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Abstract. Organic compounds represent a significant frac-
tion of submicrometer atmospheric aerosol mass. Even if
most of these compounds are semi-volatile in atmospheric
concentrations, the ambient organic aerosol volatility is quite
uncertain. The most common volatility measurement method
relies on the use of a thermodenuder (TD). The aerosol
passes through a heated tube where its more volatile compo-
nents evaporate, leaving the less volatile components behind
in the particulate phase. The typical result of a thermode-
nuder measurement is the mass fraction remaining (MFR),
which depends, among other factors, on the organic aerosol
(OA) vaporization enthalpy and the accommodation coeffi-
cient. We use a new method combining forward modeling,
introduction of “experimental” error, and inverse modeling
with error minimization for the interpretation of TD measure-
ments. The OA volatility distribution, its effective vaporiza-
tion enthalpy, the mass accommodation coefficient and the
corresponding uncertainty ranges are calculated. Our results
indicate that existing TD-based approaches quite often can-
not estimate reliably the OA volatility distribution, leading
to large uncertainties, since there are many different combi-
nations of the three properties that can lead to similar ther-
mograms. We propose an improved experimental approach
combining TD and isothermal dilution measurements. We
evaluate this experimental approach using the same model,
and show that it is suitable for studies of OA volatility in the
lab and the field.

1 Introduction

Atmospheric aerosol particles play an important role in the
Earth’s energy balance by absorbing and scattering solar ra-
diation (direct effect) and influencing the properties and life-
time of clouds (indirect effects) (IPCC, 2007). They have sig-
nificant negative effects on human health, including prema-
ture death, increases in respiratory illnesses, and cardiopul-
monary mortality (Nel, 2005; Pope and Dockery, 2006).

Aerosols contain a wide variety of inorganic and organic
compounds, with organics representing about 50 % of the
fine (< 1 µm) aerosol mass (Zhang et al., 2007). Organic
aerosol (OA) originates from many different natural and an-
thropogenic sources and processes. It can be emitted directly,
e.g., from fossil fuels and biomass combustion (so-called pri-
mary organic aerosol), or formed by atmospheric oxidation
of volatile organic compounds (VOCs) (secondary organic
aerosol, SOA). Since the oxidation pathways for VOCs are
complex and the reactions lead to hundreds or thousands of
oxygenated products, our understanding of organic aerosol
formation mechanisms and the OA chemical and physical
properties is still incomplete.

The volatility of atmospheric OA is one of its most im-
portant physical properties. It determines the partitioning of
these organic compounds between the gas and particulate
phases, and the organic aerosol concentration, and influences
the rate of reactions and the atmospheric fate of the corre-
sponding compounds. Measurement of the OA volatility dis-
tribution has been recognized as one of the major challenges
in our efforts to quantify the rates of formation of secondary
organic particulate matter (Donahue et al., 2012).
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OA consists of thousands of compounds, too few of which
have been identified. The volatility basis set framework
(Donahue et al., 2006) was developed to describe absorp-
tive partitioning by lumping all these compounds into sur-
rogates along an axis of volatility. This approach typically
employs species with effective saturation concentrations at
298 K separated by one order of magnitude (bin), with val-
ues ranging from, say, 0.01 to 106 µg m−3. By quantifying the
volatility distributions of primary and secondary OA, a phys-
ically reasonable description of semi-volatile organics that is
still suitable for large-scale chemical transport models can be
obtained (Pathak et al., 2007; Stanier et al., 2008).

Thermodenuders (TD) have been developed to measure
the volatility of ambient aerosol (Burtscher et al., 2001;
Wehner et al., 2002, 2004; Kalberer et al., 2004; An et al.,
2007). A TD consists of two basic parts: a heated tube where
the more volatile particle components evaporate, leaving less
volatile species behind, and the denuder tube containing usu-
ally activated carbon where the evaporated material is ad-
sorbed, avoiding potential re-condensation when the sample
is cooled to room temperature. The aerosol mass fraction re-
maining (MFR) at a given temperature, after passing through
the TD, is the most common way of reporting the TD mea-
surements.

