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Abstract. The EPA PMF (Environmental Protection Agency
positive matrix factorization) version 5.0 and the underlying
multilinear engine-executable ME-2 contain three methods
for estimating uncertainty in factor analytic models: classical
bootstrap (BS), displacement of factor elements (DISP), and
bootstrap enhanced by displacement of factor elements (BS-
DISP). The goal of these methods is to capture the uncer-
tainty of PMF analyses due to random errors and rotational
ambiguity. It is shown that the three methods complement
each other: depending on characteristics of the data set, one
method may provide better results than the other two. Results
are presented using synthetic data sets, including interpreta-
tion of diagnostics, and recommendations are given for pa-
rameters to report when documenting uncertainty estimates
from EPA PMF or ME-2 applications.

1 Introduction

1.1 EPA PMF and ME-2

The multivariate factor analysis tools PMF2, ME-2, and EPA
PMF (Environmental Protection Agency positive matrix fac-
torization, which is built on ME-2) are widely used for nu-
merous applications, particularly for analyses of ambient air
quality data (Poirot et al., 2001; Reff et al., 2007; Kim and
Hopke, 2007; Engel-Cox and Weber, 2007; Norris et al.,
2008; Ke et al., 2008; Ulbrich et al., 2009; Brown et al.,
2012). Each tool performs a positive matrix factorization
(PMF) that decomposes a matrix of speciated sample data
into two matrices – factor contributions and factor profiles.
A speciated data set may be viewed as a data matrixX of

dimensionsn by m, in which n samples andm chemical
species were measured. Rows and columns ofX and of re-
lated matrices are indexed byi andj , respectively. The goal
of modeling with PMF is to identify the number of factors
p, the species profilef k of each factork, and the amount
of massgk contributed by each factork to each individual
sample (Eq. 1):

xij =

p∑
k=1

gikfkj + eij = cij + eij , (1)

whereeij is the residual andcij denotes the modeled part for
each sample/species. The method is described in greater de-
tail elsewhere (Paatero and Tapper, 1994; Paatero, 1997). Re-
garding notation, capital bold-face letters denote entire ma-
trices,gk denotes columns of the factor contribution matrix
G, andf k denotes rows of factor profile matrixF.

Original versions of PMF2, ME-2, and EPA PMF provided
uncertainty estimates forF and sometimesG. However, these
estimates did not explicitly include rotational uncertainty of
the results. The present work corrects this deficiency for ME-
2 and EPA PMF, presents three methods for estimating un-
certainty, and discusses each method’s strengths and weak-
nesses. The error estimation methods described in this work
have been implemented in version 5.0 of EPA PMF, to be re-
leased in 2013. Seehttp://www.epa.gov/heasd/research/pmf.
html and Norris et al. (2008) for details.

1.2 Two interpretations of Eq. (1)

Equation (1) may be employed in two ways. One is when
F andG contain known values. This approach is used when
generating simulated data that mimic real measurements. In
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this case, thedata errorseij are pseudorandom values, of-
ten generated from normal distributions with mean zero and
standard deviation equal tosij . Thesedata uncertaintiessij
are known values specified in a simulation. MultiplyingF
and G and addingE producesX, the simulated matrix of
measurements to be modeled by PMF. Fitted values forF and
G can then be compared to the true values that were used to
simulateX.

Alternatively, Eq. (1) may be employed when the mea-
sured (or simulated) matrixX is known and the matrix of
estimated data uncertaintiesuij has been estimated. This ap-
proach is used to determine the values of unknown matrices
F and G. In simulations, data uncertaintiesuij may be set
equal to uncertaintiessij . When analyzing real data, data un-
certaintiesuij are estimated by the users so thatuij approx-
imate the unknown true uncertaintiessij . In some situations,
adjusted data uncertaintiesare used. For example, to down-
weight speciesj , one may setuij ≈ 3sij for a chosen species
j .

1.3 Details of the PMF model

In PMF, factor elements are constrained so that no sample
can have a significantly negative factor contribution. Also,
PMF allows each data value to be individually weighted.
This feature allows analysts to adjust the influence of each
data point, depending on the confidence in the measurement.
For example, data below detection limit can be retained for
use in the model with the associated uncertainty adjusted to
give these data points less influence on the solution than data
above the detection limit. The PMF solution minimizes the
object functionQ (Eq. 2) based upon the estimated data un-
certainties (or adjusted data uncertainties)uij and with factor
matrix elementsgik andfkj subject to non-negativity con-
straints.

Q =

n∑
i=1

m∑
j=1


xij −

p∑
k=1

gikfkj

uij


2

(2)

ME-2 performs iterations via the conjugate gradient algo-
rithm until convergence to a minimumQ value.

1.4 Origins of uncertainty in PMF analyses

F1 andG1 are used to denote a solution of Eq. (1) obtained
by solving Eq. (2). Uncertainty analysis of PMF modeling
attempts to estimate a range or interval of plausible values
around each element of matrixF1. This interval is estimated
so that with a high probability it will include the true value of
F. The ends of the range will be calledupper and lower in-
terval estimatesof F or simplyupper and lower estimatesof
F. The uncertainty analysis must take into account all aspects
of solving Eq. (2), such as non-negativity constraints.

Uncertainty in PMF analyses arises from three main
causes, as described below: (1) random errors in data values;
(2) rotational ambiguity; and (3) modeling errors.

Random errors in data values are those that arise from
the measurement process, even if measurement systems have
been properly calibrated so that no systematic bias is present.
All measured data contain random errors – measure some-
thing twice and two different values will be obtained.

Uncertainty caused by rotational ambiguity is specific to
factor analytic models. Rotational ambiguity arises because
bilinear factor analytic models are ill-posed, meaning there
are multiple solutions (G, F) with the same value ofQ
(Henry, 1987). In some special cases, a rotationally unique
solution is possible if there are a sufficient number of zero
values in true matricesG andF (Anderson, 1984). In analyt-
ical chemistry (AC), presence of zero values is often known
a priori. For example in chromatograms, each component
(“peak”) shape begins with a number of zero values. Non-
zero values are not possible at a large distance before the
peak proper. In comparison, presence of zero values in true
factors is less predictable in environmental measurements. In
most cases, some rotational ambiguity remains in environ-
mental modeling.

The problem of rotations has been discussed in Paatero
et al. (2002) and recently in more detail in Paatero and
Hopke (2009). The present work offers numerical methods
for estimating the rotational non-uniqueness for any given
data set where unknown numbers of zero values may be
present in true factors. However, the present work does
not explicitly consider the effect of inserting additional nu-
merical constraints on factors, as suggested by Paatero and
Hopke (2009) and demonstrated by Amato et al. (2009) and
by Amato and Hopke (2012).

The extent of possible rotations is limited by non-
negativity constraints imposed on the solution and by the
number of zero values present in the fittedG andF (Paatero
et al., 2002). With a small number of zero values, this uncer-
tainty may dominate other types of uncertainty. In extreme
cases, presence of large rotations may prevent well-defined
modeling altogether, as discussed later in detail. With larger
numbers of zero values, rotations may be present in small
amounts, so that a useful albeit non-unique solution is possi-
ble. Sometimes, rotational uniqueness may be observed, es-
pecially if only a small number of factors is fitted. It is seen
that measurements should be arranged so that variation be-
tween individual samples is as large as possible, e.g., mak-
ing sure that measurements are performed during different
weather patterns. Note that the terms “rotational ambigu-
ity” and “rotational uncertainty” are used here to represent
slightly different ideas. “Rotational ambiguity” denotes the
concept that multiple mathematical solutions can yield the
same or practically the same fit (one with almost identicalQ

values). “Rotational uncertainty” is used when discussing the
amount of rotational ambiguity in a more quantitative sense.
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Modeling errors are those caused by using a model that is a
simplification of the true physical–chemical phenomena. The
PMF model describes what is believed to happen in nature.
However, modeling errors can arise if the real process in na-
ture is different from what is captured in Eq (1). Some exam-
ples include variation of source profiles with time (e.g., be-
cause of chemical transformations during transit or chemical
variations in the source itself), incorrectly specified number
of factorsp, incorrectly estimated data uncertaintiesuij , con-
tamination of samples, correlated (i.e., non-random or sys-
tematic) errors in data values, and weak or sporadic sources
that cannot be represented by dedicated factors. Adjustments
to measured data may also introduce modeling error. For ex-
ample, if data below detection level are censored, then the re-
sulting matrixX will not be in relationship to matricesG and
F as stipulated by Eq. (1). Wrong decisions about outlier sta-
tus may also introduce modeling error, as pointed out by an
anonymous reviewer. For example, in difficult snow condi-
tions, highway traffic would be non-existent and hence, traf-
fic emissions unusually low. Such high-snow samples would
be valuable for determining correct rotations, especially for
the traffic-emissions factor. However, such high-snow sam-
ples may appear to be outliers. If they are downweighted as
outliers, then a serious modeling error is made, leading to
loss of critical information.

