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Abstract. Insights are given into Tikhonov regularization
and its application to the retrieval of vertical column densi-
ties of atmospheric trace gases from remote sensing measure-
ments. The study builds upon the equivalence of the least-
squares profile-scaling approach and Tikhonov regulariza-
tion method of the first kind with an infinite regularization
strength. Here, the vertical profile is expressed relative to a
reference profile. On the basis of this, we propose a new al-
gorithm as an extension of the least-squares profile scaling
which permits the calculation of total column averaging ker-
nels on arbitrary vertical grids using an analytic expression.
Moreover, we discuss the effective null space of the retrieval,
which comprises those parts of a vertical trace gas distribu-
tion which cannot be inferred from the measurements. Nu-
merically the algorithm can be implemented in a robust and
efficient manner. In particular for operational data process-
ing with challenging demands on processing time, the pro-
posed inversion method in combination with highly efficient
forward models is an asset. For demonstration purposes, we
apply the algorithm to CO column retrieval from simulated
measurements in the 2.3 µm spectral region and to O3 col-
umn retrieval from the UV. These represent ideal measure-
ments of a series of spaceborne spectrometers such as SCIA-
MACHY, TROPOMI, GOME, and GOME-2. For both spec-
tral ranges, we consider clear-sky and cloudy scenes where
clouds are modelled as an elevated Lambertian surface. Here,
the smoothing error for the clear-sky and cloudy atmosphere
is significant and reaches several percent, depending on the
reference profile which is used for scaling. This underlines
the importance of the column averaging kernel for a proper

interpretation of retrieved column densities. Furthermore, we
show that the smoothing due to regularization can be under-
estimated by calculating the column averaging kernel on a
too coarse vertical grid. For both retrievals, this effect be-
comes negligible for a vertical grid with 20–40 equally thick
layers between 0 and 50 km.

1 Introduction

Measurements of the vertically integrated column density
of atmospheric trace gases are primarily obtained by re-
mote sensing techniques from the ground and space. From
space, global information about the vertically integrated col-
umn density of atmospheric trace gases was obtained by
the following studies. In the ultraviolet, radiance measure-
ments of several spaceborne spectrometers (e.g. the Solar
Backscattered Ultra Violet (SBUV) instrumentBhartia et al.
(2013), the Global Ozone Monitoring Experiment (GOME)
Burrows et al.(1999), and the Scanning Imaging Absorp-
tion Spectrometer for Atmospheric Chartography (SCIA-
MACHY) Bovensmann et al.(1999)) have demonstrated the
unique ability to measure the vertically integrated column
density of several trace gases (e.g. NO2 Richter and Bur-
rows (2002) and O3 Lerot et al.(2010)). In the short-wave
infrared, nadir-viewing measurements of SCIAMACHY and
the Greenhouse Gases Observing Satellite (GOSAT) pro-
vide information on the total column of CH4 and CO2
(Frankenberg et al., 2006; Butz et al., 2011; Schepers et al.,
2012; Frankenberg et al., 2011). In addition, SCIAMACHY
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measurements around 2.3 µm are used to retrieve the to-
tal column densities of CO (Buchwitz and Burrows, 2004;
Gloudemans et al., 2008; Frankenberg et al., 2005). From
the ground, long-term measurements of vertically integrated
column densities of atmospheric trace gases have been per-
formed in the ultraviolet (UV), visible (VIS), short-wave in-
frared (SWIR) and mid-infrared (mid-IR) ranges by Dobson
and Brewer, differential optical absorption spectroscopy
(DOAS), and Fourier transform infrared (FTIR) spectrom-
eters. The atmospheric abundance of several trace gases are
retrieved (e.g. O3 (Schneider et al., 2008; Barret et al., 2002),
HNO3 (Vigouroux et al., 2007; Griesfeller et al., 2005),
CO (Yurganov et al., 2005, 2004; Borsdorff and Sussmann,
2009; Rinsland et al., 2002; Pougatchev and Rinsland, 1995),
CO2 (Yang et al., 2002), and CH4 (Angelbratt et al., 2011;
Washenfelder et al., 2003)). For the SWIR and mid-IR range,
these measurements are provided by the Network for the De-
tection of Atmospheric Composition Change (NDACC) In-
frared Working Group (IRWG) and the Total Carbon Column
Observing Network (TCCON).

A trace gas column retrieval represents a typical inversion
problem of atmospheric remote sensing with limited verti-
cal sensitivity. For measurements with a sensitivity limited to
the total column abundance of a trace gas, an unregularized
profile retrieval would infer a vertical distribution which is
dominated by the contribution of measurement noise. Thus,
the profile inversion problem is ill-posed and requires reg-
ularization to obtain a stable solution. In practice, there are
two common ways to regularize the least-squares solution.
First, a vertical trace gas profile is retrieved using a Tikhonov
regularization approach or optimal estimation to stabilize the
inversion. Due to the regularization, the retrieved profile es-
timates a smoothed version of the true profile, where the
smoothing is described by the so-called profile averaging ker-
nel. Subsequently, the retrieved profile and the profile averag-
ing kernel are vertically integrated. By that, an analytical ex-
pression is given for the so-called column averaging kernel. It
describes the sensitivity of the retrieved column with respect
to changes of the true vertical trace gas distribution as a func-
tion of altitude and is defined by corresponding derivatives.
In an ideal case, the column averaging kernel represents a
geometrical integration of the true trace gas profile, whereas
in practice it describes a vertically weighted height integra-
tion. Here, the weights of the integration are mainly due to
atmospheric scattering and the temperature dependence of
atmospheric absorption. Hence, for the further usage of the
retrieved trace gas columns (e.g. for assimilation or valida-
tion) it is essential to account for the total column averaging
kernel to prevent misinterpretations. Despite its theoretical
advantages, only a few retrieval algorithms derive trace gas
columns and the according total column averaging kernels
via a profile retrieval.

