. In a follow-Up |t i5 crycial that such evidence be relevant to the case at hand.
paper, to be submitted soon, we apply the error estimationryys for instance, observations @fvariations in speciated
methods described in this work to three real data sets whergerosol measurements may not be applicable to analysis of
modeling errors may be present. _ aerosol mass spectra, water quality data, or other data sets.
It is noted that other definitions of modeling error have g, example, observed variations@nfrom displacement of
been used in literature. For example, Tauler (2001) includeg,ctor elements (DISP) for reasonable models of the simu-
rotational ambiguity with modeling error. _ lated data presented later in this paper appear not to be sig-
The relative importance of the three causes of uncertaintyyificant for percentages less than 0.1 %. This percentage may
depends on the size of the data set being modeled. As the sizg may not be appropriate when analyzing actual ambient
of the data set increases, the significance of random errorg easurements, such as speciated aerosol data, aerosol mass
decreases, due to the law of large nhumbers; the significancgpectra, water quality data, human exposure data, or other
of rotational uncertainty also decreases because the numbvg}ypesl Experience applying the error methods described in
of zero entries in tru& factors often increases. On the other ihis work to various types of data and numerous data sets is

hand, effects of non-random modeling errors are not likely toyeqyired before it will be known if a fixed percentage is real-
decrease with increasing size because the law of large numgic for multiple or all types of data.

bers does not apply to non-random disturbances. Thus, the

relative significance of modeling errors may be assumed to ) ) o

be highest in the largest data sets. Large data sets may, how:6 Overview of uncertainty estimation methods

ever, contain enough information so that their models may

be enhanced to include the real data’s problematic featuresviany uncertainty estimation methods base their estimates

which cannot be modeled with a small data set. on analyses of a number perturbed versionsf the orig-
inal data set. Each perturbed data set is analyzed in a similar
way as the original data. The collection of all perturbed re-
sults is then used to derive uncertainty estimates for the orig-
inal unperturbed results. Using a collection of results allows
analysts to review a distribution for each factor element to
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evaluate the stability of solutions instead of having to rely onthe reliability of the zero values. If the zero values are erro-
a single point estimate. neous or are not expected to recur, then the large variation is
Pseudorandom (or random) numbers are needed for gercorrect. If the zero values are reliable, then the large variation
eration of perturbed versions of the data set. For this reasoris not correct. With regard to modeling errors, it is not known
the generic term “Monte Carlo methods” is sometimes usechow well BS captures the uncertainty from this cause.
for the methods that generate perturbed versions of the data Displacement analysi$DISP) obtains uncertainty esti-
set. In particular, noise insertion (see below) might be calledmates for individual variables in fitteB by repeatedly fit-
“Monte Carlo”. ting the model such that each variable in turn is perturbed
One of the classical methods for estimating uncertainty is(displaced) from its fitted value. Each displacement is ex-
error propagation which originates in astronomy. For this tended until the object functio® increases by a maximum
method, data uncertainties (i.e., standard deviations of obserllowed change i® (dQ™®¥). Each such extended displace-
vations) are assumed known. Then the covariance matrix oment is interpreted as the upper or lower interval estimate of
computed results is obtained by applying the well-known er-the perturbed variable. DISP captures the uncertainty caused
ror propagation formula that is based on a linear approximaby data errors, provided that the user-provided data uncer-
tion around the measured values. No perturbed versions ar@inties are correct for the data and they obey the assump-
generated in classical error propagatibioise insertiorisa  tions of the PMF model. DISP uncertainty estimates under-
computation-intensive variation of the classical error propa-estimate real uncertainties if data errors are correlated, mod-
gation method. In this method, a numbéy)(of perturbed  eling errors are present, or actual data errors exceed assumed
versions of the original data set are generated in the follow-data uncertainties. On the other hand, DISP uncertainty esti-
ing way: each perturbed version is of the same dimensionsnates overestimate real uncertainties if actual data errors are
as the original data set. In each version, each original datamaller than those assumed. By design, DISP captures the
value is perturbed by a pseudorandom artificial additive noisauncertainty from rotational ambiguity. As with other meth-
value whose standard deviation equals the estimated unceeds, it is not known how well DISP captures uncertainty from
tainty of the data value to be perturbed. Each perturbed vermodeling errors.
sion is modeled similarly as the original data set, creating
a collection ofb, perturbed solutions. The variances and co-
variances of the distribution of perturbed results are then use
as the unqertainty e.s'Fimates of original gnpertu.rbe.d resyltsz_l Uncertainty of factor analytic results in analytical
In comparison to original error propagation, noise insertion ;
. 9T chemistry
has the advantage that no linearization is needed and non-

negativity constraints and other imposed constraints are cofqst prior work in assessing uncertainties of factor analytic
rectly hand!ed. Error propagation and nois_e insertion accountegits has been carried out with methods applied in AC (an-
for uncertainty caused by random errors in the data but nogytical chemistry). Unfortunately, most of these methods are
for uncertainty caused by rotational ambiguity or modeling ot applicable for use in environmental source apportion-
errors. ment (ESA). One reason for this is that data uncertainties
Bootstrap analysi¢BS) perturbs the original data set by p|ay a lesser role in AC because chromatogram data are usu-
resampling In each perturbed oesampledversion, some a1y more precise than ESA data. A second reason is that
randomly chosen rows of the original matrix occur multiple AC data are more structured than ESA data. For example, in
times, while other rows do not occur at all. Each resampled:hromatograms, if the data have been corrected to baseline,
data set is decomposed into profile and contribution matrivhen each true component may be assumed to have a num-
ces using PMF (Norris et al., 2008). BS has an advantagger of consecutive zero values preceding the peak. The first
of not depending on the average level of error estimates ofzc resuits that are applicable are due to Gemperline (1999).
data values: if all data error estimates are scaled by an afiy, this work, structural features typical of AC are not uti-
bitrary coefficientr, BS results will stay the same, provided |ize. instead, rotations of the computgcandF factors are
that outlier reweighting does not induce a change. Uncertaingonsidered under feasibility constraints, typically under non-
ties estimated by BS may be too small or too large if sig-negativity ofG andF. By using non-linear optimization al-
nificant correlation of data errors is not properly handled bygorithms, two “extreme” rotation matricds are determined
techniques such as blocked resampling. BS is not specificallyyr each factok of the model. For each factér those matri-
designed to explore rotational ambiguity, although some ro-ceg minimize and maximize the fractiof of matrix X that
tational uncertainty is captured in the analysis of the resamjg explained by factok.
ples. Since rotational uncertainty is limited by the number |4 order to discuss the method of Gemperline, Eq. (1) is
of zero values irG andF, and since the resampling for BS \yritten in the following form (Eq. 3):
may omit some or all of th& zero values, BS may estimate
a large variation in a PMF solution, especially in small datay _ s, g
sets. Whether this large variation is appropriate depends on

8 Previous work

P P
gefi+E=) Xi+E. A3)
k=1 =1
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Here, g, denotes columt of G, f; denotes row of F, ability of the model to reconstruct the factors initially found
andX; = gi f is the part of data matriX that is explained  when modeling the original data set. On average, for all fac-
by factork. The non-linear optimization problem for factor  tors, the relative standard deviation increased from 7% to
is the following (Eqg. 4): 25 % for the variables identifying the factors, when decreas-
_ 0 0 ing the data set from 85 % to 33 % of the samples.
GivenG-andF", The cross-validation method of Hedberg et al. (2005) is
defineG = G°T andF = Tk—1|:0, conceptually similar to the bootstrap method used in present
determineT, suchthaG > 0, F > 0, and ) vyork. quevgr, they used cros;—valldatlon only fqr guallta—
tive confirmation of PMF modeling, not for determining un-

norm(X;) = norm(gy f ) ismaximizedor minimized. certainty limits.