Effects of modeling errors are difficult to estimate because
the causes of such errors generally cannot be explicitly for-
mulated. As emphasized by an anonymous reviewer, it is ex-
pected that in environmental data, modeling errors are much
more significant than in AC measurements. In a follow-up
paper, to be submitted soon, we apply the error estimation
methods described in this work to three real data sets where
modeling errors may be present.

It is noted that other definitions of modeling error have
been used in literature. For example, Tauler (2001) includes
rotational ambiguity with modeling error.

The relative importance of the three causes of uncertainty
depends on the size of the data set being modeled. As the size
of the data set increases, the significance of random errors
decreases, due to the law of large numbers; the significance
of rotational uncertainty also decreases because the number
of zero entries in trueG factors often increases. On the other
hand, effects of non-random modeling errors are not likely to
decrease with increasing size because the law of large num-
bers does not apply to non-random disturbances. Thus, the
relative significance of modeling errors may be assumed to
be highest in the largest data sets. Large data sets may, how-
ever, contain enough information so that their models may
be enhanced to include the real data’s problematic features,
which cannot be modeled with a small data set.

1.5 Significance of differentQ values when comparing
alternative models of a data set

The difference ofQ values obtained from alternative PMF
models is often used as a criterion for rejecting models with
“too high” Q values. Examples include comparison of mod-
els with different numbers of factors and rejection of compet-
ing solutions obtained from repeated random starts of PMF
modeling. In error estimation,Q values are used for simi-
lar purposes: acceptable solutions must not have “too high”
Q values. The obvious question is: how high is “too high”?
Unfortunately, this question does not have a clear answer. If
there were absolutely no modeling errors, then a change in
Q (dQ) by, for example, 20 units might be considered “too
high”, and this limit would be independent of the number of
data values in the data set. In real life, modeling errors com-
plicate the situation because modeling errors differ in dif-
ferent types of measurements. Even in one type of measure-
ment, modeling errors may depend on details of individual
experimental situations. It may be assumed that the effect of
modeling errors is dependent on the number of data values. It
appears likely that the variation inQ values caused by mod-
eling errors is proportional to the number of data values and
hence also proportional toQ values.

It follows that no a priori percentage value may be given
for assessing variations ofQ values. In some data, a signifi-
cant variation ofQ might be 1 %. In other data, it might be
5 % or 0.5 %. It seems that an understanding of the signifi-
cance ofQ variations must be based on empirical evidence.
It is crucial that such evidence be relevant to the case at hand.
Thus, for instance, observations ofQ variations in speciated
aerosol measurements may not be applicable to analysis of
aerosol mass spectra, water quality data, or other data sets.
For example, observed variations inQ from displacement of
factor elements (DISP) for reasonable models of the simu-
lated data presented later in this paper appear not to be sig-
nificant for percentages less than 0.1 %. This percentage may
or may not be appropriate when analyzing actual ambient
measurements, such as speciated aerosol data, aerosol mass
spectra, water quality data, human exposure data, or other
types. Experience applying the error methods described in
this work to various types of data and numerous data sets is
required before it will be known if a fixed percentage is real-
istic for multiple or all types of data.

1.6 Overview of uncertainty estimation methods

Many uncertainty estimation methods base their estimates
on analyses of a number ofperturbed versionsof the orig-
inal data set. Each perturbed data set is analyzed in a similar
way as the original data. The collection of all perturbed re-
sults is then used to derive uncertainty estimates for the orig-
inal unperturbed results. Using a collection of results allows
analysts to review a distribution for each factor element to
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evaluate the stability of solutions instead of having to rely on
a single point estimate.

Pseudorandom (or random) numbers are needed for gen-
eration of perturbed versions of the data set. For this reason,
the generic term “Monte Carlo methods” is sometimes used
for the methods that generate perturbed versions of the data
set. In particular, noise insertion (see below) might be called
“Monte Carlo”.

One of the classical methods for estimating uncertainty is
error propagation, which originates in astronomy. For this
method, data uncertainties (i.e., standard deviations of obser-
vations) are assumed known. Then the covariance matrix of
computed results is obtained by applying the well-known er-
ror propagation formula that is based on a linear approxima-
tion around the measured values. No perturbed versions are
generated in classical error propagation.Noise insertionis a
computation-intensive variation of the classical error propa-
gation method. In this method, a number (br) of perturbed
versions of the original data set are generated in the follow-
ing way: each perturbed version is of the same dimensions
as the original data set. In each version, each original data
value is perturbed by a pseudorandom artificial additive noise
value whose standard deviation equals the estimated uncer-
tainty of the data value to be perturbed. Each perturbed ver-
sion is modeled similarly as the original data set, creating
a collection ofbr perturbed solutions. The variances and co-
variances of the distribution of perturbed results are then used
as the uncertainty estimates of original unperturbed results.
In comparison to original error propagation, noise insertion
has the advantage that no linearization is needed and non-
negativity constraints and other imposed constraints are cor-
rectly handled. Error propagation and noise insertion account
for uncertainty caused by random errors in the data but not
for uncertainty caused by rotational ambiguity or modeling
errors.

Bootstrap analysis(BS) perturbs the original data set by
resampling. In each perturbed orresampledversion, some
randomly chosen rows of the original matrix occur multiple
times, while other rows do not occur at all. Each resampled
data set is decomposed into profile and contribution matri-
ces using PMF (Norris et al., 2008). BS has an advantage
of not depending on the average level of error estimates of
data values: if all data error estimates are scaled by an ar-
bitrary coefficientr, BS results will stay the same, provided
that outlier reweighting does not induce a change. Uncertain-
ties estimated by BS may be too small or too large if sig-
nificant correlation of data errors is not properly handled by
techniques such as blocked resampling. BS is not specifically
designed to explore rotational ambiguity, although some ro-
tational uncertainty is captured in the analysis of the resam-
ples. Since rotational uncertainty is limited by the number
of zero values inG andF, and since the resampling for BS
may omit some or all of theG zero values, BS may estimate
a large variation in a PMF solution, especially in small data
sets. Whether this large variation is appropriate depends on

the reliability of the zero values. If the zero values are erro-
neous or are not expected to recur, then the large variation is
correct. If the zero values are reliable, then the large variation
is not correct. With regard to modeling errors, it is not known
how well BS captures the uncertainty from this cause.

Displacement analysis(DISP) obtains uncertainty esti-
mates for individual variables in fittedF by repeatedly fit-
ting the model such that each variable in turn is perturbed
(displaced) from its fitted value. Each displacement is ex-
tended until the object functionQ increases by a maximum
allowed change inQ (dQmax). Each such extended displace-
ment is interpreted as the upper or lower interval estimate of
the perturbed variable. DISP captures the uncertainty caused
by data errors, provided that the user-provided data uncer-
tainties are correct for the data and they obey the assump-
tions of the PMF model. DISP uncertainty estimates under-
estimate real uncertainties if data errors are correlated, mod-
eling errors are present, or actual data errors exceed assumed
data uncertainties. On the other hand, DISP uncertainty esti-
mates overestimate real uncertainties if actual data errors are
smaller than those assumed. By design, DISP captures the
uncertainty from rotational ambiguity. As with other meth-
ods, it is not known how well DISP captures uncertainty from
modeling errors.

2 Previous work

2.1 Uncertainty of factor analytic results in analytical
chemistry

Most prior work in assessing uncertainties of factor analytic
results has been carried out with methods applied in AC (an-
alytical chemistry). Unfortunately, most of these methods are
not applicable for use in environmental source apportion-
ment (ESA). One reason for this is that data uncertainties
play a lesser role in AC because chromatogram data are usu-
ally more precise than ESA data. A second reason is that
AC data are more structured than ESA data. For example, in
chromatograms, if the data have been corrected to baseline,
then each true component may be assumed to have a num-
ber of consecutive zero values preceding the peak. The first
AC results that are applicable are due to Gemperline (1999).
In this work, structural features typical of AC are not uti-
lized. Instead, rotations of the computedG andF factors are
considered under feasibility constraints, typically under non-
negativity ofG andF. By using non-linear optimization al-
gorithms, two “extreme” rotation matricesTk are determined
for each factork of the model. For each factork, those matri-
ces minimize and maximize the fractionXk of matrix X that
is explained by factork.

In order to discuss the method of Gemperline, Eq. (1) is
written in the following form (Eq. 3):

X = GF + E =

p∑
k=1

gkf k + E =

p∑
k=1

Xk + E. (3)
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Here,gk denotes columnk of G, f k denotes rowk of F,
andXk = gk f k is the part of data matrixX that is explained
by factork. The non-linear optimization problem for factork

is the following (Eq. 4):

GivenG0andF0,

defineG = G0Tk andF = T−1
k F0,

determineTk suchthatG ≥ 0, F ≥ 0, and (4)

norm(Xk) = norm(gkf k) ismaximized(orminimized).