Second, more frequently used is a regularization approach
which is known as profile scaling. Here, for a represen-
tative vertical profile, a scaling factor is determined by a

standard least-squares fit. For the interpretation of satellite
observations, this technique is employed by, for example,
Gloudemans et al.(2008) for CO column retrieval from
SCIAMACHY measurements in the short-wave infrared at
around 2.3 µm and byLerot et al. (2010) for ozone col-
umn retrieval from GOME-2 measurements. Furthermore,
this method is the official retrieval approach for the consid-
ered species of the TCCON network. The retrieval approach
is capable of producing column measurements of trace gases
with high precision, which even fulfils the strict requirements
of the TCCON network (Wunch et al., 2010). The implemen-
tation of this approach is straightforward and its numerical
performance is beneficial with respect to computation time.
Its main drawback is the lack of the corresponding column
averaging kernel.Buchwitz and Burrows(2004) estimated
the column averaging kernel for the profile-scaling retrieval
by a numerical perturbation of a least-squares fitting. Al-
though valid in general, such an approach can only be ap-
plied to a few cases which are assumed to be representative
of the overall retrieval product. Furthermore, the accuracy of
the numerical perturbation requires careful tuning of the per-
turbation strength and may result in numerical instability.

The studies ofvon Clarmann and Grabowski(2007) and
Sussmann and Borsdorff(2007) showed that the profile-
scaling approach represents a particular form of a Tikhonov
profile retrieval for an infinite regularization strength. De-
spite all the advantages of these types of algorithms includ-
ing an expression for the averaging kernel, it relies on a full
profile retrieval withn layers and for practical applications,
in its limit of the regularization strength, the risk of numer-
ical instabilities is involved. Therefore, an operational im-
plementation of this approach would negate the computa-
tional advantage of the original profile-scaling method. For
the DOAS,Eskes and Boersma(2003) derived a method to
determine column averaging kernels which is applicable for
optically thin absorbers. A corresponding method for a col-
umn retrieval using profile scaling has not yet been reported.

In this study, we present a concept for the retrieval of verti-
cally integrated column densities of atmospheric trace gases
from remote sensing measurements with a sensitivity limited
to the total column of a trace gas. The approach relies on fit-
ting the total column of a trace gas by a least-squares scaling
of a reference profile and provides, in addition, an analyt-
ical expression for the column averaging kernel. However,
the approach preserves all advantages of a robust numeri-
cal implementation of the least-squares scaling approach. It
combines the advantages of both regularization strategies,
providing an analytical expression for the column averag-
ing kernel with a straightforward numerical implementation.
Due to that, it is suited in particular for operational data pro-
cessing in combination with highly efficient radiative transfer
simulations. The paper is structured as followed: Sect.2.1
provides the retrieval framework of the study, and summa-
rizes Tikhonov regularization of first order, and Sect.2.2
discusses the generalized singular value decomposition for
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the clear representation of the regularized solution. This al-
lows us to discuss the profile-scaling approach in the context
of Tikhonov regularization of first order in Sect.2.3, which
leads us to the aspired formulation of the column averaging
kernel. The application to CO and O3 column retrieval is dis-
cussed in Sect.3, which provides further insights into the in-
terpretation of the profile-scaling approach. The same section
addresses the representation error of the column averaging
kernel. Finally, Sect.4 gives an outline of our findings about
Tikhonov regularization. The new approach to calculate to-
tal column averaging kernels for profile-scaling retrievals is
summarized and its practical relevance is discussed. For the
CO and O3 total column retrieval, the significance of the
smoothing errors is analysed, and we conclude about the rep-
resentation error of the total column averaging kernel.

2 Inversion problem solved by regularization

2.1 Tikhonov regularization

Tikhonov regularization is a common method to regular-
ize ill-posed inversion problems (Phillips, 1962; Tikhonov,
1963a, b; Twomey, 1963), and in this section we summa-
rize its general concept. To retrieve information about the
abundance of an atmospheric trace gas from a measurement
ymeasof spectral dimensionm, we employ a forward model
F which describes the measurement within the spectral error
ey , namely

ymeas= F (x) + ey . (1)

Then dimensional state vectorx represents the vertical dis-
tribution of a trace gas. A further specification ofx ory is not
required. After a Taylor expansion ofF around a first guess
profilex0, Eq. (1) can be written as

y = K x + ey (2)

with y =ymeas− F (x0) + K x0 and the Jacobian or kernel
matrix K = ∂F/∂x(x0). Furthermore, we assume that the
measurement noise is described by a non-singular measure-
ment error covariance matrixSe∈ Rm×m. The retrieval of a
trace gas abundance involves finding a state vectorx̂ which
reproduces the measurementy within its error via the for-
ward modelF . For a remote sensing application with a sen-
sitivity limited to the total column of a trace gas, the inver-
sion of Eq. (2) represents an ill-posed problem, and thus the
standard least-squares solution

x̂ = min
x

{‖S−1/2
e (K x − y)‖2

2 (3)

is not unique. To explain this in more detail, we apply a sin-
gular value decomposition (SVD) to the JacobianK , K =