The measurement of the volatility of OA has received con-
siderable attention recently, and has been carried out both in
the field (Engler et al., 2007; Huffman et al., 2009; Lee et al.,
2010; Cappa and Jimenez, 2010) and in the laboratory (An et
al., 2007; Jonsson et al., 2007; Saleh et al., 2008; Faulhaber et
al., 2009). One of the main issues related to the use of ther-
modenuders is whether equilibrium is reached in the heat-
ing section of the instrument. Saleh et al. (2008) used high
organic aerosol concentrations, allowing the model organic
aerosol in their experiments to reach equilibrium in their TD.
Using their integrated volume method, they were then able to
determine the saturation concentration of the corresponding
organic particles. Riipinen et al. (2010) showed that equili-
bration times in TDs depend on many factors, such as the
organic aerosol loading and the accommodation coefficient.
These authors argued that OA practically never reaches equi-
librium in a TD at ambient concentration levels. For labora-
tory measurements, equilibrium can be reached with the use
of high organic aerosol loadings (larger than 200 µg m−3),
and when the residence time in the heated section of the
TD exceeds 30 s (Riipinen et al., 2010; Saleh et al., 2011).
An et al. (2007) introduced an improved TD allowing for
larger residence times. Lee et al. (2010, 2011) performed
thermodenuder experiments at two residence times, and ar-
gued that multiple residence times are needed in order to
decouple mass transfer effects from thermodynamics. Sim-
ilar conclusions were reached by Riipinen et al. (2010) and
Cappa (2010). Saleh et al. (2012) used a particle concentra-
tor before passing the ambient aerosol through the thermod-
enuder to increase the aerosol concentration levels and to re-
duce the equilibration timescale. Volatility measurements on

longer timescales, where equilibrium of the system can be
reached, have been performed by Grieshop et al. (2009).

Dynamic aerosol evaporation models (Riipinen et al.,
2010; Cappa, 2010; Fuentes and McFiggans, 2012) are
needed in most cases for the interpretation of TD measure-
ments and the estimation of OA volatility. However, the MFR
of OA in a TD depends not only on its volatility distribu-
tion, but also on the vaporization enthalpy and potential mass
transfer resistances as the particles evaporate. The inversion
of the TD measurements to calculate the OA volatility dis-
tribution has proven to be challenging because of the many
parameters affecting the resulting MFR.

Previous studies have assumed a priori values for the ef-
fective vaporization enthalpy and the mass accommodation
coefficient in order to estimate the OA volatility. Lee et
al. (2010) tried to measure the volatility of ambient OA
assuming values for the vaporization enthalpy and the ac-
commodation coefficient equal to 80 kJ mol−1 and 0.05, re-
spectively. They used the time-dependent evaporation model
by Riipinen et al. (2010), with least-squares minimization,
to reproduce ambient measurements collected in the east-
ern Mediterranean. For most measurements, it was difficult
to estimate the volatility distribution, especially for the less
volatile components. Moreover, a change in the accommo-
dation coefficient from 0.05 to 1 resulted in a shifting of
the estimated volatility distribution by one order of magni-
tude. Lee et al. (2011) used the same mass transfer model
in order to reproduce experimental measurements from dif-
ferent precursors, assuming values for the vaporization en-
thalpy and the accommodation coefficient. Cappa (2010) de-
veloped a new model of evaporation in a TD accounting for
the cooling section and the velocity profile across the TD
tube. They demonstrated the importance of the vaporization
enthalpy, especially for values less than 100 kJ mol−1. They
also underlined the importance of constraining the value of
accommodation coefficient in order to quantify the volatil-
ity distribution of OA. Cappa and Jimenez (2010) used the
model of Cappa (2010) to quantify the volatility distribu-
tion of ambient OA in Mexico City using measurements from
the MILAGRO (Megacity Initiative: Local And Global Re-
search Observations) campaign. Assuming several values for
the vaporization enthalpy, either using the relationship from
Epstein et al. (2010) or assuming that the vaporization en-
thalpy depended linearly on temperature or that it had con-
stant values from 50 to 150 kJ mol−1, they estimated differ-
ent volatility distributions. Changing the value of the accom-
modation coefficient from 1 to 0.1, the estimated volatility
distribution was shifted to higher values by approximately
one order of magnitude. Fuentes and McFiggans (2012) used
a dynamic aerosol evaporation model and the Epstein et
al. (2010) relationship for the vaporization enthalpy, to calcu-
late the volatility distribution for a-pinene SOA together with
a small value of the accommodation coefficient. The estima-
tion of the accommodation coefficient during the evaporation
of atmospheric OA has been the focus of a number of studies.
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Saleh et al. (2012) developed a method combining a parti-
cle concentrator (in order to achieve high mass loadings) and
a thermodenuder. Using the thermodenuder model by Saleh
et al. (2011), they measured the effective evaporation coef-
ficient of ambient aerosol. Their results suggested accom-
modation coefficients with values around 0.3 for the ambi-
ent particles that they examined. Cappa and Wilson (2011)
focused on the evolution of organic aerosol mass spectra
from lubricating oil and secondary aerosol from a-pinene ox-
idation upon heating, using the Cappa (2010) model. They
adopted volatility distributions from previous studies (Pathak
et al., 2007; Grieshop et al., 2009), and a vaporization en-
thalpy based on the Epstein et al. (2010) relationship. One of
their major conclusions was that there were high mass trans-
fer resistances (estimated accommodation coefficients on the
order of 10−4) during the evaporation of the a-pinene SOA.