The vectorsgk andf k obtained by maximization consti-
tute the upper interval estimates for factork. Similarly, min-
imization produces lower interval estimates.

Tauler and co-workers have continued to develop the
method originated by Gemperline (Tauler, 2001; Abdollahi et
al., 2009; Jaumot and Tauler, 2010). The last two references
contain useful literature references to other work in this field.
In the 2009 paper, an illustrative example of the optimization
task is presented for the two-factor case (p = 2). In the origi-
nal Gemperline paper,sum of elementswas used as thenorm
in Eq. (4). In later papers, other norms have also been used,
such as the Frobenius norm (square root of sum of squares).
It appears that slightly different results may be obtained with
different norms. Also, scaling of rows and columns of matrix
X may influence the obtained uncertainty limits.

There is a fundamental difference between the present
work and the works of Gemperline and Tauler (G–T). The
G–T limits for factork represent values that might be ob-
tained by factork in one particular solution of the factor ana-
lytic problem. Our limits, on the other hand, represent limits
of values of individual factor elements – these limits are de-
termined individually, without regard to each other. Thus, a
collection of upper-interval estimate values of factork com-
puted by one of our methods produces a hyperbox that may
contain points that are not feasible solutions of the problem.
It follows that our limits are expected to be wider than the
G–T limits. Although the two methods produce different re-
sults, neither of them is wrong because they solve different
mathematical problems.

2.2 Uncertainty of factor analytic results in
environmental research

The earliest contribution towards understanding rotational
ambiguity in factor analysis is probably by Henry (1987).
In this work, the importance of rotational uncertainty is em-
phasized, while no methods are presented for deriving uncer-
tainty limits. Later, Henry (1997) developed Unmix, a model
for solving Eq. (1) subject to non-negativity constraints. In-
cluded with the Unmix model are estimates of uncertainty in
factor profiles, estimates derived using block bootstrapping.

Hedberg et al. (2005) tested the robustness of the PMF
model with a cross-validation method. They analyzed ran-
domly reduced data sets that included 85 %, 70 %, 50 %, and
33 % of the original samples. In this way they tested the

ability of the model to reconstruct the factors initially found
when modeling the original data set. On average, for all fac-
tors, the relative standard deviation increased from 7 % to
25 % for the variables identifying the factors, when decreas-
ing the data set from 85 % to 33 % of the samples.

The cross-validation method of Hedberg et al. (2005) is
conceptually similar to the bootstrap method used in present
work. However, they used cross-validation only for qualita-
tive confirmation of PMF modeling, not for determining un-
certainty limits.

In literature, atmospheric scientists have used the Fpeak
rotational tool of program PMF2 to understand rotational
uncertainty of the solution. This practice provides only a
lower limit for rotational uncertainty. Specifically, varying
the Fpeak parameter traces a one-dimensional path through
the rotationally accessible domain. In most cases, though,
the rotationally accessible domain is many-dimensional; for
these cases, Fpeak will demonstrate only a lower limit for
rotational uncertainty (Paatero et al., 2002). Rotational error
analysis requires an upper limit, and this is not achievable
by the Fpeak of program PMF-2 nor by the simpler one-
parameter Fpeak of program ME-2. DISP and bootstrapping
enhanced with DISP (BS-DISP) provide such upper limits.

3 Methodology

3.1 Overview of uncertainty estimation methods in
ME-2 and EPA PMF

Three uncertainty estimation methods are now available in
ME-2 and EPA PMF: bootstrapping (BS), dQ-controlled
displacement of factor elements (DISP), and bootstrapping
enhanced with DISP (BS-DISP). BS is a typical statistical
method for estimating uncertainty. As implemented, BS in-
volves resampling the input data set, fitting PMF model pa-
rameters for this resampled data set, and then using the vari-
ations among these resampled or “bootstrapped” fitted pro-
files to estimate the uncertainty of the initial PMF solution.
BS has been available in EPA PMF v1.1 and all subsequent
versions, and many publications have reported uncertainty
estimates from EPA PMF.

Since BS does not explicitly include rotational ambigu-
ity, DISP was developed. DISP intervals, however, are di-
rectly impacted by inaccuracies in data uncertainties. Thus, a
method combining BS’s strength with data errors and DISP’s
strength with rotational uncertainty was developed into the
method BS-DISP. Details of the DISP and BS-DISP meth-
ods are presented below. Since BS is a standard statistical
method, descriptions of its theoretical foundations are left to
textbooks (e.g., Efron and Tibshirani, 1993).

The goal of DISP is to provide uncertainty estimates
in such cases where data errors obey the assumptions of
the PMF model (i.e., uncorrelated data errors with known
data uncertainties) and there are no modeling errors. DISP
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uncertainty estimates contain good estimates of rotational
uncertainty as demonstrated with synthetic data sets (dis-
cussed in Sect. 4). However, DISP uncertainty estimates un-
derestimate real uncertainties if data errors are correlated,
modeling errors are present, or actual data errors exceed as-
sumed data uncertainties. In order to obtain more reliable es-
timation of uncertainty due to data errors, a BS or BS-DISP
analysis may additionally be performed and results compared
to those from DISP. BS or BS-DISP are also necessary tech-
niques for estimating uncertainty for species that are down-
weighted in the PMF analysis (i.e., species for which the
adjusted data uncertainty values have intentionally been in-
creased to reduce their influence in the minimization ofQ).
For such species, uncertainties estimated by DISP are known
to be too large. BS-DISP is a combination of bootstrap and
displacement methods in which each resampled data set is
decomposed into profile and contribution matrices and then
fitted elements inF are displaced. The collection of all results
from the process of resampling, decomposing, and displac-
ing is then summarized to derive uncertainty estimates. In-
tuitively, this process may be viewed as follows: each BS re-
sample results in one solution that is randomly located within
the rotationally accessible space. Then, the DISP analysis
determines an approximation for the rotationally accessible
space around that solution. Taken together, all the approx-
imations of rotationally accessible spaces for randomly lo-
cated solutions represent both the random uncertainty and the
rotational uncertainty for the modeled solution to the com-
plete data set. Since both the BS and DISP phases explore
the rotationally accessible space, the DISP phase may be ex-
ecuted with weaker displacements than when only DISP is
used to estimate uncertainties. As a result, BS-DISP is less
sensitive to inaccuracies in data uncertainties.

In principle, BS-DISP should determine the rotational un-
certainty well. However, data sets with a scarcity ofrotation-
blocking zero valuesin G factors pose the same problem
for BS-DISP as with classical BS. Specifically for resamples
omitting some or all of the zero values, large rotations are
possible. To reduce the impact of these large rotations, the
5th percentile of minimum interval estimates and 95th per-
centile of maximum interval estimates may be used. There is
insufficient practical experience with varied data sets to know
whether using these, or any, percentiles adequately addresses
this issue.

3.2 Mathematical approach in DISP

This section describes the computations for DISP, whether
DISP is performed alone or as the second phase of BS-DISP.
Computations are first described for well-defined cases,
those for which factors do not change so much after dis-
placement that they exchange identities (“factor swapping”).
Later, computations are presented for the case complicated
by factor swapping.

Superscripts are used for denoting different variants of a
matrix. As an example, (G0, F0) and (G1, F1) may denote
two different solutions of a PMF problem. Usually, (G0, F0)

denotes the solution obtained by PMF when no displace-
ments are applied. Individual factor elements are then de-
noted by using both subscripts and superscripts; for example,
g0

ik andf 0
kj may denote the elements of matricesG0 andF0.

For DISP analyses,F factor elements are chosen, one by
one, to be displaced. The chosen element is denoted byfkj ,
so thatk denotes the factor andj denotes the variable. Usu-
ally, only a subset of allF elements is chosen to be displaced.
Details of why and how to choose are discussed later.

The DISP approach is based on the increase of the PMF
sum-of-squares functionQ. The function may be the basic
Q defined as follows by Eq. (5):

Q = min
F,G

n∑
i=1

m∑
j=1

((
xij −

p∑
k=1

gik fkj

)/
uij

)2

, (5)

where all elements ofG andF have been determined so as to
achieve best possible fit (i.e., lowest possible value of sum of
squares). However, the functionQ may also be any enhanced
form of the object function, such as a robust sum obtained
by reweighting of outlying data values or a sum enhanced
by penalty terms like those used for pulling chosen factor
elements towards preferred values. (In special cases, some
elements ofG and/orF may be constrained by the user so
that these elements are not variable at all. Such elements are
not considered variable in the minimization.)