U6VT , and so Eq. (2) can be written as

y =

N∑
i=1

σi(v
T
i x)ui + ey, (4)

whereui and vi are the column vectors of matrixU and
V and the singular valuesσi form the diagonal of matrix
6. For a discrete ill-posed problem, the singular values can
be always ordered such that they decay gradually to zero.
This means that from a certain indexn the singular values
are so small that corresponding terms in Eq. (4) do not sig-
nificantly contribute to the simulated measurement consid-
ering the measurement noiseey . Consequently, any attempt
to determine these contributions infers predominately mea-
surement noise which is amplified in the inversion due to the
small singular values. In analogy to the null space of a singu-
lar linear problem,Hasekamp and Landgraf(2001) refer to
the effective null space, i.e. the part of the state space about
which no information can be inferred from the measurement.
Thus to reduce the noise propagation on the solution, the
least-squares solution has to be regularized. For this purpose,
we employ the Tikhonov regularization technique (Phillips,
1962; Tikhonov, 1963a, b; Twomey, 1963), and thus the in-
verse problem can be formulated as a minimization problem
of the following cost function:

x̂reg = min
x

{‖S−1/2
e (K x −y)‖2

2 +λ2
‖Ln−p(x −xa)‖

2
2}, (5)

where‖ · ‖2 represents theL2 norm. The rationale for the
side constraint in Eq. (5) is to reduce the noise propagation
on the solution and at the same time to extract as much in-
formation as possible from the measurement. Here, the dif-
ference between the state vectorx and an a priori state vec-
tor xa is weighted by a smoothing operatorLn−p ∈ Rp×n,
the so-called regularization matrix (Hansen, 1998). The sub-
scriptn−p indicates the degree of the corresponding deriva-
tive. Generallyxa differs from the linearization pointx0 of
the forward model. As an alternative to the side constraint
in Eq. (5), one may choose the side constraintλ2

‖Ln−p x‖
2.

Common regularization matrices are the unity matrixL0 = I
or a discrete version of the first derivative:

L1(i, j) =

1 if i = j

−1 if i = j − 1
0 otherwise

. (6)

The regularization parameterλ balances the two contribu-
tions of the cost function shown in Eq. (5) and thus its value
is of crucial importance for the inversion. Ifλ is chosen too
large, the noise contribution to the solution of the measure-
ment is low, but the least-squares residual norm deviates sig-
nificantly from its minimum. On the other hand, ifλ is cho-
sen too small, the measurement is fitted well but the solution
norm is high, and therefore the solution is overwhelmed by
noise. Thus,λ should be chosen such that the two contribu-
tions of the cost function are well balanced. In fact, finding
an appropriate value forλ comes along with the definition of
the effective null space of the retrieval and frequently the L-
curve method (Hansen, 1992, 1993) is used for this purpose.

www.atmos-meas-tech.net/7/523/2014/ Atmos. Meas. Tech., 7, 523–535, 2014



526 T. Borsdorff et al.: Remote sensing of atmospheric trace gas columns

Formally, the solution of Eq. (5) can be expressed by the
gain matrixGreg,

x̂reg = xa + Gregy (7)

with

Greg =

(
KT S−1

e K + λ2
· LT

n−p Ln−p

)−1
KT S−1

e . (8)

Due to the regularization, the retrieved profilêx is a
smoothed version of the true profilextrue. The smoothing can
be characterized by the averaging kernel,

A =
∂x̂

∂xtrue
= GregK , (9)

and thus the retrieved state vectorx̂reg in Eq. (7) can be writ-
ten as

x̂reg = A xtrue + (I − A)xa + ex, (10)

whereex = Gregey represents the error on the retrieved trace
gas profile caused by the errorey on the measurement. The
averaging kernelA smoothes a profile such thatA xtrue is
the part of the solution which is determined from the mea-
surement. However, (I − A) is the part of the state space to
which the measurement, and thus the retrieval, is effectively
not sensitive. Thus, the term (I − A)xa describes the effec-
tive null space contribution of the a priori profilexa. It is
also known as the smoothing error of the retrieval. As stated
before, the definition of the effective null space depends on
an appropriate chosen regularization parameterλ.

In the following, we use the side constraintλ2
‖Ln−p x‖

2.
Equation (10) reduces to

x̂reg = A xtrue + ex (11)

and hence does not include an effective null space contribu-
tion. This representation of the data product is beneficial for
its use in data assimilation schemes because it eases the as-
similation of observations. When an estimate of the effective
null space contribution is needed, it can always be added to
the retrieved state vector after the inversion (Rodgers, 2000).
For this reason, we ignore this contribution in the following.