The vectorsg; and f; obtained by maximization consti- In literature, atmospheric scientists have used the Fpeak
tute the upper interval estimates for factoiSimilarly, min- rotational tool of program PMF2 to understand rotational
imization produces lower interval estimates. uncertainty of the solution. This practice provides only a

Tauler and co-workers have continued to develop thelower limit for rotational uncertainty.' Spec!fically, varying
method originated by Gemperline (Tauler, 2001: Abdollahi et th€ Fpeak parameter traces a one-dimensional path through
al., 2009: Jaumot and Tauler, 2010). The last two referencef® rotationally accessible domain. In most cases, though,
contain useful literature references to other work in this field. he rotationally accessible domain is many-dimensional; for
In the 2009 paper, an illustrative example of the optimizationtN€Se cases, Fpeak will demonstrate only a lower limit for
task is presented for the two-factor cage< 2). In the origi- rotatlorjal uncgrtalnty (Paater'o gt al., 2092). Rotanongl error
nal Gemperline papesum of elementsas used as theorm analysis requires an upper limit, and this is not achievable
in Eq. (4). In later papers, other norms have also been usedY the Fpeak of program PMF-2 nor by the simpler one-
such as the Frobenius norm (square root of sum of squaresparameter Fpeak of program ME-2. DISP and bootstrapping
It appears that slightly different results may be obtained with€nhanced with DISP (BS-DISP) provide such upper limits.
different norms. Also, scaling of rows and columns of matrix
X may influence the obtained uncertainty limits.

There is a fundamental difference between the presen8 Methodology
work and the works of Gemperline and Tauler (G-T). The ) ] o ]

G-T limits for factork represent values that might be ob- 3-1 Overview of uncertainty estimation methods in
tained by factok in one particular solution of the factor ana- ME-2 and EPA PMF

Iytic problem. Our limits, on the other hand, represent limits . . ) . .
of values of individual factor elements — these limits are de-1"€€ uncertainty estimation methods are now available in

termined individually, without regard to each other. Thus, aME-2 and EPA PMF: bootstrapping (BS) Odcontrolled -
collection of upper-interval estimate values of factarom-  displacement of factor elements (DISP), and bootstrapping
puted by one of our methods produces a hyperbox that mafnhanced with DISP (BS-DISP). BS is a typical statistical
contain points that are not feasible solutions of the problem.memOd for estlmatlng }Jncertalnty. As !rr'\plemented, BS in-
It follows that our limits are expected to be wider than the VOIVes resampling the input data set, fitting PMF model pa-
G-T limits. Although the two methods produce different re- rameters for this resampled data set, and then using the vari-
sults, neither of them is wrong because they solve differenflioNS among these resampled or *bootstrapped” fitted pro-

mathematical problems. files to estimate the uncertainty of the initial PMF solution.
BS has been available in EPA PMF v1.1 and all subsequent
2.2 Uncertainty of factor analytic results in versions, and many publications have reported uncertainty
environmental research estimates from EPA PMF.

Since BS does not explicitly include rotational ambigu-
The earliest contribution towards understanding rotationality, DISP was developed. DISP intervals, however, are di-
ambiguity in factor analysis is probably by Henry (1987). rectly impacted by inaccuracies in data uncertainties. Thus, a
In this work, the importance of rotational uncertainty is em- method combining BS’s strength with data errors and DISP’s
phasized, while no methods are presented for deriving uncerstrength with rotational uncertainty was developed into the
tainty limits. Later, Henry (1997) developed Unmix, a model method BS-DISP. Details of the DISP and BS-DISP meth-
for solving Eq. (1) subject to non-negativity constraints. In- ods are presented below. Since BS is a standard statistical
cluded with the Unmix model are estimates of uncertainty inmethod, descriptions of its theoretical foundations are left to
factor profiles, estimates derived using block bootstrapping.textbooks (e.g., Efron and Tibshirani, 1993).

Hedberg et al. (2005) tested the robustness of the PMF The goal of DISP is to provide uncertainty estimates
model with a cross-validation method. They analyzed ran-in such cases where data errors obey the assumptions of
domly reduced data sets that included 85 %, 70 %, 50 %, anthe PMF model (i.e., uncorrelated data errors with known
33% of the original samples. In this way they tested thedata uncertainties) and there are no modeling errors. DISP
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uncertainty estimates contain good estimates of rotational Superscripts are used for denoting different variants of a
uncertainty as demonstrated with synthetic data sets (dismatrix. As an example,G°, F% and G?, F1) may denote
cussed in Sect. 4). However, DISP uncertainty estimates untwo different solutions of a PMF problem. Usuallg{, F°)
derestimate real uncertainties if data errors are correlatedjenotes the solution obtained by PMF when no displace-
modeling errors are present, or actual data errors exceed aments are applied. Individual factor elements are then de-
sumed data uncertainties. In order to obtain more reliable esroted by using both subscripts and superscripts; for example,
timation of uncertainty due to data errors, a BS or BS-DISPgS, and £ may denote the elements of matrica%$andFP.
analysis may additionally be performed and results compared For DIéP analysed; factor elements are chosen, one by
to those from DISP. BS or BS-DISP are also necessary techene, to be displaced. The chosen element is denotefi by
nigues for estimating uncertainty for species that are downso thatt denotes the factor anddenotes the variable. Usu-
weighted in the PMF analysis (i.e., species for which theally, only a subset of alF elements is chosen to be displaced.
adjusted data uncertainty values have intentionally been inDetails of why and how to choose are discussed later.
creased to reduce their influence in the minimizatiorDof The DISP approach is based on the increase of the PMF
For such species, uncertainties estimated by DISP are knowsum-of-squares functio®. The function may be the basic

to be too large. BS-DISP is a combination of bootstrap andQ defined as follows by Eqg. (5):

displacement methods in which each resampled data set is

decomposed into profile and contribution matrices and then

2
n o m p
fitted elements ifr are displaced. The collection of all results Q= an'(?Z Z ((xij - Zgik fkj)/“z’i) ) ®)
from the process of resampling, decomposing, and displac- i=1j=1 k=1

ing is then summarized to derive uncertainty estimates. Inyhere all elements o& andF have been determined so as to
tuitively, this process may be viewed as follows: each BS re-achieve best possible fit (i.e., lowest possible value of sum of
sample results in one solution that is randomly located withingguares). However, the functighmay also be any enhanced
the rotationally accessible space. Then, the DISP analysigorm of the object function, such as a robust sum obtained
determines an approximation for the rotationally accessibleyy reweighting of outlying data values or a sum enhanced
space around that solution. Taken together, all the approxpy penalty terms like those used for pulling chosen factor
imations of rotationally accessible spaces for randomly lo-gjlements towards preferred values. (In special cases, some
cated solutions represent both the random uncertainty and thelements ofG and/orF may be constrained by the user so

rotational uncertainty for the modeled solution to the com-that these elements are not variable at all. Such elements are
plete data set. Since both the BS and DISP phases exploigot considered variable in the minimization.)

the rotationally accessible space, the DISP phase may be ex- The notation Q°Pt denotes the value of function for
ecuted with weaker displacements than when only DISP ishe PME model that is about to be processed by DISP
used to estimate uncertainties. As a result, BS-DISP is lesgp|Sped”). For pure DISPQ is thus theQ value ob-
sensitive to inaccuracies in data uncertainties. tained in the base case PMF run. For BS-DI&P is the