The notationQopt denotes the value ofQ function for
the PMF model that is about to be processed by DISP
(“DISPed”). For pure DISP,Qopt is thus theQ value ob-
tained in the base case PMF run. For BS-DISP,Qopt is the
Q value obtained in PMF modeling of the current resampled
data set. In both cases,Qopt represents the solution of Eq. (5),
i.e., a minimum with respect to all elements of factor matri-
cesG andF. The numerical values ofQopt from base case
andQopt from any of the resampled cases have no obvious
relationship, usually they are different and either one may be
larger. The notationQ

(
fkj = d

)
denotes the smallest sum-

of-squares value obtained when constraining the indicated
factor fkj to a fixed feasible valued and minimizing over
all otherG andF factor elements. Finally, the increase ofQ

is denoted by Eq. (6):

dQ
(
fkj = d

)
= Q

(
fkj = d

)
− Qopt. (6)

The essence of DISP is to find the largest and smallest
feasible valuesdmax anddmin such that

dQ
(
fkj = dmax

)
≤ dQmax

dQ
(
fkj = dmin

)
≤ dQmax,

(7)

where dQmax is a predetermined maximum allowable change
in Q (Eq. 7). The valuesdmax anddmin can be determined
by using any available non-linear optimization algorithm. In
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this work, the ME-2 program is used under control of an en-
hanced script.

The obtained valuesdmax and dmin respectively repre-
sent upper and lower interval estimates for factor element
fkj . The limit value dQmax is chosen by the user. In prac-
tice, the DISP approach is implemented so that estimation
is performed using a set of four dQmax values chosen by
the user. Thus four pairs of upper and lower interval esti-
mates are obtained for each displaced factor element. A typi-
cal set of dQmax values would be{4,8,16,32} for DISP and
{0.5,1,2,4} for BS-DISP. Larger dQmax values usually pro-
duce wider uncertainty intervals which in turn usually have
higher probabilities of including true unknown values. How-
ever, wider intervals may be so wide that they cannot sup-
port meaningful conclusions. For DISP, analogy with cus-
tomary linear least squares models suggests that executing
with dQmax

= 4 results in interval estimates that are minima
for the true uncertainty estimates, provided the user-specified
data uncertainties are reasonable for the data (see the Supple-
ment for additional discussion). If a minimum interval esti-
mate is sufficient to support or refute a postulated hypothesis,
then no additional uncertainty analysis is warranted.

The choice of dQmax values will depend on assumed mag-
nitudes of modeling errors, as discussed in Sect. 1.5. Reliable
estimates of modeling errors are usually not available. It fol-
lows that dQmax values cannot be deduced from statistical
theory. Experimental evidence must be used.

3.3 Implementation of DISP in ME-2 and EPA PMF

Equations (5) to (7) would lead to a straightforward and rea-
sonably efficient algorithm. However, they cannot be applied
as such because of the automatic dynamic reweighting that is
used for several purposes, most importantly for robust esti-
mation, in PMF. With such reweighting, the numerical value
of Q changes whenever the weights are recomputed. Such
changes ofQ are not directly related to changes in the fit.
Hence, such changes cannot be used as a basis of uncertainty
estimation.

As a substitute, the DISP approach estimates dQ values
using a partial derivative (orgradient) of Q with respect to
the displaced variable (Eq. 8):

dQ
(
fkj = d

)
=

0.5
z∑

v=1

(dv − dv-1)

(
∂Q

∂fkj

∣∣∣∣
fkj =dv

+
∂Q

∂fkj

∣∣∣∣
fkj =dv-1

)

= 0.5
z∑

v=1

(dv − dv-1)
(
grad

(
fkj = dv

)
+ grad

(
fkj = dv-1

))
whered0 = f 0

kj and dz = d. (8)

This definition is based on a sequence ofz displaced val-
uesdv, generated automatically by the algorithm. The model
is fitted using each displaced value in turn, and the corre-
sponding gradient values are saved. The proxy dQ value is

obtained using displacement step lengths and gradients at
each displaced point. This method is approximate and be-
comes more accurate if a larger number of intermediate dis-
placements are used for reaching the final displacementd.
The quality of approximation has been observed in cases
where no dynamic reweighting is present so that actualQ

values may be used for computing non-approximate dQ val-
ues. The sequences created automatically by the current im-
plementation of DISP appear to be a satisfactory compromise
between computational efficiency and accuracy of approxi-
mation. Determination of the sequence of displaced values
dv is based on various heuristic principles designed to bal-
ance between too-long displacements (indicated by sudden
increase of gradient and dQ or by reversal of gradient) and
too-short – and hence inefficient – displacements. If a dis-
placement is found to be too long, it is rejected and a shorter
displacement is attempted instead.

The sequence of displaced values does not usually hit the
desired value for dQ, namely dQ = dQmax, as required by
the definition of the uncertainty interval in Eq. (7). As shown
in Eq. (9), the sequence generally ends so that

dQ
(
fkj = dz−1

)
< dQmax (9)

dQ
(
fkj = dz

)
> dQmax. (10)

In order to obtain the desired critical value (dmax or dmin),
an interpolation is performed. It is assumed that the gradient
changes linearly in the interval (dz−1 < d < dz). With this as-
sumption, the valuedmax for displacing up may be computed
(Eq. 10) so that

dQ
(
fkj = dmax)

≈ dQmax. (11)

Similarly, when displacing down, the valuedmin is ob-
tained so that (Eq. 11)

dQ
(
fkj = dmin

)
≈ dQmax. (12)

These interpolations are computed separately for each of
the four dQmax values. Using the interpolated displacement
values and factor matrices computed at each displacement,
it is possible to also interpolate the values of factor matrices
G and F so that the interpolated values correspond to the
solution of Eq. (7). In current implementation, only elements
of factor matrixF are interpolated, however.

It is to be noted that displacements do not proceed past
lower or upper constraints for each displaced factor element.
Whenever the constraint is violated, the last displacement is
truncated so that it exactly corresponds to the constraint for
the variable. If the dQ at the constraint value does not exceed
the chosen dQmax, then the constraint value is used as the in-
terval estimate of the variable. For this reason, lower interval
estimates ofF factor elements may appear as exactly zero.
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3.4 Active and passive estimation with DISP
and BS-DISP

The intervals obtained by displacing a factor elementfkj in-
clude both rotational ambiguity and uncertainty due to as-
sumed data uncertainties. In order to speed up computation
of BS-DISP, it is preferable to displace a small subset of allF
factor elements, theactive elementsof F. Usually, one would
displace those variables important for factor identification or
variables key to a particular question.

It is possible to estimate uncertainty intervals for those fac-
tor elements that are not displaced. Intervals for suchpassive
factor elements are obtained as a by-product during displace-
ments of active elements. As described, all elements ofF
are obtained for each (interpolated) displacement that solves
Eq. (7). The DISP algorithm finds largest and smallest val-
uesf max

kj andf min
kj of each passive elementfkj amongall

interpolatedF matrices that occur while displacing all active
elements. These extreme values constitutepassive interval
estimatesfor the passive (non-displaced)F factor elements.

If a sufficient number ofF elements are displaced actively,
then passive interval estimates reflect rotational ambiguity
well for the remaining passive elements. In contrast, passive
interval estimates do not contain uncertainty due to assumed
data uncertainties of the passive factor elements. In BS-DISP,
assumed data uncertainties play a minor role because uncer-
tainty caused by data noise is mainly estimated by resam-
pling. Thus passive estimation is useful in BS-DISP, pro-
vided that the number of active elements is large enough that
rotationally accessible space is exhaustively visited. In DISP,
however, passive interval estimates are less useful because
they ignore data uncertainties of passive factor elements. For
this reason, in pure DISP computations one would prefer to
displace all factor elements.

Downweighted variables create a special problem in DISP
computations. If such variables are displaced, their obtained
active interval estimates will be much too long; because the
assumed data uncertainties are much too large, using the de-
fault dQmax limits will result in very large residuals for the
downweighted variables. The best compromise seems to be
that downweighted variables are never chosen for active esti-
mation in DISP or in BS-DISP. If not active, downweighted
variables will obtain passive interval estimates, intervals that
may be too short from DISP but satisfactory from BS-DISP.

3.5 Factor swaps in DISP from not-well-defined
solutions

Starting from one good solution, it may be possible to trans-
form the solution gradually, without significant increase of
Q, so that factor identities change. In the extreme case,
factors may change so much that they exchange identities.
This is called “factor swap.” A solution with swapped fac-
tors represents the same physical model as the original so-
lution. However, the presence of factor swaps means that

all intermediate solutions must be considered as alternative
solutions. In such a case, the modeling supports a many-
dimensional infinite population of solutions where it is not
possible to single out one of these solutions as “the solu-
tion,” hence the terminology “not-well-defined (NWD) so-
lution.” Often, factor swaps occur only within a subset of all
factors. Then the modeling may provide useful information
about those factors that do not participate in swaps. DISP
and BS-DISP analyses provide diagnostic output to aid in
the identification of factors involved with swapping.

The significance of factor swaps from NWD solutions
came as a surprise. There is little practical knowledge about
these situations, and therefore conclusions in this section are
of preliminary nature.