For a proper error characterization of the inversion, the re-
trieval error covariance matrixSx is needed. It can be calcu-
lated from the measurement covariance matrixSy by

Sx = GregSy GT
reg. (12)

The column densitŷc of a trace gas is defined by vertical
profile integration, namely

ĉ = CT x̂reg, (13)

whereC = (f1, . . . ,fn) approximates the corresponding in-
tegration. Here,fk converts the elementxk of the retrieved

state vector to the partial column amount of the trace gas in
model layerk. The particular form offk depends on the units
of state vectorx and on the chosen vertical grid. Using this
formulation, we can characterize the effect of regularization
on the column̂c via

ĉ = Acxtrue + ec, (14)

whereAc = CT A is the column averaging kernel andec is
the error on the retrieved column. The corresponding ef-
fective null space contribution of an a priori profilexa is
(C − Ac)xa. The retrieval noise on the retrieved column is
given by the standard deviation

σc =

√
CT Sx C. (15)

In this manner, all diagnostic tools suited for the retrieval of
the state vector̂x can be transformed to the corresponding
diagnostics for the retrieved columnĉ.

2.2 A general analytic form for the solution

To study the analytic solution̂x in Eq. (7), we first transform
the cost function (Eq.5) into a uniform noise representation
by substitutingK̃ = S−1/2

e K andỹ = S−1/2
e y, which yields

x̂ = min
x

{‖K̃ x − ỹ‖
2
2 + λ2

‖Ln−px‖
2
2} (16)

or

x̂ = G̃regỹ (17)

with

G̃reg =

(
K̃T K̃ + λLT

n−p Ln−p

)−1
K̃T . (18)

This equation can be simplified using the general single-
value decomposition (GSVD) of the matrix pair (K̃ , Ln−p)
(e.g.Hansen, 1992). Form ≥ n ≥ p, the GSVD of the matrix
pair (K̃ , Ln−p) is

K̃ = UDK W−1

Ln−p = VDL W−1, (19)

where the non-singular matrixW−1
∈ Rn×n represents a new

basis of the state space in which both matricesK̃ andLn−p

can be represented as the diagonal matricesDK ∈ Rn×n and
DL ∈ Rp×n. U ∈ Rm×n and V ∈ Rp×p are the correspond-
ing back projections with orthonormal columnsui and vi ,
respectively. Therefore, the equationsUT U = I , VT V = I ,
K̃T K̃ = W−T D2

K W−1, and LT
n−p Ln−p = W−T DT

L DL W−1

are valid. The matricesDK , DL are both diagonal matrices
of the form

DK =

(
6 0
0 In−p

)
, DL = (M , 0), (20)

where6 = diag (σ1, . . .σp), M ∈ Rp×p hold the correspond-
ing singular values of (̃K , Ln−p) andIn−p ∈ R(n−p)×(n−p) is
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the unity matrix. As a result, the column vectorswi of W for
i =p+1, . . .n span the null space of the regularization matrix
Ln−p,

N
(
Ln−p

)
= span{wi, with i = p + 1, . . . n} . (21)

N
(
Ln−p

)
should not be confused with the effective null

space of the retrieval as is defined in the previous section.
With this decomposition, we can rewrite the gain matrix in

Eq. (18) as

G̃reg = W
(
8D−1

K UT
)

(22)

with the diagonal matrix8 = (D2
K + λDT

L DL)−1D2
K . Equa-

tion (18) can also be represented as a linear combination of
the column vectorwj of W since8j,j = 1 if j >p, namely

G̃reg =

p∑
j=1

8j,j ·
wj uT

j

σj

+

n∑
j=p+1

wj uT
j . (23)

The filter factor matrix8 reveals how the retrieval result
is affected by the regularization strength parameterλ. By
choosingλ = 0, the filter factor matrix becomes8 = I , and
therefore

G̃reg =

p∑
j=1

wj uT
j

σj

+

n∑
j=p+1

wj uT
j . (24)

This is the gain matrix of the unregularized least-squares
fit. By choosingλ → ∞, the matrix8j,j = 0 if j ≤ p and
8j,j = 1 if j >p. Therefore, the gain matrix becomes

G̃reg =

n∑
j=p+1

wj uT
j . (25)

That means that the solution space of the minimization prob-
lem is equal to the null spaceN(Ln−p) of the regulariza-
tion matrix. In other words, no state vector of the null space
N(Ln−p) is affected by the smoothing of the averaging ker-
nel, i.e.

x = A x for x ∈ N
(
Ln−p

)
and for λ → ∞ (26)

and so

traceA = n − p for λ → ∞, (27)

which is commonly known as the degrees of freedom of the
retrieval.

2.3 Profile-scaling retrieval and the total column
averaging kernel

Profile-scaling retrievals are widely used as described in
Sect.1. Here, a scaling factor of a reference profile is inferred
from a measurement via an unregularized least-squares fit. It

is important to distinguish the reference profile from an a
priori profile which is used to fill up the effective null space
(see Sect.2.1). It will be shown later that the reference profile
does not have an effective null space contribution. So alge-
braically, the reference profile cannot be used to fill up the
effective null space of the retrieval. The inversion relies on a
one-parameter least-squares fit of the scaling factorxlsq with
the gain matrix

glsq =

(
KT

lsqS−1
e K lsq

)−1
KT

lsqS−1
e (28)

and the Jacobian vectorKT
lsq∈ Rm. This inversion does not

provide an analytical approach to calculate the total column
averaging kernel. It can be calculated by considering the
profile-scaling approach as a particular case of Tikhonov reg-
ularization of first order forλ → ∞ with the gain matrix

G̃reg = wj uT
j (29)

for p =n − 1 in Eq. (25). Here, state vectorx is defined as
the ratio of the trace gas profileρ with respect to a reference
profileρref, thus

x = ρ/ρref. (30)