The sensitivity of TD results to several additional pa-
rameters has also been investigated in past studies. Lee et
al. (2010) concluded that a monodisperse approximation us-
ing one effective value for the diameter of the particles in-
stead of the full distribution resulted in changes in the ther-
mograms of less than 2 %. Lee et al. (2011) explored the ef-
fect of the cooling section and the role of surface free en-
ergy, and Cappa (2010) the role of the assumed value for
the diffusion coefficient or the average effective diameter of
the particles. Once again, the conclusion was that these pa-
rameters were not as important as the vaporization enthalpy
and the accommodation coefficient for the estimation of the
volatility distribution. Recondensation in the cooling section
has been investigated in a number of studies (Cappa, 2010;
Saleh et al., 2011; Fuentes and McFiggans, 2012). Fuentes
and McFiggans (2012), through a parametric analysis, con-
cluded that recondensation depends on a combination of fac-
tors, such as the mass loading, the particle size and the kinetic
coefficient for re-condensation. Cappa (2010) showed that
recondensation becomes significant for large aerosol load-
ings (larger than 200 µg m−3); thus, it is a problem mostly
for laboratory experiments. Saleh et al. (2011) showed that
a configuration with a small diameter for the cooling section
can lead to negligible recondensation, even for higher aerosol
loadings.

In this study, we explore methods for estimating the OA
volatility distribution, together with the effective vaporiza-
tion enthalpy and mass accommodation coefficient. We de-
velop a method combining forward modeling with known
values for the three properties that we will try to estimate,
introduction of random “experimental” error and, finally, in-
verse modeling with least-squares error minimization for the
estimation of the OA volatility distribution, its effective va-
porization enthalpy and the mass accommodation coefficient.
We show that the best fit does not correspond to the most
accurate estimate, due to the multiple local minima occur-
ring in this problem. We propose an approach of estimat-
ing an ensemble of solutions, and use them to derive a best
guess and corresponding uncertainties for each of the three

properties. Experimental approaches to improve these esti-
mates and to reduce the corresponding uncertainties are ex-
plored. We examine the utility of using two residence times,
using isothermal dilution instead of thermodenuder measure-
ments (Grieshop et al., 2009), and finally combining TD and
isothermal dilution measurements.

2 Thermodenuder model

We use the mass transfer model of Riipinen et al. (2010)
modeling the time-dependent evaporation of multicompo-
nent aerosol particles by solving the mass transfer equa-
tions for a monodisperse population of particles suspended
in air. We assume a monodisperse population of particles.
Lee et al. (2010) showed with the use of the same mass
transfer model that this simplification resulted in errors of
only a few percent (2 %), and it reduced the computational
time considerably. The mass flux of compoundi from the
gas phase to the particles,Ii , is calculated by (Seinfeld and
Pandis, 2006)

Ii =
2πdpMiβmiDi

RTTD
(pi − p0

i ), (1)

wheredp is the particle diameter,R the ideal gas constant,
Mi andDi the molecular weight and diffusion coefficient of
compoundi in the gas phase at temperatureTTD (the tem-
perature in the heated part of the TD), andp0

i and pi are
the partial vapor pressures ofi at the particle surface and far
away from the particle, respectively. In our simulations, we
assume a particle diameter of 200 nm, a molecular weight of
0.2 kg mol−1 and a diffusion coefficient of 10−5 m2 s−1.