In principle, BS-DISP should determine the rotational un- ¢ value obtained in PMF modeling of the current resampled
certainty well. However, data sets with a scarcityattion-  gata set. In both case@°Pt represents the solution of Ed)(
blocking zero valuesn G factors pose the same problem j e  a minimum with respect to all elements of factor matri-
for BS-DISP as with classical BS. Specifically for resamplescesG andE. The numerical values op Pt from base case
omitting some or all of the zero values, large rotations areang goPt from any of the resampled cases have no obvious
possible. To reduce the impact of these large rotations, thee|ationship, usually they are different and either one may be
5th percentile of minimum interval estimates and 95th per-|arger. The notatiorQ (fxj =d) denotes the smallest sum-
Fe”t'l? Qf maximum mtervgl estimates may be used. There igf-squares value obtained when constraining the indicated
insufficient practical experience with varied data sets to knowfactor fi; to a fixed feasible valué and minimizing over
whether using these, or any, percentiles adequately addressgg otherG andF factor elements. Finally, the increase®f
this issue. is denoted by Eg. (6):

3.2 Mathematical approach in DISP do(fiy =d) = Q(fij=d)— Q™ (6)

This section describes the computations for DISP, whether The essence of DISP is to find the largest and smallest
DISP is performed alone or as the second phase of BS-DISReasible valueg™ andd™" such that

Computations are first described for well-defined cases, ma max

those for which factors do not change so much after dis-4Q (fis =dmin><) = deaX (7)
placement that they exchange identities (“factor swapping").dQ Jej=d ) =dQ™,

Later, computations are presented for the case complicated,are ®©™is a predetermined maximum allowable change
by factor swapping. in 0 (Eq. 7). The valueg™® andd™" can be determined
by using any available non-linear optimization algorithm. In
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this work, the ME-2 program is used under control of an en-obtained using displacement step lengths and gradients at
hanced script. _ each displaced point. This method is approximate and be-

The obtained valueg™®* and 4™" respectively repre- comes more accurate if a larger number of intermediate dis-
sent upper and lower interval estimates for factor elemenplacements are used for reaching the final displacemient
fxj- The limit value d2™® is chosen by the user. In prac- The quality of approximation has been observed in cases
tice, the DISP approach is implemented so that estimatiorwhere no dynamic reweighting is present so that actual
is performed using a set of four@"® values chosen by values may be used for computing non-approximapevdl-
the user. Thus four pairs of upper and lower interval esti-ues. The sequences created automatically by the current im-
mates are obtained for each displaced factor element. A typiplementation of DISP appear to be a satisfactory compromise
cal set of d2™M** values would b4, 8, 16,32} for DISP and  between computational efficiency and accuracy of approxi-
{0.5,1, 2,4} for BS-DISP. Larger @™M® values usually pro- mation. Determination of the sequence of displaced values
duce wider uncertainty intervals which in turn usually have dy is based on various heuristic principles designed to bal-
higher probabilities of including true unknown values. How- ance between too-long displacements (indicated by sudden
ever, wider intervals may be so wide that they cannot sup-increase of gradient and@or by reversal of gradient) and
port meaningful conclusions. For DISP, analogy with cus-too-short — and hence inefficient — displacements. If a dis-
tomary linear least squares models suggests that executingacement is found to be too long, it is rejected and a shorter
with dQM&X = 4 results in interval estimates that are minima displacement is attempted instead.
for the true uncertainty estimates, provided the user-specified The sequence of displaced values does not usually hit the
data uncertainties are reasonable for the data (see the Suppldesired value for @, namely d =dQ™& as required by
ment for additional discussion). If a minimum interval esti- the definition of the uncertainty interval in Eq. (7). As shown
mate is sufficient to support or refute a postulated hypothesisin Eq. (9), the sequence generally ends so that
then no additional uncertainty analysis is warranted.

The choice of @™ values will depend on assumed mag- dQ (fij = d:—1) < dQ™ 9)
nitudes of modeling errors, as discussed in Sect. 1.5. Reliable ¢¢ (fij =d;) > dQ™ (10)
estimates of modeling errors are usually not available. It fol-
lows that d2™#* values cannot be deduced from statistical |n order to obtain the desired critical valug® or 4™"),

theory. Experimental evidence must be used. an interpolation is performed. It is assumed that the gradient
i i changes linearly in the interval{_ 1 < d < d;). With this as-
3.3 Implementation of DISP in ME-2 and EPA PMF sumption, the valug™ for displacing up may be computed

Equations (5) to (7) would lead to a straightforward and rea-(Eq' 10) so that

sonably efficient algorithm. However, they cannot be applied (fkj _ dmaﬁ ~ dQMax (11)
as such because of the automatic dynamic reweighting that is

used for several purposes, most importantly for robust esti- gimilarly, when displacing down, the valu™" is ob-
mation, in PMF. With such reweighting, the numerical value gined so that (Eq. 11)

of Q changes whenever the weights are recomputed. Such

changes ofQ are not directly related to changes in the fit. 4 (fk' _ dmin) ~ dQm (12)
Hence, such changes cannot be used as a basis of uncertainty !
estimation. These interpolations are computed separately for each of

As a substitute, the DISP approach estimat@sv@lues e four gpmaX values. Using the interpolated displacement
using a partial derivative (cgradieny of Q with respect 10 \51yes and factor matrices computed at each displacement,

the displaced variable (Eq. 8): it is possible to also interpolate the values of factor matrices

d )= G and F so that the interpolated values correspond to the
0 (fk/ = ) = . . .
solution of Eq. (7). In current implementation, only elements
< 00 00 of factor matrixF are interpolated, however.
05> (dy—dv1) | —= , hat disol

= Ofij Fij=dy dfij fii=dua It is to be noted that displacements do not proceed past
. lower or upper constraints for each displaced factor element.
=05 (dv —dv-1) (grad(fi; = dv) +grad( fi; = dv-1)) Whenever the constraint is violated, the last displacement is
=1 truncated so that it exactly corresponds to the constraint for

wheredo = f/?j and d. =d. 8) the variable. If the @ at the constraint value does not exceed

the chosen @M then the constraint value is used as the in-
This definition is based on a sequence afisplaced val-  terval estimate of the variable. For this reason, lower interval
uesdy, generated automatically by the algorithm. The modelestimates of factor elements may appear as exactly zero.
is fitted using each displaced value in turn, and the corre-
sponding gradient values are saved. The progy\alue is
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3.4 Active and passive estimation with DISP all intermediate solutions must be considered as alternative

and BS-DISP solutions. In such a case, the modeling supports a many-
dimensional infinite population of solutions where it is not

The intervals obtained by displacing a factor elemgntin- possible to single out one of these solutions as “the solu-

clude both rotational ambiguity and uncertainty due to as-tion,” hence the terminology “not-well-defined (NWD) so-
sumed data uncertainties. In order to speed up computatiolution.” Often, factor swaps occur only within a subset of all
of BS-DISP, itis preferable to displace a small subset dfall factors. Then the modeling may provide useful information
factor elements, thactive elementsf F. Usually, one would  about those factors that do not participate in swaps. DISP
displace those variables important for factor identification orand BS-DISP analyses provide diagnostic output to aid in
variables key to a particular question. the identification of factors involved with swapping.