In the following, we show that, although different in di-
mension, both gain matricesglsq and G̃reg represent the
same solution of the inverse problem. The solution, given
by the gain matrix G̃reg in Eq. (29), lies in the null
space of the regularization matrixL1, which is given by
N(L1) = span ({[111 . . . 1]

T
}). Thus, the null space ofL1

consists of all state vectors which are constant in altitude, and
so the gain matrixG̃reg maps a measurementy to identical
element of the state vector. In our case, this is the scaling pa-
rameter of the reference profileρref. Consequently, the rows
g1, . . . ,gn of G̃reg are identical,g1 =g2 = . . . = gn. Further-
more, because the scaling parameter of the regularization
scheme is also retrieved by the one-parameter least-squares
fit, we obtain

gi = glsq for i = 1, . . . , N. (31)

Through this, we can define an analytic method to cal-
culate the total column averaging kernel of a profile-scaling
retrieval in an efficient and numerically stable way. Further-
more, this method is also valid for constrained profile-scaling
retrievals since those also fulfil the requirement that any state
vector must be part ofN(L1) and therefore also constant in
altitude. The method can be summarized in three steps:

1. The scaling of a reference profile is retrieved using a
standard least-squares fit with associated gain matrix
glsq.

2. On any arbitrary height grid withn = 1, . . . ,N model
layers, the gain matrixG̃ = (g1, g2, . . . ,gn)

T of
Tikhonov regularization of the first kind is given by
glsq with g1 =g2 = . . . = gn =glsq.
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3. This defines the averaging kernel in Eq. (9), and so the
total column averaging kernel in Eq. (14) is given by

Acol,j = glsqkj

N∑
k=1

fk. (32)

with the column vector kj of the Jacobian
K = (k1, . . . ,kN ) and the conversion factors

fk = 1zk ρref,k; (33)

here,1zk is the geometrical thickness of model layer
k, and the physical units of the reference profileρref
determine the units of the column densityĉ.

The computational cost of our approach is significantly
less than the one of the more established methods which re-
lies on strongly regularized profile retrieval (e.g.Sussmann
and Borsdorff, 2007). To compare the numerical cost of
both methods, we consider the number of multiplications
which have to be performed in one iteration step of the
inversion. Faster operations like summations are ignored.
For simplicity, we assume that a matrix multiplication of
a n × m matrix with a m × m matrix requiresnm2 opera-
tions and the inversion of an×n matrixn3 operations where
dim(y) = m and dim(x) = n. We ignore the inversion of the
matrix S because this is trivial for uncorrelated measure-
ments noise. Our proposed approach needs a total number
of (4m+mn+1) multiplications to do the profile-scaling re-
trieval and to calculate the associate total column averaging
kernel. In contrast, the strongly regularized profile retrieval
requires (2mn+3nm2

+n3) multiplications. We consider two
particular cases: (1)m � n, which means that the number of
measurement points clearly exceeds number of parametersn

that are actually retrieved, and (2), the case withm = n. In
case 1 our proposed approach is a factor of 3n faster than the
regularized profile retrieval, and in case 2 even a factor of 4n.
For a typical representation of a profile onn = 20–40 layers,
this means a speed-up of the inversion by a factor of up to
160. This numerical advantage of the new inversion scheme
becomes particularly important in the context of operational
data processing, when the computational burden of the ra-
diative transfer model is of the same order or smaller than
that of the inversion. For the CO retrieval from the SWIR
spectral region, which is introduced in the following chapter,
we found that a profile inversion requires about half of the
time spent for the forward calculation and that our proposed
method reduces this to less than 1 % of the time required for
the non-scattering forward calculation (n = 40 vertical lay-
ers).

To summarize, the presented approach for calculating
the total column averaging kernel relies on the numerical
implementation of a one-parameter least-squares fit. It is
favourable with respect to both numerical implementation
and robustness. Furthermore, it provides a straightforward

manner with which to adapt existing algorithms for profile-
scaling retrieval with minor modifications. The new concept
also helps to further develop the results of other studies. For
example, it eases the calculation of interference errors as
presented bySussmann and Borsdorff(2007) since interfer-
ence kernels in the profile-scaling case can now be calcu-
lated directly with an analytical expression without simulat-
ing those retrievals first via a Tikhonov regularization of the
first kind. This enables the possibility of including such er-
ror estimations in the standard output of operational retrieval
algorithms.