The mass flux is corrected for kinetic and transition regime
effects with the factorβmi (Fuchs and Sutugin, 1970):

βmi =
1+ Kni

1+

(
4

3ami
+ 0.377

)
Kni +

4
3ami

Kn2
i

, (2)

whereKni is the Knudsen number, that is, the ratio of the
mean free path of vapori and the particle radius, andami the
mass accommodation coefficient ofi on the particles. The
mean free path is estimated by

λi =
3 · Di

c̄
, (3)

wherec̄ is the mean velocity of the gas molecules, given by

c̄ =

√
8 · R · TTD

π · Mi

. (4)

The partial vapor pressure ofi at the particle surface,p0
i , is

given by

p0
i = xiγipsat,i exp

(
4Miσ

RTpρdp

)
= xmi

C∗

i RTTD

Mi

exp

(
4Miσ

RTpρdp

)
, (5)
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wherexi is the mole fraction andγi the activity coefficient of
i in the particle phase,psat,i the pure-component vapor pres-
sure ofi over a flat surface,Tp the particle temperature,C∗

i

represents the effective saturation concentration ofi in the
volatility basis set (Donahue et al., 2006), andxmi is the mass
fraction of i in the particle. In this study, we will be using a
fixed basis set with four volatility bins, with effective satu-
ration concentrations of 0.01, 0.1, 1 and 10 µg m−3 for each
volatility bin. We assume a surface tension of 0.05 N m−1

as a median of the range used in Riipinen et al. (2010). We
repeated our simulations with values of 0.05–0.2 N m−1 for
the surface energy, but this choice had practically no effect
on the results, since the particles examined are too big and
the Kelvin effect is not important. We also use a density of
the surrogate compounds of 1500 kg m−3.

The saturation concentrations of the evaporating species at
TTD are estimated using the integrated form of the Clausius–
Clapeyron equation:

C∗

i (TTD) =

C∗

i (298K)exp

[
1Hvap,i

R

(
1

298
−

1

TTD

)](
298

TTD

)
, (6)

where1Hvap,i is the vaporization enthalpy of speciesi. The
temperature dependence of the diffusion coefficients of the
evaporating species is taken into account by using

Di(TTD) = Di(298)

(
TTD

298

)µ

, (7)

whereµ is a constant usually ranging from 1.5 to 2.0 (Chen
and Othmer, 1962). We used the value of 1.75 for all the stud-
ied compounds.

The time-dependent evaporation of the organic aerosol is
simulated by solving the differential equations for total par-
ticle massmp and gas phase concentrationsCi of the evapo-
rating species:

dmp

dt
= −

n∑
i=1

Ii

dCi

dt
= Ii · Ntot, (8)

whereNtot is the total number concentration of the particles
(assuming a monodisperse particle population). The MFR is
then calculated from the ratio of the particle mass att = tres
(where tres is the residence time through the heating tube)
to the initial mass of the particles. In this work, we study
the evaporation of particles in a TD independently of the TD
design and geometry: the only variables representing the in-
strument are the particle residence time and the temperature
of the thermodenuder. We neglect the velocity and potential
temperature gradients in the radial direction and thus focus
on the particles moving along the centerline of the TD and at
the corresponding centerline temperature. Saleh et al. (2011)
showed that a similar model neglecting the radial dependence
of the system reproduced well the behavior of model particles
consisting of dicarboxylic acids.

We use, as inputs, values for the geometry of the TD (the
length and the residence time in the heated tube), the temper-
ature inside the TD (TTD), the initial mass concentration of
the organic aerosol (Caer), and the properties of the organic
compounds (such as the volatility distribution, vaporization
enthalpy, accommodation coefficient, etc.). For the descrip-
tion of the geometry of the TD, we used the values for the
Carnegie Mellon TD of Lee et al. (2010). Specifically for the
heated tube, we used a length of 55 cm and a centerline resi-
dence time of 17 s.