Itis possible to estimate uncertainty intervals for those fac- The significance of factor swaps from NWD solutions
tor elements that are not displaced. Intervals for uadsive  came as a surprise. There is little practical knowledge about
factor elements are obtained as a by-product during displacethese situations, and therefore conclusions in this section are
ments of active elements. As described, all elements of of preliminary nature.
are obtained for each (interpolated) displacement that solves To detect factor swaps, consider two solutions: the origi-
Eq. (7). The DISP algorithm finds largest and smallest val-nal solution G°, F®) and the transformed solutioG{, F1).
ues fk’}?ax and fk'}?i” of each passive elemerfi; amongall Testing for swaps may be based®matrices or orF matri-
interpolated= matrices that occur while displacing all active ces. In the case of complete swaps, testing using either matrix
elements. These extreme values constipdssive interval  produces identical conclusions. In borderline cases where
estimatesor the passive (non-displaceB)factor elements.  factors change significantly but a complete swap does not oc-

If a sufficient number oF elements are displaced actively, cur, theG andF tests are not fully equivalent. Equations (12)
then passive interval estimates reflect rotational ambiguitythrough (15) are given for testing matricesF tests are ob-
well for the remaining passive elements. In contrast, passiveained by replacing with F in the equations. Two methods
interval estimates do not contain uncertainty due to assumedre available for detecting factor swaps: one based on cross
data uncertainties of the passive factor elements. In BS-DISR;orrelations and the other based on regression.
assumed data uncertainties play a minor role because uncer- For cross correlations, “uncentered” correlation coefficient
tainty caused by data noise is mainly estimated by resamr between two vectorg andv is defined by
pling. Thus passive estimation is useful in BS-DISP, pro-
vided that the number of active elements is large enough that — corru, v) = ———.
rotationally accessible space is exhaustively visited. In DISP, Nu'uv'y
however, passive interval estimates are less useful because s giffers from Pearson correlation, which is centered
they ignore data uncertainties of passive factor elements. Fo,

; : X And is commonly used both in social and biological sciences
this reason, in pure DISP computations one would prefer to

_ and also in chemistry and engineering.
displace all factor elements.
Downweighted variables create a special problem in DISPDefinecenteredvariables t =u—u v=v—1v
computations. If such variables are displaced, their obtained. ' (14)

L . . = COIfpearsoflt, V) = ———
active interval estimates will be much too long; because the " v

assumed data uncertainties are much too large, using the de- Because Pearson correlations can be meaningless if some

maxX limi i i H
fault dQ™=* limits will result in very large residuals for the factors are nearly constant, uncentered correlations are used

dhowrc;we|ghte_dhva(rj|ablgsbl'l' he best compr)]romls? seems to bfo detect factor swaps. Specifically, a matrix of correlation
that downweighted variables are never chosen for active estiz o gjoiants s computed, so that each matrix element is the

ma_tlobrll N D.I"SPbor.m BS—DIS_P.t I ncit ai.tlve:[ dO\{verelglhtf[a: tcorrelation coefficient between one column@? and one
variables will obtain passive interval estimates, intervals that,, nn otG1. A factor swap is seen in this correlation ma-

may be too short from DISP but satisfactory from BS-DISP. trix so that two or more diagonal entries are small, while cor-

responding off-diagonal entries ax€l.
In the regression approach, a transformation matrixgor
gression matrix T is computed for approximatinG! by a

. L . transformedsP. The approximation is defined by
Starting from one good solution, it may be possible to trans-

form the solution gradually, without significant increase of G! = G°T + E ~ G°T, (15)
0, so that factor identities change. In the extreme case,

factors may change so much that they exchange identitiegvhere matrixT is obtained from

This is called “factor swap.” A solution with swapped fac- S P

tors represents the same physical model as the original sot = (G G ) G7G. (16)
lution. However, the presence of factor swaps means that

u'v

(13)

53

3.5 Factor swaps in DISP from not-well-defined
solutions
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It is assumed thaB? is of full column rank. If there are  Swas specified by two equations to evaluate impacts of stan-
no factor swapsT is approximately diagonal, so that off- dard deviations on uncertainty estimates. Case 1 assumed
diagonal elements are small positive and negative valuessmall errors such that; = 0.05¢;;. Case 2 assumed realis-
With a factor swap, the rows af become permuted so that tic errors such that;; = z;¢;;, wherez; varied from a small
at least two diagonal elements change positions with smallevalue of 0.05 for well-measured species to a value of 1.2 for

off-diagonal elements. species with large measurement errors. Specifically, values
for z; are Ca0.2; Cl0.5; Cu 0.2; EC0.12; Fe 0.1; K0.1; Mn
3.6 Decrease inQ with DISP 0.15; Ni 1.25; OC 0.1; Pb 0.5; PM 0.08; S 0.05; Se 0.4;

Si0.35; Ti0.9; and Zn 0.13. For this work, a simplifying as-
Occasionally displacements cause a significant decrease sumption was made that detection limits are approximately
0, typically by tens or even hundreds of units. If such a de-zero.
crease occurs in DISP analysis or when analyzing the com- The object functionQ in Eq. (2) requires user-provided
plete (not resampled) data in BS-DISP, it means that the basdata uncertainties;;. These were set equal to the data un-
case solution was in fact not a global minimum, although it certainties used in deriving the simulated values, namely
was assumed to be such. This is a fatal error and invalidates;; = s;;. In reality, the user rarely knows the exact amount
the DISP analysis. It is necessary to go back to solving theof uncertainty in the actual data. To simulate this discrep-
original PMF model again, perhaps using many more randonmancy, one additional case was modeled. For Case 3, the
starts, to find the global minimum. Then the DISP analysisdata were generated using the small errors; of 0.05¢;;,
may be continued. but the uncertainties given for Equation 2 were derived by

Decrease of) may also occur when performing displace- u;; = 0.001+ 0.03x;;. Case 3 contained another intentional

ments in the analysis of BS-DISP resamples. Such a decreaseconsistency: a total of 5 factors were fitted, one more than
indicates that resampling created a new minimum, differentwere used to generate the data.
from the original base case solution. In one case, the ini- Data sets comprised either 50 or 261 samples. Mod-
tial not-displaced fit of this BS resample did not succeedeling was done through direct interaction with ME-2 via
in finding the new global minimum, while the displacement PMF_bs_6f1.ini and me2gfP4_1345c4.exe, rather than EPA
“nudged” the solution towards the global minimum. In such a PMF. The lower limit allowed for fitteds factor elements
case, it is best to reject the resample because no meaningfulas —0.10, error model-12 was used, and the block size
error limits can be obtained. The overall BS-DISP analysisfor bootstrapping was 1. For each data set analyzed, 15 base
remains valid, even if a few resamples get rejected, thougttase runs were executed to determine a solution presumably
currently there is no way to quantify the number of rejectionsassociated with the global minimum fgr.
that will yield meaningful results.