3 Applications

In this section, we apply the proposed method for total col-
umn retrieval by profile scaling to two specific satellite re-
mote sensing problems in order to illustrate the general fea-
tures of this kind of retrieval. Moreover, we demonstrate the
overall need for the column averaging kernels to correctly in-
terpret the column density retrieved from the measurement.
First, we will consider the retrieval of the vertical column
density of carbon monoxide (CO) from simulated measure-
ments in the 2.3 µm SWIR spectral region. This spectral
range is used to determine atmospheric CO abundances from
SCIAMACHY SWIR measurements (Gloudemans et al.,
2008; Buchwitz and Burrows, 2004, and references therein)
and will also be probed by the TROPOMI instrument as pay-
load of the Sentinel 5 Precursor mission (Veefkind et al.,
2012), scheduled for launch in 2015. As a second example,
we will consider the retrieval of the vertical column den-
sity of ozone (O3) from simulated ultraviolet (UV) measure-
ments as they are done by several spaceborne spectrome-
ters, like GOME (Burrows et al., 1999), GOME-2 (Callies
et al., 2000), SCIAMACHY (Eskes et al., 2005), OMI (Lev-
elt et al., 2006), and TROPOMI (Veefkind et al., 2012). For
this purpose, we assume a nadir-viewing geometry of re-
flected sunlight with a viewing zenith angle of VZA = 0◦ and
a solar zenith angle of SZA = 45◦. For SWIR we assume a
typical surface albedo of 0.05 and for the UV retrieval a
surface albedo of 0.1. The measurements are simulated for
clear-sky and cloudy conditions, where clouds are described
by an elevated Lambertian surface at 7.5 km altitude with a
cloud albedo of 0.5 for SWIR and 0.8 for UV. For partially
cloudy scenes the independent pixel approach (e.g.Marshak
et al., 1995) is employed with a cloud fractionfcld. The
model atmosphere is adapted from the US standard atmo-
sphere (NOAA, 1976). Figure1 shows the simulated mea-
surement under clear-sky conditions for the retrieval win-
dows 2324.5–2338.38 nm for CO and 325.04–334.91 nm for
O3. For the SWIR window, we account for atmospheric ab-
sorption by CO, H2O, HDO, and CH4. In the UV window, O3
is considered as the only relevant absorber. For this particular
example the forward model of the O3 retrieval accounts for
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Fig. 1.Simulation of solar absorption spectra.(a) CO retrieval win-
dow 2324–2339 nm simulated with a spectral resolution of 0.25 nm
using HITRAN 2008 spectroscopy (Rothman et al., 2003). The ab-
sorptions of the interfering species HDO, H2O, and CH4 are sep-
arated.(b) The corresponding O3 retrieval window 325–335 nm,
which employs theBrion et al.(1993) line list database. All sim-
ulations are performed for clear-sky conditions and a solar zenith
angle of 45◦ and a viewing zenith angle of VZA = 0◦.

scattering, and the one for the CO retrieval is a non-scattering
code.

All species in this study are retrieved using the profile-
scaling approach described in the previous section. CO is
retrieved together with the interference species H2O, HDO,
and CH4 to reduce the interference effect caused by the over-
lapping absorption lines (Sussmann and Borsdorff, 2007;
Borsdorff and Sussmann, 2009; Pougatchev and Rinsland,
1995; Rinsland et al., 2002; Rodgers and Connor, 2003).
Ozone is inferred without accounting for further atmospheric
absorbers. For both retrievals, the measurement noise is
assumed to be shot noise with a signal-to-noise ratio of
SNR = 100 at the maximum value of the spectrum. More-
over, we also use the profileρtrue that is used to simulate the

measurement spectra as the linearization point for the for-
ward calculationx0 =ρtrue. Thus an iterative inversion ap-
proach is not needed to account for the non-linearity of the
forward model. Throughout this study, the US standard at-
mosphere profile will serve as the reference profileρref in
Eq. (30). Hence, the total column averaging kernels of the
retrievals are calculated for the true state of the atmosphere
ρtrue and reflect the vertical sensitivity of a profile-scaling
retrieval which scales the corresponding US standard profile
ρref.

The resulting total column averaging kernels for the CO
and O3 retrieval are shown in Fig.2. Here, we assume that
the vertical profile contains partial column densities of the
individual layers as its components, which implies that the
conversion factor in Eq. (33) is fk = 1. This representation
eases the interpretation and is commonly used in the liter-
ature (e.g.Notholt et al., 2000; Borsdorff and Sussmann,
2009; Rodgers and Connor, 2003). The column averaging
kernels differ from the ideal casẽAc = (1, 1, . . . ,1)T , where
Ãcxtrue= ctrue. For the clear-sky CO retrieval,̃Ac < 1 below
5.7 km altitude and̃Ac > 1 at higher altitudes. The ozone to-
tal column averaging kernel shows a more complex shape,
with values above and below 1. Only in the range between
21.5 and 29.5 km is it close to its ideal value of unity. For the
cloudy case, the retrieved column loses sensitivity to the at-
mosphere below the cloud but at the same time shows an en-
hanced retrieval sensitivity above the cloud. This is a typical
feature of a profile-scaling approach, and it can be explained
most easily for the fully clouded scene with cloud fraction
unity. In this case, the total column is determined by the scal-
ing of the reference profile using only the sensitivity above
the cloud, and thus a change of the trace gas concentration at
these altitudes affects the retrieval twice. First, the profile is
adapted above the cloud due to the measurement sensitivity
and second also below the cloud, although the measurement
is not sensitive to this altitude range. This explains the en-
hanced value of the column averaging kernel above the cloud
and also its dependence on cloud height (not shown). The
same rationale is true for the clear-sky and partially cloudy
cases, where the altitude ranges of reduced retrieval sensitiv-
ity are compensated for by enhanced averaging kernel values
at other altitudes. For particular profiles, the differences in
the averaging kernel will add up such that the retrieved col-
umn is equal to the true column. Due to Eq. (26), this is only
the case for profiles that can be expressed as a scaling of the
reference profileρref, and so the corresponding state vector
x is element of the null spaceN(L1). Any other profile has
an effective null space contribution, which means that the re-
trieved column is affected by a smoothing error and differs
from the true column.