Using the mass transfer model of Riipinen et al. (2010),
modeling the time-dependent evaporation of multicompo-
nent aerosol particles, we constructed theoretical thermo-
grams (MFR versusTTD). Previous studies have often as-
sumed that thermograms can be directly connected to the
volatility of OA. Figure 1 indicates that we can have very
similar thermograms for organic aerosols with very different
volatilities (orders of magnitude different). In this example,
the reduction in the saturation concentration is balanced by
changes in the accommodation coefficient and the vaporiza-
tion enthalpy. The similarity of these suggests that the inver-
sion of the thermograms in order to calculate the OA volatil-
ity will be very challenging.

2.1 Pseudo-experimental data

In order to evaluate how well we can estimate the volatility
distribution, we used “pseudo-experiments” corrupting the
output of the TD model, for systems with known volatility
distributions and properties, with randomly generated “ex-
perimental” errors. In this way, we could take into account
the measurement uncertainty due to the variability of mea-
surement conditions, and produce relatively realistic “exper-
imental results” for systems with known volatility distribu-
tions and properties. We “corrupted” the TD model predic-
tions with random errors assuming a normal distribution,
based on the variability of laboratory measurements with the
same TD conducted by Paciga and Pandis (2014), with a
standard deviation given by

σ = 0.51· MFRtrue− 0.5 · MFR2
true, (9)

where MFRtrue are the correct MFR values. A typical exam-
ple is shown in Fig. 2.

In the rest of the inversion approaches, pseudo-
experimental data were used. In this way, the experimental
uncertainty was always taken into account, and an overes-
timation/underestimation of the corresponding algorithm is
avoided.

2.2 Optimum OA volatility distribution

The MATLAB least-squares fitting algorithmlsqcurvefitwas
used in order to obtain the best possible fit between the
“measured” and modeled MFRs. Four lognormally equally
spaced volatility bins were used, with volatilities from 10−2
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Figure 1. Predicted thermograms (MFR versus TTD) for OA with different properties.  A single 

component aerosol (C*=1 μg m-3, ΔHvap=80 kJ mol-1 and am=0.05) gives practically the same 

thermogram as one with a much lower volatility (C*=0.01 μg m-3, ΔHvap=100 kJ mol-1 and am=1). 

 

 

 

 

 

 

 

 

Figure 1. Predicted thermograms (MFR versusTTD) for OA with
different properties. A single-component aerosol (C∗

= 1 µg m−3,
1Hvap= 80 kJ mol−1 and am = 0.05) gives practically the same
thermogram as one with a much lower volatility (C∗ = 0.01 µg m−3,
1Hvap= 100 kJ mol−1 andam = 1).

to 10 µg m−3. The corresponding volatility distribution, va-
porization enthalpy and mass accommodation coefficient
were estimated by the algorithm minimizing the sum of the
squared differences between the MFR model predictions and
the pseudo-measurements. In the least-squares optimization,
a total of 12 pseudo-measurements was used in all cases.

A wide variety of compositions was tested during the sim-
ulations, including one-component, two-component or multi-
component aerosols with various volatility distributions and
with different values for the vaporization enthalpy and the
accommodation coefficient. The results for three of these
tests that are used as illustrative examples are shown in Ta-
ble 1. For Test 1 corresponding to OA consisting of very
low and high volatility material (60 % 0.01 µg m−3 and 40 %
10 µg m−3), the optimization resulted in an absolute volatil-
ity error of less than 10 % for all bins. The vaporization en-
thalpy was well estimated (relative error equal to 8 %), and
the mass accommodation coefficient was estimated within a
factor of 2 (0.97 instead of 0.5). For Test 2 corresponding to
multicomponent OA (10 % 0.1 µg m−3, 30 % 1 µg m−3 and
60 % 10 µg m−3), the estimated volatility distribution had a
different shape than the true one, with more material pre-
dicted for the bin of 1 µg m−3 (predicted mass fraction equal
to 0.49 instead of 0.3), and less for the 10 µg m−3 bin (pre-
dicted mass fraction equal to 0.31 instead of 0.6). Also, some
very low volatility material was estimated (predicted mass
fraction equal to 0.07 while none was present). The vapor-
ization enthalpy was estimated with a relative error equal
to 40 %, and the accommodation coefficient was well esti-
mated (0.72 instead of unity). For Test 3 with the case of
one-component OA with a volatility of 1 µg m−3, the esti-
mates of all properties were far from the truth. Most of the
material (88 %) was estimated to be in the 0.1 µg m−3 bin in-
stead of 1 µg m−3, and some material (12 %) was predicted
in the highest volatility bin of 10 µg m−3. The estimated va-
porization enthalpy was more than a factor of 2 higher than
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Figure 2. Typical example of “construction” of TD pseudo-data. The red line is the thermogram 