To detect factor swaps, consider two solutions: the origi-
nal solution (G0, F0) and the transformed solution (G1, F1).
Testing for swaps may be based onG matrices or onF matri-
ces. In the case of complete swaps, testing using either matrix
produces identical conclusions. In borderline cases where
factors change significantly but a complete swap does not oc-
cur, theG andF tests are not fully equivalent. Equations (12)
through (15) are given for testingG matrices.F tests are ob-
tained by replacingG with F in the equations. Two methods
are available for detecting factor swaps: one based on cross
correlations and the other based on regression.

For cross correlations, “uncentered” correlation coefficient
r between two vectorsu andv is defined by

r = corr(u,v) =
u′v

√
u′u v′v

. (13)

This differs from Pearson correlation, which is centered
and is commonly used both in social and biological sciences
and also in chemistry and engineering.

Definecenteredvariables: ũ = u − ū ṽ = v − v̄

r = corrPearson(u,v) =
ũ′ ṽ√
ũ′ũ ṽ′ ṽ

.
(14)

Because Pearson correlations can be meaningless if some
factors are nearly constant, uncentered correlations are used
to detect factor swaps. Specifically, a matrix of correlation
coefficients is computed, so that each matrix element is the
correlation coefficient between one column ofG0 and one
column ofG1. A factor swap is seen in this correlation ma-
trix so that two or more diagonal entries are small, while cor-
responding off-diagonal entries are≈ 1.

In the regression approach, a transformation matrix (orre-
gression matrix) T is computed for approximatingG1 by a
transformedG0. The approximation is defined by

G1
= G0T + E ≈ G0T, (15)

where matrixT is obtained from

T =

(
G0′G0

)−1
G0′G1. (16)
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It is assumed thatG0 is of full column rank. If there are
no factor swaps,T is approximately diagonal, so that off-
diagonal elements are small positive and negative values.
With a factor swap, the rows ofT become permuted so that
at least two diagonal elements change positions with smaller
off-diagonal elements.

3.6 Decrease inQ with DISP

Occasionally displacements cause a significant decrease of
Q, typically by tens or even hundreds of units. If such a de-
crease occurs in DISP analysis or when analyzing the com-
plete (not resampled) data in BS-DISP, it means that the base
case solution was in fact not a global minimum, although it
was assumed to be such. This is a fatal error and invalidates
the DISP analysis. It is necessary to go back to solving the
original PMF model again, perhaps using many more random
starts, to find the global minimum. Then the DISP analysis
may be continued.

Decrease ofQ may also occur when performing displace-
ments in the analysis of BS-DISP resamples. Such a decrease
indicates that resampling created a new minimum, different
from the original base case solution. In one case, the ini-
tial not-displaced fit of this BS resample did not succeed
in finding the new global minimum, while the displacement
“nudged” the solution towards the global minimum. In such a
case, it is best to reject the resample because no meaningful
error limits can be obtained. The overall BS-DISP analysis
remains valid, even if a few resamples get rejected, though
currently there is no way to quantify the number of rejections
that will yield meaningful results.

3.7 Development and modeling of synthetic data sets

Simulated data were designed to demonstrate the three un-
certainty estimation methods. The data were generated us-
ing partial results from a PMF application to PM2.5 speci-
ated data collected in Phoenix (Eberly and Reff, 2007). Fitted
gk andf k for four of seven factors from the previous PMF
analysis were selected to represent the true matricesG and
F. Four factors – representing copper smelting, coal com-
bustion, aged sea salt, and soil – were used to simplify the
simulation and modeling. Some factors are small contribu-
tors on average and others are large, a desired characteristic
for the simulated data. Specifically, average contributions are
49 % for coal combustion, 2 % for aged sea salt, 9 % for cop-
per smelting, and 40 % for soil. Sixteen species are included:
PM2.5, elemental carbon (EC), organic carbon (OC), Si, S,
Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Se, and Pb. Profiles for the
four factors are included in the Supplemental, Table S1.

To generate the simulated data,G and F based on the
four previously modeled factors were multiplied to formC,
per notation described in Eq. (1). Error-containing values
X were obtained from pseudorandom distributions of log-
normal variates with meanC and standard deviationS, where

Swas specified by two equations to evaluate impacts of stan-
dard deviations on uncertainty estimates. Case 1 assumed
small errors such thatsij = 0.05cij . Case 2 assumed realis-
tic errors such thatsij = zj cij , wherezj varied from a small
value of 0.05 for well-measured species to a value of 1.2 for
species with large measurement errors. Specifically, values
for zj are Ca 0.2; Cl 0.5; Cu 0.2; EC 0.12; Fe 0.1; K 0.1; Mn
0.15; Ni 1.25; OC 0.1; Pb 0.5; PM2.5 0.08; S 0.05; Se 0.4;
Si 0.35; Ti 0.9; and Zn 0.13. For this work, a simplifying as-
sumption was made that detection limits are approximately
zero.

The object functionQ in Eq. (2) requires user-provided
data uncertaintiesuij . These were set equal to the data un-
certainties used in deriving the simulated values, namely
uij = sij . In reality, the user rarely knows the exact amount
of uncertainty in the actual data. To simulate this discrep-
ancy, one additional case was modeled. For Case 3, the
data were generated using the small errors ofsij = 0.05cij ,
but the uncertainties given for Equation 2 were derived by
uij = 0.001+ 0.03xij . Case 3 contained another intentional
inconsistency: a total of 5 factors were fitted, one more than
were used to generate the data.

Data sets comprised either 50 or 261 samples. Mod-
eling was done through direct interaction with ME-2 via
PMF_bs_6f1.ini and me2gfP4_1345c4.exe, rather than EPA
PMF. The lower limit allowed for fittedG factor elements
was−0.10, error model−12 was used, and the block size
for bootstrapping was 1. For each data set analyzed, 15 base
case runs were executed to determine a solution presumably
associated with the global minimum forQ.

3.8 Computational workload in different methods

Rough estimates of computational workload (and hence, of
computing times) are given in this section. The computing
load (= time) of one PMF modeling, using random starting
values, is denoted by one time unit (t). Thus a typical initial
modeling run will amount to 20t . Denote byad andab the
numbers of actively displacedF elements in DISP and BS-
DISP, respectively. Assume for this estimation a large data
set, havingm = 30 andp = 10. In this example,ad = mp =

300 if all F elements are selected to be active.
The number of bootstrap resamples (same for BS-only and

BS-DISP) is denoted bybr . Assumebr = 50. A BS-only run
consists usually ofbr instances of PMF modeling, each about
one unit. Thus BS-only amounts tobr units. It is seen that a
BS-only run, with 50t , is not much slower than the initial run
with 20t .

In a DISP process acting on one activeF element, a vary-
ing number of PMF-like models are fitted starting from non-
random initial values. In easy cases, with well-defined solu-
tions and no rotational ambiguity, the total load from one ac-
tive F element may be just a few units. With lots of rotational
ambiguity and maybe NWD solutions, the load may be tens
of units. As an example, it is assumed in this estimation that
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an average DISP process for one activeF element amounts
to 10t . With the assumed dimensions, the load of one com-
plete DISP run, with allF elements active, would amount
to 10mp = 3000t . This is about 150 times longer than the
initial run. Note that the actual results may vary by a large
amount, depending on the rotational ambiguity and NWD
character of the model.

In a BS-DISP run, the number of DISP processes isbrab.
If all F are active, this amounts tobrab = br mp = 15 000
DISP processes and an estimated workload of 10brab =

10br mp = 150 000t . Again, the actual workload may vary
by a large amount, at least by a factor of 3. In the other ex-
treme, it might be possible to run with onlyab = 10, i.e.,
only oneF element active in eachF row. Then one would
have 500 DISP processes and a workload of 5000t . This is
comparable to a complete DISP run with workload of 3000t .

It is seen that computing times may easily grow impos-
sibly long. Hence, even with DISP, it is useful to omit less
important species from active status. Also, one might keep
many elements of a weak factor inactive even if all elements
of a strong factor are made active. With BS-DISP, it is nec-
essary to only have a small number of active elements. For
this reason, BS-DISP will in most cases need support from
a separate DISP run (with an increased number of active el-
ements) in order to get realistic estimates for those elements
that cannot be active in BS-DISP.

The authors have identified a method to improve the con-
vergence rate of ME calculations which will help with the
computational time in future. It is hoped that an order-of-
magnitude gain might be obtained. If this succeeds, it will
make more complete BS-DISP runs possible.