In case that a data product is required that represents an
estimate of the true trace gas column, generally one aims to
fill up the effective null space using a proper a priori knowl-
edge of the true profile, (C − Ac)xa. One may interpret this
term as a correction to the retrieval because the reference
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Fig. 2. Total column averaging kernels̃AC of the CO(a, b) and O3 (c, d) profile-scaling retrieval as function of altitude for different cloud
fraction. In the forward calculation a Lambertian surface with albedo 0.5 for SWIR and 0.8 for UV is placed at an altitude of 7.5 km.
Measurement geometry and surface albedo are the same as in Fig.1. The kernels are presented on a vertical grid with 512 equidistant layers.

profile does not represent the true relative distribution of the
trace gas. For example, during the processing of an oper-
ational retrieval, only a rough estimate of the relative pro-
file is possible. At a later stage, due to sophisticated chem-
ical transport modelling, the estimate can be improved, and
so without reprocessing the measurements, the effective null
space contribution of the model results can be used to cor-
rect the retrieval. In this context, it is interesting to note that

the reference profile cannot be used for this purpose because
of its vanishing contribution to the effective null space (see
Eq. 26). The same holds for any scaled version of the refer-
ence profile.

Thus, the smoothing error (C − Ac)ρtrue of the scaling ap-
proach corresponds to the error when the retrieved column
is assumed to be an estimate of the true column. To esti-
mate the relevance of the effective null space contribution,
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Fig. 3. Ensemble of CO and O3 volume mixing ratio profiles.
(a) CO profiles for polluted and unpolluted situations adapted from
Levelt et al.(2009) and the CO profile taken from the US standard
atmosphere (NOAA, 1976). (b) Two O3 radiosonde measurements
at de Bilt, the Netherlands, with high (16 February 2007) and low
stratospheric O3 (19 February 2008). Additionally, the US standard
atmosphere ozone profile is depicted.

we consider measurement simulations for the set of CO and
O3 profiles shown in Fig.3. The data set comprises a back-
ground and a polluted CO profile, two ozone profiles with
low and high stratospheric ozone concentrations, and, addi-
tionally, both ozone profiles with an enhanced ozone mix-
ing ratio of 120 ppb for all layers below 2.5 km (not shown),
which mimics enhanced ozone concentration in the tropo-
spheric boundary layer. Here, all profiles are scaled to the
same vertical column density, and as such they differ only in
their relative vertical distribution (not shown in Fig.3). For
the retrieval, the US standard profile is employed as the ref-
erence profileρref for scaling.

For the different atmospheric profiles, Tables1 and2 sum-
marize the smoothing error (C − Ac)ρtrue of the total column
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Fig. 4. Smoothing error for cloudy scenes as a function of cloud
fraction: (a) CO smoothing error for the background and polluted
CO profile shown in Fig.3 for a cloud at 7.5 and 2.5 km,(b) O3
smoothing error for high and low stratospheric ozone profiles shown
in Fig.3, respectively with and without a pollution of 120 ppb in the
boundary layer. Values are given in percentage of the known true
total column. The difference to the clear-sky case is shown.

for clear-sky atmospheres and the corresponding contribu-
tion of particular partial columns. Here, the partial columns
are defined over the maximum altitude range such that the
averaging kernel is always> 1 or < 1. The vertical domains
indicate the ranges where the retrieval either under- or over-
estimates the contribution of the true profile to the true total
column. When adding up the partial columns to the total col-
umn, errors cancel out to a large extent, but overall an error
on a percentage level remains for the considered profiles.

The smoothing error increases significantly when one con-
siders partially cloudy scenes. Figure4 shows the increase
of the total column smoothing error as a function of the
cloud fraction. For a cloud fraction off = 0.6, the additional
smoothing error increases to−25 % for the scene of low tro-
pospheric CO concentrations and to−11 % for the polluted
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Fig. 5. Discretization error of the smoothing error for(a) CO and
(b) O3 caused by representing the total column averaging kernel
on an equidistant vertical grid withN layers. It is shown how the
retrieved column calculated onN layers deviates from the one cal-
culated for 512 layers. Values are given in percentage of the known
true total column.

scene. For the fully clouded scene the additional error in-
creases to−1 and−14 %, respectively. The magnitude of
these errors depends on the altitude of the cloud. To demon-
strate this, the two cases for CO are recalculated for a cloud
placed at 2.5 km and shown in Fig.4. The smoothing er-
rors of ozone shown in Fig.4 also significantly increase with
higher cloud fractions and can reach up to 8 % for the fully
clouded scene. It is interesting to note here that the errors are
higher for low stratospheric ozone concentrations. This illus-
trates the strong dependency of the smoothing error on the
shape difference between the reference profile that is used
for scaling and the assumed true one.

Finally, we consider the discretization error of the averag-
ing kernel. Here, the vertical gridding of the averaging ker-
nel is given by the vertical discretization of the JacobianK

Table 1. CO smoothing error for simulated clear-sky measure-
ments using the CO vertical profiles in Fig.3. For the retrieval, the
US standard CO profile is used as reference profile for scaling. The
smoothing error is separated into two contributions; these represent
altitude ranges of the averaging kernel with values> 1 (5.7–50 km)
and values< 1 (0–5.7 km). All values are given in percent of the
true total column.