3.8 Computational workload in different methods
3.7 Development and modeling of synthetic data sets

Rough estimates of computational workload (and hence, of
Simulated data were designed to demonstrate the three urcomputing times) are given in this section. The computing
certainty estimation methods. The data were generated ugead (=time) of one PMF modeling, using random starting
ing partial results from a PMF application to BNIspeci-  values, is denoted by one time uni}.(Thus a typical initial
ated data collected in Phoenix (Eberly and Reff, 2007). Fittedmodeling run will amount to 20 Denote bya,; anda, the
g and f for four of seven factors from the previous PMF numbers of actively displaced elements in DISP and BS-
analysis were selected to represent the true matficasd DISP, respectively. Assume for this estimation a large data
F. Four factors — representing copper smelting, coal com-set, havingz = 30 andp = 10. In this examplegy; = mp =
bustion, aged sea salt, and soil — were used to simplify the300 if all F elements are selected to be active.
simulation and modeling. Some factors are small contribu- The number of bootstrap resamples (same for BS-only and
tors on average and others are large, a desired characterist8S-DISP) is denoted bg,. Assumeb, = 50. A BS-only run
for the simulated data. Specifically, average contributions areonsists usually df, instances of PMF modeling, each about
49 % for coal combustion, 2 % for aged sea salt, 9 % for cop-one unit. Thus BS-only amounts &g units. It is seen that a
per smelting, and 40 % for soil. Sixteen species are includedBS-only run, with 5@, is not much slower than the initial run
PM, 5, elemental carbon (EC), organic carbon (OC), Si, S,with 20¢.
Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Se, and Pb. Profiles forthe In a DISP process acting on one activelement, a vary-
four factors are included in the Supplemental, Table S1. ing number of PMF-like models are fitted starting from non-

To generate the simulated data, and F based on the random initial values. In easy cases, with well-defined solu-

four previously modeled factors were multiplied to fo@n  tions and no rotational ambiguity, the total load from one ac-
per notation described in Eq. (1). Error-containing valuestive F element may be just a few units. With lots of rotational
X were obtained from pseudorandom distributions of log-ambiguity and maybe NWD solutions, the load may be tens
normal variates with mea@ and standard deviatids) where  of units. As an example, it is assumed in this estimation that
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an average DISP process for one activelement amounts symmetric and displacement &f values may not be a reli-
to 10¢. With the assumed dimensions, the load of one com-able method. Rotational uncertainty@fvalues may perhaps
plete DISP run, with alF elements active, would amount be obtained as an extension of the current work in future.
to 10mp = 3000¢. This is about 150 times longer than the However, so far it is unclear how to combine rotatioal
initial run. Note that the actual results may vary by a large uncertainty with theG uncertainty caused by random errors
amount, depending on the rotational ambiguity and NWD of individual data values.
character of the model.

In a BS-DISP run, the number of DISP processds.is,.
If all F are active, this amounts th.a, = b, mp=15000 4 Results and discussion
DISP processes and an estimated workload ob, &=
10b, mp =150000C. Again, the actual workload may vary DISP, BS, and BS-DISP were run for each of the three syn-
by a large amount, at least by a factor of 3. In the other ex-thetic cases. For Cases 1 and 2, the correct number of factors,
treme, it might be possible to run with only, = 10, i.e.,  four, was fitted. For Case 3, five factors were fitted, one more
only oneF element active in each row. Then one would  than needed. Modeling resulted in fitted factors for Cases 1
have 500 DISP processes and a workload of 500bis is  and 2 of soil, salt, copper, and coal. For Case 3, with the
comparable to a complete DISP run with workload of 3000 , = 50 data set, the factors are soil, salt, copper, coal, and an

It is seen that computing times may easily grow impos- extra factor composed of some EC, OC, Ni, S, anchbEM
sibly long. Hence, even with DISP, it is useful to omit less in then = 261 data set the factors are soil, salt, copper, and
important species from active status. Also, one might keepcoal split into two pieces. No species were downweighted,
many elements of a weak factor inactive even if all elementsso all species were active in DISP. DISP results were gen-
of a strong factor are made active. With BS-DISP, it is nec-erated with @™ values of 4, 8, 15, 25, the values used in
essary to only have a small number of active elements. FOEPA PMF. For BS, factors were assigned to base case factors
this reason, BS-DISP will in most cases need support frompased on uncentered correlations of contributions (i.e., time
a separate DISP run (with an increased number of active elseries). A correlation of 0.80 or larger was required for the
ements) in order to get realistic estimates for those elementgssignment to be valid. Three hundred bootstraps were used
that cannot be active in BS-DISP. for this demonstration. For BS-DISP, only those species key

The authors have identified a method to improve the con4n factor identification were active in the DISP phase: Ca, Cl,
vergence rate of ME calculations which will help with the Cu, Fe, PMs, S, and Ti. BS-DISP was executed using 50
computational time in future. It is hoped that an order-of- BS runs and @™ values of 0.5, 1, 2 and 4, the values used
magnitude gain might be obtained. If this succeeds, it willin EPA PMF.
make more complete BS-DISP runs possible.

4.1 Analysis of synthetic data sets — diagnostics
3.9 Estimation of errors of factor matrix G
Table 1 summarizes the diagnostics reported by ME-2 for

This work only derives uncertainty estimatesfFofactor el-  data sets with 50 or 261 samples. For brevity, detailed dis-
ements. These uncertainty estimates apply also to estimatesission of these diagnostics is confined to the data sets with
of average pollution contribution from each factor because50 samples. Diagnostic results were similar for the 261-
all modeling is performed under the constraint that averagesample data set. To put decreaseg)ahto perspective, ro-
G values must be in unity for each factor. However, it would bustQ values for the data set with 50 samples were 500-600
also be important to obtain uncertainties of spedBival- for Cases 1 and 2 and 340 for Case 3. For the data set with
ues or functions o6 values such as the largest 10 %, week- 261 samples, robugd values were approximately 3000 for
day/weekend ratios, or seasonal contributions to aid in develCases 1 and 2 and 1800 for Case 3.
opment of air quality management strategies. Also, individ- Decrease in Q for DISPSmall decreases i@ (less than
ual G matrix errors would be very useful for future model 0.2) were reported for Cases 1 and 2, indicating that these
development since hybrid approaches that combine metecsolutions were global minima. A large value (greater than
rology and source contributions need to account for the un2.5) was reported for Case 3, providing the first indication
certainties. Unfortunately, estimation & errors could not  that there is something problematic with the modeling.
be included in this work plan for several reasons. Fiatn- Swapped Factors for DISHFor Cases 1 and 2, no factors
certainties were of higher priority because they are neededwapped for any values of@"®, indicating that these were
in order that factors may be more reliably identified with all well-defined PMF solutions. For Case 3, the copper factor
sources by showing which components were fitted confi-was not involved in swaps for the smallegp®** value, so
dently and which components were too uncertain to aid withDISP interval estimates for this factor were reliable and real-
identification. Second, it has not been possible to devise astic for the smallest displacement. All other factors of Case
straightforward method for estimatir® uncertainties. This 3 were involved with swaps for eactpd'® value, and there-
is so because the dimensional situation vitandF is not fore DISP cannot provide error estimates for these factors.
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Table 1. Summary of error estimation diagnostics by data set and case study.

DISP BS BS-DISP
Dataset Case study
Decrease in Factors involved in BS factor assignment to # Rejected BS Decrease in Factors involved in
0 swaps base case factors resamples 0 swaps
Case 1: small 0.1 No swaps. Copper: 99 % 0 0.2 No swaps.
errors Others: 100 %
N_gg Case2 realistic 0.0 No swaps. Salt: 67 % 12 out of 50, some due 21 No swaps for @MaX =
- errors Others: 99 %—100 % to swapping of factors, 0.5, minimal swaps (1-
some due to decreases 4) for each factor for
in Q. larger dpMaX,
Case 3: small 2.6 Factors 1-4 swap 1- Extra factor 5: 20 % 0 out of 10* 0.5 All factors involved in
errors; too many 8 times, numerous Others: 100 % swaps.
factors swaps for Factor 5
(extra).
Case 1: small 0.2 No swaps. All: 100 % 0 0.4 No swaps.
errors
N =261 Case 2: realistic 0.0 No swaps. Salt: 92 % 2 out of 50 due to de- 75 No swaps.
errors Others: 100 % creases inQ.
Case 3: small 28 No swaps for soil, Coal and extra Factor 5: 0 out of 10* 0.1 All factors involved in
errors; too many copper, salt, many 80% numerous swaps, usu-
factors swaps for coal and Others: 100 % ally hundreds of swaps.

extra factor.