3.9 Estimation of errors of factor matrix G

This work only derives uncertainty estimates ofF factor el-
ements. These uncertainty estimates apply also to estimates
of average pollution contribution from each factor because
all modeling is performed under the constraint that average
G values must be in unity for each factor. However, it would
also be important to obtain uncertainties of specificG val-
ues or functions ofG values such as the largest 10 %, week-
day/weekend ratios, or seasonal contributions to aid in devel-
opment of air quality management strategies. Also, individ-
ual G matrix errors would be very useful for future model
development since hybrid approaches that combine meteo-
rology and source contributions need to account for the un-
certainties. Unfortunately, estimation ofG errors could not
be included in this work plan for several reasons. First,F un-
certainties were of higher priority because they are needed
in order that factors may be more reliably identified with
sources by showing which components were fitted confi-
dently and which components were too uncertain to aid with
identification. Second, it has not been possible to devise a
straightforward method for estimatingG uncertainties. This
is so because the dimensional situation withG andF is not

symmetric and displacement ofG values may not be a reli-
able method. Rotational uncertainty ofG values may perhaps
be obtained as an extension of the current work in future.
However, so far it is unclear how to combine rotationalG
uncertainty with theG uncertainty caused by random errors
of individual data values.

4 Results and discussion

DISP, BS, and BS-DISP were run for each of the three syn-
thetic cases. For Cases 1 and 2, the correct number of factors,
four, was fitted. For Case 3, five factors were fitted, one more
than needed. Modeling resulted in fitted factors for Cases 1
and 2 of soil, salt, copper, and coal. For Case 3, with the
n = 50 data set, the factors are soil, salt, copper, coal, and an
extra factor composed of some EC, OC, Ni, S, and PM2.5;
in then = 261 data set the factors are soil, salt, copper, and
coal split into two pieces. No species were downweighted,
so all species were active in DISP. DISP results were gen-
erated with dQmax values of 4, 8, 15, 25, the values used in
EPA PMF. For BS, factors were assigned to base case factors
based on uncentered correlations of contributions (i.e., time
series). A correlation of 0.80 or larger was required for the
assignment to be valid. Three hundred bootstraps were used
for this demonstration. For BS-DISP, only those species key
in factor identification were active in the DISP phase: Ca, Cl,
Cu, Fe, PM2.5, S, and Ti. BS-DISP was executed using 50
BS runs and dQmax values of 0.5, 1, 2 and 4, the values used
in EPA PMF.

4.1 Analysis of synthetic data sets – diagnostics

Table 1 summarizes the diagnostics reported by ME-2 for
data sets with 50 or 261 samples. For brevity, detailed dis-
cussion of these diagnostics is confined to the data sets with
50 samples. Diagnostic results were similar for the 261-
sample data set. To put decreases ofQ into perspective, ro-
bustQ values for the data set with 50 samples were 500–600
for Cases 1 and 2 and 340 for Case 3. For the data set with
261 samples, robustQ values were approximately 3000 for
Cases 1 and 2 and 1800 for Case 3.

Decrease in Q for DISP. Small decreases inQ (less than
0.2) were reported for Cases 1 and 2, indicating that these
solutions were global minima. A large value (greater than
2.5) was reported for Case 3, providing the first indication
that there is something problematic with the modeling.

Swapped Factors for DISP. For Cases 1 and 2, no factors
swapped for any values of dQmax, indicating that these were
all well-defined PMF solutions. For Case 3, the copper factor
was not involved in swaps for the smallest dQmax value, so
DISP interval estimates for this factor were reliable and real-
istic for the smallest displacement. All other factors of Case
3 were involved with swaps for each dQmax value, and there-
fore DISP cannot provide error estimates for these factors.
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Table 1.Summary of error estimation diagnostics by data set and case study.

Data set Case study
DISP BS BS-DISP

Decrease in
Q

Factors involved in
swaps

BS factor assignment to
base case factors

# Rejected BS
resamples

Decrease in
Q

Factors involved in
swaps

N = 50

Case 1: small
errors

0.1 No swaps. Copper: 99 %
Others: 100 %

0 0.2 No swaps.

Case 2: realistic
errors

0.0 No swaps. Salt: 67 %
Others: 99 %–100 %

12 out of 50, some due
to swapping of factors,
some due to decreases
in Q.

21 No swaps for dQmax
=

0.5, minimal swaps (1–
4) for each factor for
larger dQmax.

Case 3: small
errors; too many
factors

2.6 Factors 1–4 swap 1–
8 times, numerous
swaps for Factor 5
(extra).

Extra factor 5: 20 %
Others: 100 %

0 out of 10* 0.5 All factors involved in
swaps.

N = 261

Case 1: small
errors

0.2 No swaps. All: 100 % 0 0.4 No swaps.

Case 2: realistic
errors

0.0 No swaps. Salt: 92 %
Others: 100 %

2 out of 50 due to de-
creases inQ.

75 No swaps.

Case 3: small
errors; too many
factors

28 No swaps for soil,
copper, salt, many
swaps for coal and
extra factor.

Coal and extra Factor 5:
80 %
Others: 100 %

0 out of 10* 0.1 All factors involved in
numerous swaps, usu-
ally hundreds of swaps.

* Used 10 bootstrap resamples because of the large number of factor swaps.

The extra factor (Factor 5) was involved in numerous swaps
compared to the other factors, confirming that one too many
factors was modeled. When only four factors, the true num-
ber, were modeled for Case 3, the DISP diagnostics indicated
no factor swaps.

Assigning BS Factors to Base Case Factors. All bootstrap
factors were assigned to base case factors in 99–100 % of ev-
ery bootstrap resample for Case 1. For Case 2, the salt factor
was not consistently identified in 33 % of the resamples. This
lack of reproducibility was likely caused by two compound-
ing issues. One was that the factor was composed of just one
species, Cl, with a small amount of EC. The other was that
the factor’s contributions were defined by a few large values
that could be excluded in BS resamples. For such resamples,
this factor could be incorporated into other factors. For Case
3, all factors were reproduced in every bootstrap, except that
Factor 5 (the extra factor that is comprised of small pieces
of several species) was rarely found, confirming that one too
many factors was modeled.

Decrease in Q and swapped factors in BS-DISP.In Case
1, no swaps occurred in the initial refitting of the full data set
and no BS resamples were rejected because of swaps or large
decreases inQ. This indicates that Case 1 was a well-defined
PMF solution. For Case 2, diagnostics showed that 16 % of
the resamples exhibited large decreases inQ and 8 % con-
tained swapped factors. The large decrease inQ compared
to Case 1 is likely due to the larger data uncertainties used
in Case 2. This indicates that Case 2 was not as well de-
fined as Case 1, but there were few enough rejected resam-
ples that error estimates summarized for the accepted resam-
ples were likely reliable and robust. For Case 3, all factors

were involved in numerous swaps, indicating serious prob-
lems with the modeling and warning that interval estimates
should not be interpreted.

4.2 Analysis of synthetic data sets – interval estimate
examples

Output from DISP, BS, and BS-DISP includes interval esti-
mates for each element for each factor and diagnostics for
evaluating the trustworthiness of the interval estimates. As
discussed in Sect. 3.2, estimates of intervals are calculated as
follows: for DISP, endpoints of the uncertainty interval for a
specificF factor element are the minimum value for that fac-
tor element observed in all displacements and the maximum
value for that factor element observed in all displacements.
For BS, the endpoints of the uncertainty interval for a factor
element are the 5th and 95th percentile values for that fac-
tor element from all bootstrap resamples. For BS-DISP, each
bootstrap resample is displaced and minimum and maximum
values are calculated for each factor element as described for
DISP. Then percentiles are taken across the resamples, the
5th percentile of the minima and the 95th percentile of the
maxima, to create the final interval estimate.

Many intervals were estimated: one for each factor ele-
ment for each error method for each data set studied. Table
2 contains upper and lower interval estimates for all error
methods for a selected case, Case 2, for two selected species:
PM2.5, a species of interest across all factors (Table 2a), and
Cu (Table 2b), a typical example of a key species for iden-
tifying one of the factors. For the sake of brevity, only Case
2 is presented, since the data uncertainties for this case are
more typical for ambient measurements.
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Table 2a.Lower and upper interval estimates of PM2.5 (µg m−3) by factor for Case 2 (realistic errors) for data sets with 50 or 261 samples.

Salt factor
True PM2.5 = 0.10

Copper factor
True PM2.5 = 0.42

Soil factor
True PM2.5 = 1.82

Coal factor
True PM2.5 = 2.24

Data set with 50 samples

DISP (0.00, 0.69) (0.12, 0.62) (1.23, 1.97) (2.08, 2.49)
BS (0.06, 0.75) (0.15, 0.69) (1.16, 1.90) (1.52, 2.38)
BS-DISP (0.00, 0.85) (0.12, 0.93) (1.17, 2.48) (1.54, 2.64)

Data set with 261 samples

DISP (0.06, 0.18) (0.33, 0.59) (1.59, 1.92) (2.08, 2.36)
BS (0.10, 0.28) (0.36, 0.54) (1.56, 1.82) (1.98, 2.27)
BS-DISP (0.07, 0.32) (0.33, 0.63) (1.52, 1.99) (2.00, 2.37)

Table 2b.Lower and upper interval estimates of Cu (µg m−3) by factor for Case 2 (realistic errors) for data sets with 50 or 261 samples.