Partial column High tropos. CO Low tropos. CO

0–5.7 km +4.13 % +3.44 %
5.7–50 km −5.18 % −6.27 %
0–50 km −1.05 % −2.83 %

in Eq. (32). As a reference, we use a model atmosphere be-
tween 0 and 50 km altitude divided into 512 geometrically
equidistant layers. Subsequently, we consider the error in the
effective columnA x using a vertical grid ofN model layers.
Figure5 shows this discretization error as a function ofN .
Due to the particular form of the column averaging kernel,
the discretization error does not always decrease monotoni-
cally with an increasing number of model layers. However,
a representation of the Jacobian on 20–40 layers is sufficient
to reduce the discretization error such that it does not rep-
resent a significant error source for the different retrievals.
The number of required layers can surely be further reduced
by choosing non-equidistant vertical grids which are partic-
ularly optimized for a specific application, but the general
problem of a discretization error cannot be avoided by choos-
ing different grids.

4 Summary and conclusions

In this study, we proposed a concept to retrieve vertical col-
umn densities of atmospheric trace gases from remote sens-
ing measurements. The method is based on a least-squares
profile-scaling approach, but it allows one to calculate total
column averaging kernels via an analytic expression on ar-
bitrary vertical grids. The approach can be implemented in a
straightforward manner, and results in a numerically robust
and efficient algorithm. In particular, it is suited for oper-
ational data processing with high demands on computation
time and also provides a straightforward manner to adapt
existing algorithms for profile-scaling with minor modifica-
tions. For example, we found for the CO total column re-
trieval from the SWIR spectral region that a profile inversion
with n = 40 vertical layers needs half of the time required for
the non-scattering forward calculation and that our proposed
method speeds this up to less than 1 % of the one required for
the forward model which also calculates vertically resolved
Jacobians.

We showed that the profile-scaling approach represents
a particular form of regularization which is equivalent to a
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Table 2. Same as Table1 but for ozone. Here, the smoothing error is 3to four contributions (0–9.3 km, 9.3–21.5 km, 21.5–29.5 km, and
29.5–50 km), depending on the values of the column averaging kernel. All values are given in percent of the true total column.

Partial column High O3 High O3 + poll. Low. O3 Low O3 + poll.

0–9.3 km 1.61 % 3.67 % 3.27 % 6.53 %
9.3–21.5 km −0.63 % −0.61 % −0.31 % −0.29 %
21.5–29.5 km 0.09 % 0.09 % 0.09 % 0.09 %
29.5–50 km −0.82 % −0.78 % −1.02 % −0.96 %
0–50 km 0.25 % 2.37 % 2.03 % 5.37 %

Tikhonov regularization of the first kind with an infinite reg-
ularization strength and a vertical profile expressed relative
to a reference profile. This equivalence allows us to derive
an analytical expression for the total column averaging ker-
nel. Moreover, we showed that such a profile-scaling retrieval
does not generally contain an effective null space contribu-
tion. This is beneficial for using the data product in data as-
similation schemes because it eases the assimilation of ob-
servations. Our solution of the inversion problem does not
include formal a priori information, which is an advantage
because no a priori profiles then have to be provided to the
data user. Moreover, we showed algebraically that the refer-
ence profile (and any scaled version of it) has a vanishing
effective null space contribution and that this cannot be used
as a priori profile to fill up the effective null space.

The proposed regularization scheme is of a general nature,
and thus it can be applied to many retrieval problems using
spaceborne or ground-based remote sensing measurements.
For demonstration, we applied it to the CO column retrievals
from simulated spectra in the 2.3 µm region and to O3 column
retrievals in the ultraviolet spectral range. This represents the
retrieval concept for a series of spaceborne spectrometers like
SCIAMACHY, TROPOMI, GOME, and GOME-2. For both
retrievals, we considered clear-sky and cloudy scenes where
clouds were modelled as an elevated Lambertian surface. We
illustrated the dependence of the total column averaging ker-
nel on the cloud coverage of the observed scene. Here, al-
titudes with a reduced retrieval sensitivity are compensated
for by enhanced values at other altitudes, which is a typical
characteristic of a profile-scaling retrieval. So the retrieved
column may be interpreted as an estimation of the true verti-
cal column density, even when the measurement is not sensi-
tive for the full altitude range. Consequentially, the smooth-
ing error represents the error due to the fact that the scaled
reference profile is not the true profile, and therefore the pro-
file scaling is deficient.

By using the US standard model atmosphere to define the
reference profile, and by considering both polluted and un-
polluted atmospheric abundances and high and low strato-
spheric ozone for the true profile, we found the smoothing
errors for both retrievals in the clear-sky case to be signifi-
cant, causing errors of up to−2.83 % of the true vertical col-
umn density for CO and 5.37 % for O3. For cloudy cases with

a cloud top at 7.5 km, an additional smoothing error occurs
which may reach−30 % for CO and 8 % for O3, depending
on cloud coverage. The particular values of the smoothing
error depend on cloud altitude and the chosen reference pro-
file. In the ideal case, where the relative distributions of the
reference and true profiles are equal, the smoothing error will
vanish in all cases. However, in practice the use of the total
column averaging kernel is essential for the correct interpre-
tation of retrieved data, in particular for cloudy observations.
Here it is recommended to represent the column averaging
kernel on a vertical grid with 20–40 equally thick layers that
extend between 0 and 50 km to avoid significant discretiza-
tion errors in the estimate of the smoothing error.

The presented algorithm will be used for the operational
data processing of CO columns from TROPOMI measure-
ments. Its functionality will be tested on real SCIAMACHY
data for the purpose of CO column retrieval and on real
GOME-2 data for the purpose of O3 column estimates in the
near future.
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