* Used 10 bootstrap resamples because of the large number of factor swaps.

The extra factor (Factor 5) was involved in numerous swapswere involved in numerous swaps, indicating serious prob-

compared to the other factors, confirming that one too manyems with the modeling and warning that interval estimates

factors was modeled. When only four factors, the true num-should not be interpreted.

ber, were modeled for Case 3, the DISP diagnostics indicated

no factor swaps. 4.2 Analysis of synthetic data sets — interval estimate
Assigning BS Factors to Base Case Factdi bootstrap examples

factors were assigned to base case factors in 99-100 % of ev-

ery bootstrap resample for Case 1. For Case 2, the salt factdputput from DISP, BS, and BS-DISP includes interval esti-

was not consistently identified in 33 % of the resamples. Thismates for each element for each factor and diagnostics for

lack of reproducibility was likely caused by two compound- evaluating the trustworthiness of the interval estimates. As

ing issues. One was that the factor was composed of just ondiscussed in Sect. 3.2, estimates of intervals are calculated as

species, Cl, with a small amount of EC. The other was thaffollows: for DISP, endpoints of the uncertainty interval for a

the factor’s contributions were defined by a few large valuessPecificF factor element are the minimum value for that fac-

that could be excluded in BS resamples. For such resample$0r element observed in all displacements and the maximum

this factor could be incorporated into other factors. For Case/alue for that factor element observed in all displacements.

3, all factors were reproduced in every bootstrap, except thabor BS, the endpoints of the uncertainty interval for a factor

Factor 5 (the extra factor that is comprised of small pieceselement are the 5th and 95th percentile values for that fac-

of several species) was rarely found, confirming that one todor €lement from all bootstrap resamples. For BS-DISP, each
many factors was modeled. bootstrap resample is displaced and minimum and maximum

Decrease in Q and swapped factors in BS-DIBFCase values are calculated for each factor element as described for
1, no swaps occurred in the initial refitting of the full data set DISP. Then percentiles are taken across the resamples, the
and no BS resamples were rejected because of swaps or largéh percentile of the minima and the 95th percentile of the
decreases i@. This indicates that Case 1 was a well-defined Maxima, to create the final interval estimate.

PMF solution. For Case 2, diagnostics showed that 16 % of Many intervals were estimated: one for each factor ele-
the resamples exhibited large decrease®iand 8% con- ~ Mment for each error method for each data set studied. Table
tained swapped factors. The large decreas@ icompared 2 contains upper and lower interval estimates for all error
to Case 1 is likely due to the larger data uncertainties usednethods for a selected case, Case 2, for two selected species:
in Case 2. This indicates that Case 2 was not as well dePMzs, a species of interest across all factors (Table 2a), and
fined as Case 1, but there were few enough rejected resantU (Table 2b), a typical example of a key species for iden-
ples that error estimates summarized for the accepted resarfifying one of the factors. For the sake of brevity, only Case

ples were likely reliable and robust. For Case 3, all factors2 iS presented, since the data uncertainties for this case are
more typical for ambient measurements.
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Table 2a.Lower and upper interval estimates of PMI(ig n3) by factor for Case 2 (realistic errors) for data sets with 50 or 261 samples.

Salt factor Copper factor Soil factor Coal factor
True PMy5=0.10 True PMy 5 =0.42 True PMy 5 =1.82 True PMy5=2.24

Data set with 50 samples

DISP (0.00, 0.69) (0.12, 0.62) (1.23,1.97) (2.08, 2.49)

BS (0.06, 0.75) (0.15, 0.69) (1.16, 1.90) (1.52, 2.38)

BS-DISP  (0.00, 0.85) (0.12,0.93) (1.17, 2.48) (1.54, 2.64)
Data set with 261 samples

DISP (0.06, 0.18) (0.33,0.59) (1.59, 1.92) (2.08, 2.36)

BS (0.10, 0.28) (0.36, 0.54) (1.56, 1.82) (1.98, 2.27)

BS-DISP  (0.07, 0.32) (0.33,0.63) (1.52, 1.99) (2.00, 2.37)

Table 2b. Lower and upper interval estimates of Cu (g by factor for Case 2 (realistic errors) for data sets with 50 or 261 samples.

Salt factor Copper factor Soil factor Coal factor
True Cu=0.0000 True Cu=0.0025 True Cu=0.0007 True Cu=0.0001

Data set with 50 samples

DISP (0.0000, 0.0001) (0.0017, 0.0022) (0.0003, 0.0009) (0.0000, 0.0003)

BS (0.0000, 0.0005) (0.0015, 0.0021) (0.0003, 0.0007) (0.0000, 0.0003)

BS-DISP  (0.0000, 0.0011) (0.0012, 0.0023) (0.0001, 0.0008) (0.0000, 0.0004)
Data set with 261 samples

DISP (0.0000, 0.0001) (0.0021, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003)

BS (0.0000, 0.0001) (0.0022, 0.0024) (0.0005, 0.0007) (0.0001, 0.0002)

BS-DISP  (0.0000, 0.0001) (0.0022, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003)

For PMp 5 for the data set with 50 samples, the salt fac- methods do not always produce intervals that contain the true
tor's overall contribution is uncertain, with possible values value.
ranging up to 7 times the true amount. Compatratively, the
soil and coal factors’ PMs mass estimates are more robust, 4.3  Analysis of synthetic data sets — summary of
with estimates ranging from about half of the true amount comparisons
to just 10 % more for DISP and BS and 20-30 % more for ] )
BS-DISP. The copper factor is in between, with Pvesti- As seen in Table 2, dlffe_rent error methods can prpduce the
mates ranging from a third of the true value to 1.5 to 2 timesshortest mteryal depepdmg on the data set. Sometimes .an er-
the true amount. The size of these intervals may seem largd®" method’s interval includes the true value and sometimes
but this data set contains just 50 samples. For comparisort d0€s not. Given the large number of intervals estimated,
intervals for the data set with 261 samples are included inlt 1S challenging to determine which error method is con-
the lower halves of Tables 2a and 2b. The markedly shortels'Stemly producmg s_horter mterval_s or intervals that include
intervals for the larger data set show the power of havingtr“e values. To aid in thel comparison of one error method
more data. Intervals estimated from the smaller data set sug® @nother, summary statistics that aggregated over all fac-
port the idea presented in Sect. 1.6 about the sensitivity ofor elements were calculated (see Table 3). Three summaries
BS to zero values i, as evidenced by the long BS (and Were calculated. One wasercent coveragethe number of
therefore BS-DISP) intervals compared to DISP. This differ- intervals containing tru€& factor elements d|V|de_d by total
ence nearly disappears for the larger data set, supporting tH&umber ofF factor elements. The second and third were-

idea presented in Sect. 1.4 that rotational uncertainty plays §1an andaverage ratiosor intervals. These were calculated
lesser role in larger data sets. as follows: length and midpoint of each interval for e&ch

For Cu, again the intervals for the larger data set aref@ctor element were computed. Then length was divided by
markedly shorter than those for the smaller data set. AnMidpoint to create a unitless quantity that can be compared
other note is that many of the intervals do not contain the@Cross factor elements of differing magnitude. Median and
true amount of Cu for the copper factor. That is, these erro@Verage ratios were calculated across-ddctor elements.
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Table 3a.Summaries of interval estimates for data sets with 50 observations.