Salt factor
True Cu= 0.0000

Copper factor
True Cu= 0.0025

Soil factor
True Cu= 0.0007

Coal factor
True Cu= 0.0001

Data set with 50 samples

DISP (0.0000, 0.0001) (0.0017, 0.0022) (0.0003, 0.0009) (0.0000, 0.0003)
BS (0.0000, 0.0005) (0.0015, 0.0021) (0.0003, 0.0007) (0.0000, 0.0003)
BS-DISP (0.0000, 0.0011) (0.0012, 0.0023) (0.0001, 0.0008) (0.0000, 0.0004)

Data set with 261 samples

DISP (0.0000, 0.0001) (0.0021, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003)
BS (0.0000, 0.0001) (0.0022, 0.0024) (0.0005, 0.0007) (0.0001, 0.0002)
BS-DISP (0.0000, 0.0001) (0.0022, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003)

For PM2.5 for the data set with 50 samples, the salt fac-
tor’s overall contribution is uncertain, with possible values
ranging up to 7 times the true amount. Comparatively, the
soil and coal factors’ PM2.5 mass estimates are more robust,
with estimates ranging from about half of the true amount
to just 10 % more for DISP and BS and 20–30 % more for
BS-DISP. The copper factor is in between, with PM2.5 esti-
mates ranging from a third of the true value to 1.5 to 2 times
the true amount. The size of these intervals may seem large,
but this data set contains just 50 samples. For comparison,
intervals for the data set with 261 samples are included in
the lower halves of Tables 2a and 2b. The markedly shorter
intervals for the larger data set show the power of having
more data. Intervals estimated from the smaller data set sup-
port the idea presented in Sect. 1.6 about the sensitivity of
BS to zero values inG, as evidenced by the long BS (and
therefore BS-DISP) intervals compared to DISP. This differ-
ence nearly disappears for the larger data set, supporting the
idea presented in Sect. 1.4 that rotational uncertainty plays a
lesser role in larger data sets.

For Cu, again the intervals for the larger data set are
markedly shorter than those for the smaller data set. An-
other note is that many of the intervals do not contain the
true amount of Cu for the copper factor. That is, these error

methods do not always produce intervals that contain the true
value.

4.3 Analysis of synthetic data sets – summary of
comparisons

As seen in Table 2, different error methods can produce the
shortest interval depending on the data set. Sometimes an er-
ror method’s interval includes the true value and sometimes
it does not. Given the large number of intervals estimated,
it is challenging to determine which error method is con-
sistently producing shorter intervals or intervals that include
true values. To aid in the comparison of one error method
to another, summary statistics that aggregated over all fac-
tor elements were calculated (see Table 3). Three summaries
were calculated. One waspercent coverage, the number of
intervals containing trueF factor elements divided by total
number ofF factor elements. The second and third wereme-
dian andaverage ratiosfor intervals. These were calculated
as follows: length and midpoint of each interval for eachF
factor element were computed. Then length was divided by
midpoint to create a unitless quantity that can be compared
across factor elements of differing magnitude. Median and
average ratios were calculated across allF factor elements.
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Table 3a.Summaries ofF interval estimates for data sets with 50 observations.

Method for estimating intervals
(number of bootstraps, dQmax)

First row: summary over allF factors
Second row: summary over allF factors excluding salt
(% coverage, median and avg ratios of length to middle of interval)

Case 1. Small errors Subset 1 Subset 2

DISP (n/a, 4) 98 %, 0.82, 1.04
98 %, 0.51, 0.86

100 %, 0.74, 1.00
100 %, 0.54, 0.85

BS (300, n/a) 77 %, 0.91, 1.05
73 %, 0.57, 0.88

73 %, 0.93, 1.00
71 %, 0.62, 0.87

BS–DISP (50, 0.5) 100 %, 1.28, 1.25
100 %, 1.01, 1.08

100 %, 1.25, 1.19
100 %, 0.93, 1.05

Case 2. Realistic errors

DISP (n/a, 4) 95 %, 1.49, 1.31
96 %, 1.03, 1.15

100 %, 1.47, 1.32
100 %, 0.93, 1.16

BS (300, n/a) 78 %, 1.53, 1.36
81 %, 1.16, 1.23

81 %, 1.39, 1.24
79 %, 0.82, 1.06

BS–DISP (50, 0.5) 97 %, 2.00, 1.54
96 %, 1.59, 1.39

98 %, 1.74, 1.36
98 %, 0.98, 1.21

Table 3b.Summaries ofF interval estimates for data sets with 261 observations.

Method for estimating intervals
(number of bootstraps, dQmax)

First row: summary over allF factors
Second row: summary over allF factors excluding salt
(% coverage, median and avg ratios of length to middle of interval)

Case 1. Small errors Subset 1 Subset 2

DISP (n/a, 4) 95 %, 0.45, 0.77
94 %, 0.32, 0.69

94 %, 0.45, 0.84
92 %, 0.36, 0.71

BS (300, n/a) 75 %, 0.79, 0.99
69 %, 0.40, 0.80

56 %, 0.39, 0.78
60 %, 0.27, 0.66

BS–DISP (50, 0.5) 98 %, 0.70, 0.96
98 %, 0.53, 0.81

97 %, 0.57, 0.92
96 %, 0.45, 0.76

Case 2. Realistic errors

DISP (n/a, 4) 92 %, 0.77, 1.01
90 %, 0.49, 0.86

89 %, 0.80, 1.05
85 %, 0.47, 0.86

BS (300, n/a) 75 %, 0.44, 0.82
71 %, 0.31, 0.69

59 %, 0.58, 0.86
63 %, 0.42, 0.80

BS–DISP (50, 0.5) 91 %, 0.85, 1.05
88 %, 0.60, 0.90

83 %, 0.82, 1.05
77 %, 0.53, 0.86

To test repeatability of results, two replicates of each data
set were generated and modeled. The original data set con-
tained 783 observations. For the 261-day replicates, every
third sample was retained, starting with the first sample for
Subset 1 and the second sample for Subset 2. For the 50-day
replicates, every 15th sample was retained, starting with the
first sample for Subset 1 and the second sample for Subset 2.
DISP results are presented only if no swaps occurred and if

Q decreased minimally (less than 0.5). BS was run with 300
resamples and results are presented only for assignments of
BS factors to base case factors with uncentered correlations
of 0.80 or higher and for which only one bootstrap factor is
allowed to be assigned to each base case factor. BS-DISP was
run for 50 of the BS resamples. Summaries are formulated
only of such BS resamples in which no swaps occurred. In-
terval estimates were summarized over all factors (upper row
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in table cells) and also over all factors excluding the sea salt
factor (lower row) since modeling of bootstrapped resamples
did not always fit a factor highly correlated with the sea salt
factor (as described in Table 1). Case 3, the case in which
modeling error was introduced, was excluded from this sum-
mary analysis since diagnostics for this case indicated prob-
lems, as discussed in Sect. 4.1. Results are presented in Ta-
bles 3a and 3b.

These summaries show that percent coverage is generally
high, greater than 90 %, except for BS and for BS-DISP with
the larger data set for Case 2. Also, DISP generally provides
the shortest intervals, except for Case 2 with the larger data
set, where BS provides the shortest intervals.

Results from Subset 1 and Subset 2 are similar for DISP
and BS-DISP. Unexpectedly, BS results vary by subset. The
reason is unclear at this time, but it may have to do with the
number of zeros inG for the two subsets. For the data set
with 50 samples, Subset 1 has 3, 3, 7, and 1 zeros and Subset
2 has 1, 6, 12, and 1 zeros for coal, salt, copper, and soil fac-
tors, respectively. For the data set with 261 samples, Subset 1
has 6, 17, 27, and 8 zeros and Subset 2 has 5, 26, 44, and 7 ze-
ros for coal, salt, copper, and soil factors, respectively. It does
not take many zeros to reduce rotational uncertainty; thus,
the larger number of zeros for Subset 2 of the smaller data
set could explain the shorter intervals. The cause for lower
percentage coverages for BS for Subset 2 is unknown.

As expected and seen with the examples presented in the
previous section, it is noted that intervals are shorter for the
larger data set. This is true for all methods and both case
studies. What is not expected is that percentage coverage is
lower for the larger data set. The cause is unclear; however,
a proposed explanation is that the likelihood of excessively
long intervals is higher for smaller data sets because there
are fewer zeros inG. These excessively long intervals will in
turn result in unnaturally high coverage.

The conclusion from the analysis of these synthetic data
sets is that DISP consistently provides intervals that have
high coverage (> 90 %) and that are shorter than those pro-
vided by BS or BS-DISP. BS-DISP sometimes provides in-
tervals with higher coverage than DISP, but these intervals
are generally longer. The performance of error estimation
techniques will depend on the details of each individual data
set. Here, the differences seen for supposedly similar case
studies 1 and 2 illustrate the variability found between data
sets.

Although patterns in relative merits of the three uncer-
tainty estimation techniques are developing, applying these
inferences to all PMF analyses is premature. Variation in
characteristics of data sets (e.g., number of samples, num-
ber of zeroes inG) and modeling errors (e.g., inappropriate
number of factors, discrepancies betweensij anduij , han-
dling of values below method detection limit) may lead to
different relative merits. In order to achieve the best possi-
ble uncertainty estimations, the evaluation approach of this
paper should preferably be repeated whenever PMF error

estimation is applied to new kinds of data sets: simulations
with realistic true data patterns should be performed and mer-
its of uncertainty estimates should be evaluated. A forthcom-
ing manuscript (Brown et al., 2014) will present case studies
of ambient data and interpretation of results from the three
error estimation techniques.

5 Reporting recommendations for PMF analyses

Reff et al. (2007) performed a literature review of publica-
tions of PMF applications. The purpose of the review was
to document the numerous decisions that users of PMF must
make to perform such applications and to encourage that fu-
ture publications of PMF applications include enough details
for readers to evaluate, reproduce, or compare results be-
tween different studies. In a continuing effort to help make
the reporting of results from EPA PMF and ME-2 more sys-
tematic among researchers, we have summarized recommen-
dations on what to report while documenting uncertainty es-
timates from PMF analyses. This is not an exhaustive list,
and every data set may require that additional information
be reported. To increase the understanding of the behavior of
these uncertainty estimates with different types of data, it is
recommended that all three techniques be applied and spe-
cific details about and estimated intervals from each method
be reported. For cases where this is not possible or reason-
able, it is recommended that such reasoning be included in
the publication.

BS. Report the number of resamples analyzed and the size
of percentiles of the obtained distribution of results chosen
for error limits, e.g., 5th and 95th percentiles. Also report the
percentage of BS factors assigned to each base case factor
and the number of BS factors not assigned to any base case
factor.

DISP. Report species not displaced such as those down-
weighted, the absolute and relative decrease inQ, and the
number of factor swaps. If factor swaps occur for the small-
estdQmax , it indicates that there is significant rotational am-
biguity and that the solution is not sufficiently robust to be
used. If the decrease inQ is greater than 1 %, it likely is the
case that no DISP results should be published unless DISP
analysis is redone after finding the true global minimum of
Q.

BS-DISP. As with BS and DISP, report the number of BS
resamples analyzed, the size of percentiles chosen for error
limits, the species actively displaced, the decrease inQ, and
the number of factor swaps.

6 Conclusions

Exercises presented with synthetic data suggest that error in-
tervals estimated by DISP, BS and BS-DISP capture with
high probability profile values that truly underlie the mod-
eled observations. Numerous simulations were performed in
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addition to those reported in this work. All indicate that if
data uncertainties are known and there are no modeling er-
rors, then the DISP method consistently produces good cov-
erage of true values using the shortest possible uncertainty
intervals. In the more difficult cases where data uncertain-
ties are not well known, the bootstrap-based methods BS and
BS-DISP seem to work satisfactorily, provided that there are
no modeling errors. A solution’s stability can also be eval-
uated via the fraction of times each factor is mapped in BS
and if any swaps occur in DISP. These results provide critical
information on whether a solution should be interpreted.

The uncertainty estimation with DISP depends on the
user’s defined maximum allowed change inQ (dQmax). For
simulated data, this dependence was illustrated in this work.
For real data, mathematical derivation is impossible because
of the presence of modeling errors. Practical experience is
needed in order to understand the dependence on dQmax.
Such understanding might be attempted by partitioning a real
data set in various ways and comparing the partition-partition
variation of profiles against their DISP uncertainty estimates.
In a companion paper, to be submitted soon, several real-
data analyses will be reported. It should be noted that the
dependence of uncertainty intervals on dQmax depends on
the amount of rotational ambiguity. If the model has no ro-
tational ambiguity, then uncertainties computed by DISP are
expected to be proportional to square root of dQmax. At the
other extreme, if the rotational uncertainty is dominant, then
the computed uncertainties are expected to be almost inde-
pendent of dQmax. In EPA PMF, the DISP method is imple-
mented so that uncertainties are always computed for four
different dQmax values. In this way, the influence of dQmax

values on uncertainty estimates is easy to see for each spe-
cific data set.

In order to speed up computations, some factor elements
may be defined as passive in DISP and BS-DISP processes.
Defining some elements as passive has no influence on the
uncertainty intervals obtained for active (actively displaced)
factor elements. Uncertainty intervals for active factor ele-
ments are reliable regardless of how many and which ele-
ments are defined as passive, provided the user-provided data
uncertainties and dQmax are correct. Thus it is safe to define
uninteresting factor elements as passive in order to speed up
computations. Note though that defining a factor element as
passive will usually underestimate its computed uncertainty.
Specifically, the uncertainty for a factor element defined as
passive will be less than or equal to the uncertainty computed
for that factor element if it were defined as active. Thus factor
elements critical for associating a factor with a source should
always be defined as active.

The present work offers no quantitative results for the sit-
uations where significant modeling errors exist. It was seen
that one type of modeling error, specifying more factors than
the data support, leads to diagnostics that suggest to an at-
tentive PMF user that there are too many factors. However,
it is not currently known whether diagnostics will be as clear

if multiple modeling errors are present. For example, censor-
ing a large number of values below detection limit, another
type of modeling error, may invalidate uncertainty analysis
by BS, DISP, and BS-DISP.

It was seen that some data sets produce large rotational
uncertainties for some or all factors so that interval estimates
may extend down to zero even for some of the defining “key”
species. In such cases, factor identities may become fluid,
often indicated by factor swaps. The obtained uncertainty in-
tervals are then imprecise because of the difficulty of defin-
ing the borderline between rotations and swaps. Although the
methods will correctly indicate that uncertainties are large,
they may not produce quantitative results for these large in-
tervals. On the other hand, this “weakness” caused by factor
swapping may not be important in practical work. Simply
put, it does not matter whether uncertainty is rather large or
very large.

When interpreting large uncertainties, there is a concep-
tual issue that warrants highlighting. Suppose a factor is as-
sociated with a known source or sources based on the initial
computed composition. For example, suppose factor F1 is
identified as “Diesel vehicles” based on a high value of EC.
Now suppose that the estimated uncertainty for EC for fac-
tor F1 shows that there may be low or no EC apportioned
to the factor. This would then call into question the asso-
ciation of this factor with the postulated source. Therefore,
when discussing uncertainties, they should be called uncer-
tainties in factor F1, not uncertainties in the diesel factor. If
the uncertainties are small enough that the source or sources
associated with a factor are not called into question, then it
is reasonable to refer to the uncertainties as uncertainties in
the source profile. When reporting results, it is important to
document each factor for which the size of the uncertainties
calls into question the source or sources initially associated
with that factor.

If large uncertainties are obtained for a PMF solution, the
next step is for the analyst to determine whether physical-
chemical arguments can be applied to reduce the variability
of the results. Different constraints can be defined, for exam-
ple, by constraining certainG or F factor elements to be zero
(Paatero et al., 2002). Narrower uncertainty intervals will be
obtained. However, no results from such experiments are in-
cluded in this work.

It has been customary to report uncertainties in the sym-
metric form, as “best fit± uncertainty”. In the present case,
such a formulation is not adequate since uncertainty intervals
need not be symmetric. Uncertainties should be reported in
an unsymmetrical formulation, for example, as “best fit+

u − d” whereu andd represent the width of interval up and
down from best fit, respectively. It should be noted that these
intervals are not standard deviations of “errors”. Rather, their
nature is that of “Confidence Intervals”, meaning that with a
high (albeit often unknown) probability, the intervals contain
the unknown true values.
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The addition of DISP and BS-DISP capabilities in EPA
PMF and ME-2 will help users better understand sources of
variability in their PMF results. Such understanding may in-
clude identifying samples that are highly influential in the
error estimation, identifying species for which user-provided
data errors are too low or too high, or determining that too
many factors have been modeled. Using DISP, BS, and BS-
DISP as a suite of techniques for estimating uncertainty in
PMF solutions can be more illuminating than using just one
technique, much as using multiple receptor models to ana-
lyze a data set can provide more insight into the solution than
using just one.

Comparing merits of different estimation principles is not
straightforward, because widely varying characteristics are
inherent in data sets and numerous types of modeling errors
may occur. For the synthetic data developed for this work, it
was seen that BS had longer uncertainty intervals and lower
coverage, DISP had shorter uncertainty intervals and higher
coverage, and BS-DISP had high coverage with uncertainty
interval lengths between those of BS and DISP. This suggests
that DISP and BS-DISP are better at assessing uncertainty
than BS.

Supplementary material related to this article is
available online athttp://www.atmos-meas-tech.net/7/
781/2014/amt-7-781-2014-supplement.pdf.

Disclaimer. The United States Environmental Protection Agency
through its Office of Research and Development funded and collab-
orated in the research described here under contract EP-D-09-097
to Sonoma Technology, Inc. It has been subjected to Agency review
and approved for publication.
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