First row: summary over alf factors
Second row: summary over &lfactors excluding salt
(% coverage, median and avg ratios of length to middle of interval)

Method for estimating intervals
(number of bootstraps,@M®)

Case 1. Small errors Subset 1 Subset 2

DISP (n/a, 4) 98 %, 0.82, 1.04 100%, 0.74, 1.00
98 %, 0.51, 0.86 100 %, 0.54, 0.85

BS (300, n/a) 77%, 0.91, 1.05
73%, 0.57,0.88

100%, 1.28,1.25
100%, 1.01, 1.08

73 %, 0.93, 1.00
71%, 0.62, 0.87

100 %, 1.25,1.19
100 %, 0.93, 1.05

BS-DISP (50, 0.5)

Case 2. Realistic errors

DISP (n/a, 4) 95%, 1.49,1.31
96 %, 1.03, 1.15

100%, 1.47,1.32
100 %, 0.93, 1.16

81%, 1.39,1.24
79%, 0.82, 1.06

98 %, 1.74,1.36
98 %, 0.98,1.21

BS (300, n/a) 78%, 1.53, 1.36
81%, 1.16, 1.23

97 %, 2.00, 1.54
96 %, 1.59, 1.39

BS-DISP (50, 0.5)

Table 3b. Summaries of interval estimates for data sets with 261 observations.

First row: summary over alf factors
Second row: summary over &lfactors excluding salt
(% coverage, median and avg ratios of length to middle of interval)

Method for estimating intervals
(number of bootstraps,@M&%)

Case 1. Small errors Subset 1 Subset 2

DISP (n/a, 4)

95%, 0.45, 0.77
94 %, 0.32, 0.69

94 %, 0.45, 0.84
92%, 0.36, 0.71

BS (300, n/a)

75%, 0.79, 0.99
69 %, 0.40, 0.80

56 %, 0.39, 0.78
60 %, 0.27, 0.66

BS-DISP (50, 0.5)

98 %, 0.70, 0.96
98 %, 0.53, 0.81

97 %, 0.57, 0.92
96 %, 0.45, 0.76

Case 2. Realistic errors

DISP (n/a, 4)

92%, 0.77,1.01
90 %, 0.49, 0.86

89%, 0.80, 1.05
85%, 0.47, 0.86

BS (300, n/a)

75%, 0.44, 0.82
71%, 0.31, 0.69

59 %, 0.58, 0.86
63 %, 0.42, 0.80

BS-DISP (50, 0.5)

91%, 0.85, 1.05
88 %, 0.60, 0.90

83 %, 0.82, 1.05
77 %, 0.53, 0.86

To test repeatability of results, two replicates of each dataQ decreased minimally (less than 0.5). BS was run with 300
set were generated and modeled. The original data set comesamples and results are presented only for assignments of
tained 783 observations. For the 261-day replicates, everBS factors to base case factors with uncentered correlations
third sample was retained, starting with the first sample forof 0.80 or higher and for which only one bootstrap factor is
Subset 1 and the second sample for Subset 2. For the 50-da}lowed to be assigned to each base case factor. BS-DISP was
replicates, every 15th sample was retained, starting with theun for 50 of the BS resamples. Summaries are formulated
first sample for Subset 1 and the second sample for Subset 2nly of such BS resamples in which no swaps occurred. In-
DISP results are presented only if no swaps occurred and iferval estimates were summarized over all factors (upper row
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in table cells) and also over all factors excluding the sea salestimation is applied to new kinds of data sets: simulations
factor (lower row) since modeling of bootstrapped resampleswith realistic true data patterns should be performed and mer-
did not always fit a factor highly correlated with the sea saltits of uncertainty estimates should be evaluated. A forthcom-
factor (as described in Table 1). Case 3, the case in whicling manuscript (Brown et al., 2014) will present case studies
modeling error was introduced, was excluded from this sum-of ambient data and interpretation of results from the three
mary analysis since diagnostics for this case indicated proberror estimation techniques.

lems, as discussed in Sect. 4.1. Results are presented in Ta-

bles 3a and 3b.

These summaries show that percent coverage is generalfy Reéporting recommendations for PMF analyses

F;nake to perform such applications and to encourage that fu-

and BS-DISP. Unexpectedly, BS results vary by subset. Th ture publications of PMF applications include enough details

. o ) : or readers to evaluate, reproduce, or compare results be-
reason is unclear at this time, but it may have to do with the, . . o
. tween different studies. In a continuing effort to help make
number of zeros irG for the two subsets. For the data set the reporting of results from EPA PME and ME-2 more svs-
with 50 samples, Subset 1 has 3, 3, 7, and 1 zeros and Subsgt b 9 y

) tématic among researchers, we have summarized recommen-
2has 1, 6,12, and 1 zeros for coal, salt, copper, and soil fac-, 9

tors, respectively. For the data set with 261 samples, Subsetqatlons on what to report while documenting uncertainty es-

has 6,17, 27, and 8 zeros and Subset 2 has 5, 26, 44, and 7 Zt|erpates from PMF analyses. Thls IS not an exhgusnve I.'St’
! and every data set may require that additional information

be reported. To increase the understanding of the behavior of

not take many zeros to reduce rotational uncertainty; thus . : . o
these uncertainty estimates with different types of data, it is
the larger number of zeros for Subset 2 of the smaller data . )
X . recommended that all three techniques be applied and spe-
set could explain the shorter intervals. The cause for lower

. cific details about and estimated intervals from each method

percentage coverages for BS for Subset 2 is unknown. - .
: .. be reported. For cases where this is not possible or reason-
As expected and seen with the examples presented in thg s . . .
able, it is recommended that such reasoning be included in

previous section, it is noted that intervals are shorter for the s
the publication.

larger data set. This is true for all methods and both case .
. X : . BS Report the number of resamples analyzed and the size
studies. What is not expected is that percentage coverage i ) . o
: i Of percentiles of the obtained distribution of results chosen
lower for the larger data set. The cause is unclear; however, - .
for error limits, e.g., 5th and 95th percentiles. Also report the

a proposed explanation is that the likelihood of excessively :
! N ercentage of BS factors assigned to each base case factor
long intervals is higher for smaller data sets because ther®

: X . - . and the number of BS factors not assigned to any base case
are fewer zeros ifs. These excessively long intervals will in

. . factor.
turn result in unnaturally high coverage. . .
The conclusion from the analysis of these synthetic data DISP. Report species not displaced such as those down

sets is that DISP consistently provides intervals that havewelghted’ the absolute and relative decreas@jrand the

high coverage 90 %) and that are shorter than those pro- number of factor swaps. If factor swaps occur for the small-

max gt 1 1 1 i 1 -
ded by BS or B DISP. BS.DISP sometmes proades n =13" . ndctes bt et o Sean oo o
tervals with higher coverage than DISP, but these intervals guity y

..~ "used. If the decrease i) is greater than 1%, it likely is the
are generally longer. The performance of error estimation .
) . : L case that no DISP results should be published unless DISP
techniques will depend on the details of each individual data . N .
. I analysis is redone after finding the true global minimum of
set. Here, the differences seen for supposedly similar cas
studies 1 and 2 illustrate the variability found between data™"

sets.

Results from Subset 1 and Subset 2 are similar for DIS

BS-DISP As with BS and DISP, report the number of BS
Although patterns in relative merits of the three uncer- resamples analyzed, the size of percentiles chosen for error

, o . . . limits, the species actively displaced, the decrease,iand
tainty estimation techniques are developing, applying thes
. ) .-~ ~the number of factor swaps.
inferences to all PMF analyses is premature. Variation in
characteristics of data sets (e.g., number of samples, num-
ber of zeroes irG) and modeling errors (e.g., inappropriate 6 Conclusions
number of factors, discrepancies betwagnandu;;, han-
dling of values below method detection limit) may lead to Exercises presented with synthetic data suggest that error in-
different relative merits. In order to achieve the best possi-tervals estimated by DISP, BS and BS-DISP capture with
ble uncertainty estimations, the evaluation approach of thishigh probability profile values that truly underlie the mod-

paper should preferably be repeated whenever PMF erroeled observations. Numerous simulations were performed in
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addition to those reported in this work. All indicate that if if multiple modeling errors are present. For example, censor-
data uncertainties are known and there are no modeling eiing a large number of values below detection limit, another
rors, then the DISP method consistently produces good covtype of modeling error, may invalidate uncertainty analysis
erage of true values using the shortest possible uncertaintipy BS, DISP, and BS-DISP.
intervals. In the more difficult cases where data uncertain- It was seen that some data sets produce large rotational
ties are not well known, the bootstrap-based methods BS andncertainties for some or all factors so that interval estimates
BS-DISP seem to work satisfactorily, provided that there aremay extend down to zero even for some of the defining “key”
no modeling errors. A solution’s stability can also be eval- species. In such cases, factor identities may become fluid,
uated via the fraction of times each factor is mapped in BSoften indicated by factor swaps. The obtained uncertainty in-
and if any swaps occur in DISP. These results provide criticaltervals are then imprecise because of the difficulty of defin-
information on whether a solution should be interpreted.  ing the borderline between rotations and swaps. Although the
The uncertainty estimation with DISP depends on themethods will correctly indicate that uncertainties are large,
user’s defined maximum allowed changedn(dQ™®). For  they may not produce quantitative results for these large in-
simulated data, this dependence was illustrated in this worktervals. On the other hand, this “weakness” caused by factor
For real data, mathematical derivation is impossible becausswapping may not be important in practical work. Simply
of the presence of modeling errors. Practical experience iput, it does not matter whether uncertainty is rather large or
needed in order to understand the dependence @h?d very large.
Such understanding might be attempted by partitioning areal When interpreting large uncertainties, there is a concep-
data set in various ways and comparing the partition-partitiortual issue that warrants highlighting. Suppose a factor is as-
variation of profiles against their DISP uncertainty estimates.sociated with a known source or sources based on the initial
In a companion paper, to be submitted soon, several realeomputed composition. For example, suppose factor F1 is
data analyses will be reported. It should be noted that thedentified as “Diesel vehicles” based on a high value of EC.
dependence of uncertainty intervals o@®* depends on  Now suppose that the estimated uncertainty for EC for fac-
the amount of rotational ambiguity. If the model has no ro- tor F1 shows that there may be low or no EC apportioned
tational ambiguity, then uncertainties computed by DISP areto the factor. This would then call into question the asso-
expected to be proportional to square root gf*. At the ciation of this factor with the postulated source. Therefore,
other extreme, if the rotational uncertainty is dominant, thenwhen discussing uncertainties, they should be called uncer-
the computed uncertainties are expected to be almost inddainties in factor F1, not uncertainties in the diesel factor. If
pendent of @M% In EPA PMF, the DISP method is imple- the uncertainties are small enough that the source or sources
mented so that uncertainties are always computed for fouassociated with a factor are not called into question, then it
different d0™® values. In this way, the influence ofxf"@* is reasonable to refer to the uncertainties as uncertainties in
values on uncertainty estimates is easy to see for each sp#ie source profile. When reporting results, it is important to
cific data set. document each factor for which the size of the uncertainties
In order to speed up computations, some factor elementsalls into question the source or sources initially associated
may be defined as passive in DISP and BS-DISP processewith that factor.
Defining some elements as passive has no influence on the If large uncertainties are obtained for a PMF solution, the
uncertainty intervals obtained for active (actively displaced)next step is for the analyst to determine whether physical-
factor elements. Uncertainty intervals for active factor ele-chemical arguments can be applied to reduce the variability
ments are reliable regardless of how many and which eleof the results. Different constraints can be defined, for exam-
ments are defined as passive, provided the user-provided dagpde, by constraining certai@ or F factor elements to be zero
uncertainties and@M® are correct. Thus it is safe to define (Paatero et al., 2002). Narrower uncertainty intervals will be
uninteresting factor elements as passive in order to speed upbtained. However, no results from such experiments are in-
computations. Note though that defining a factor element agluded in this work.
passive will usually underestimate its computed uncertainty. It has been customary to report uncertainties in the sym-
Specifically, the uncertainty for a factor element defined asmetric form, as “best fit- uncertainty”. In the present case,
passive will be less than or equal to the uncertainty computeduch a formulation is not adequate since uncertainty intervals
for that factor element if it were defined as active. Thus factorneed not be symmetric. Uncertainties should be reported in
elements critical for associating a factor with a source shouldan unsymmetrical formulation, for example, as “bestfit
always be defined as active. u —d” whereu andd represent the width of interval up and
The present work offers no quantitative results for the sit-down from best fit, respectively. It should be noted that these
uations where significant modeling errors exist. It was seerintervals are not standard deviations of “errors”. Rather, their
that one type of modeling error, specifying more factors thannature is that of “Confidence Intervals”, meaning that with a
the data support, leads to diagnostics that suggest to an aliigh (albeit often unknown) probability, the intervals contain
tentive PMF user that there are too many factors. Howeverthe unknown true values.
itis not currently known whether diagnostics will be as clear
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The addition of DISP and BS-DISP capabilities in EPA  Nevada, with EPA PMF, Atmos. Chem. Phys., 12, 309-325,
PMF and ME-2 will help users better understand sources of doi:10.5194/acp-12-309-2012012.
variability in their PMF results. Such understanding may in- Brown, S. G., Paatero, P., Eberly, S., and Norris, G.: Methods for es-
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many factors have been modeled. Using DISP, BS, and BS- ' "ea" engine based receptor modeling approaches. Poster pre-
. . . . ' T . sented at the American Association for Aerosol Research Con-
DISP as a suite of technlqugs fo'r espmatmg ur_1cer_ta|nty iN" ference, Reno, NV, 24—28 September, 2007.
PMF solutions can be more illuminating than using just ON€gfron, B. and Tibshirani, R. J.: An introduction to the bootstrap,
technique, much as using multiple receptor models to ana- chapman & Hall, New York, 1993.
lyze a data set can provide more insight into the solution thargngel-Cox, J. A. and Weber S. A.: Compilation and assessment of
using just one. recent positive matrix factorization and UNMIX receptor model
Comparing merits of different estimation principles is not  studies on fine particulate matter source apportionment for the
straightforward, because widely varying characteristics are €astern United States, J. Air Waste Manage. Assoc., 57, 1307—
inherent in data sets and numerous types of modeling errors 1316, 2007. _ _ _
may occur. For the synthetic data developed for this work, itGe_mperIme, P. _J.: Computation _of the range of feasible solutions
was seen that BS had longer uncertainty intervals and lower ?332"-5”;826'1%99 g“rve resolution algorithms, Anal. Chem., 71,
coverage, DISP had shorter ur)certalnty mterv_als and h'g.hef:iedberg, E., Gidhagen, L., and Johansson, C.: Source contributions
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