corresponding to the true properties of the aerosol and the black dots correspond to the 

‘measured’ MFR versus TTD for an aerosol consisting of two components: very low volatility 

material (60% C*=0.01 μg m-3) and relatively high volatility material (40% C*=10 μg m-3), 

vaporization enthalpy and mass accommodation coefficient equal to 100 kJ mol-1 and 1 

correspondingly. Twelve ‘measurements’ were constructed for equally spaced temperatures 

between 24 and 140 oC by corrupting the correct values with random experimental error. 
 

 

 

 

 

 

 

 

Figure 2. Typical example of “construction” of TD pseudo-data.
The red line is the thermogram corresponding to the true proper-
ties of the aerosol, and the black dots correspond to the “measured”
MFR versusTTD for an aerosol consisting of two components: very
low volatility material (60 %C∗ = 0.01 µg m−3) and relatively high
volatility material (40 %C∗

= 10 µg m−3), with a vaporization en-
thalpy and a mass accommodation coefficient equal to 100 kJ mol−1

and 1, respectively. Twelve “measurements” were constructed for
equally spaced temperatures between 24 and 140◦C by corrupting
the correct values with random experimental errors.

the true value, and the estimated accommodation coefficient
was a factor of 25 lower than it should be.

The results, using different initial guesses for the case of
multiple-component OA (Test 2), are shown in Fig. 3. For
an initial guess of [0 0 0.3 0.7] for the mass fractions of the
volatility bins (C∗ = [0.01 0.1 1 10] µg m−3), 50 kJ mol−1 for
the vaporization enthalpy and 0.5 for the accommodation co-
efficient, the shape of the volatility distribution was estimated
correctly, but with significant errors of 0.1–0.2 in the 0.1, 1
and 10 µg m−3 bins. The vaporization enthalpy estimation er-
ror was 24 % and the estimated accommodation coefficient
was 0.9, close to the true value of unity. This is however a lo-
cal minimum of the objective function. The global minimum
(minimum error) was found when we used an initial guess
of [0.1 0.1 0.3 0.5] for the mass fractions, 80 kJ mol−1 for
1Hvap, and 0.2 foram. The estimated OA volatility distribu-
tion, in this case, is shown in Fig. 3b. In this case, the shape
of the volatility distribution is not correct, and there are er-
rors in the mass fractions of the volatility bins as large as 0.3.
The estimated vaporization enthalpy and accommodation co-
efficient were similar to those of the previous guess, with a
relative error of 35 % for1Hvap. Due to the experimental
error, the global minimum can correspond to volatility distri-
butions that are far from the true values. We conclude that the
optimization method may not be appropriate for the estima-
tion of the volatility distribution, the vaporization enthalpy
and the mass accommodation coefficient. It is also clear that
we need an approach for estimating the corresponding uncer-
tainties.
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Figure 3. Estimated (bars) and true (red lines) volatility distribution for OA consisting of 10%  

C*=0.1 μg m-3 , 30%  1 μg m-3, 60% 10 μg m-3, ΔHvap=50 kJ mol-1 and am=1, based on TD 

pseudo-data. (a) Solution corresponding to a local minimum of the objective function. The 

estimated vaporization enthalpy and accommodation coefficient are ΔHvap=38 kJ mol-1 and 

am=0.9. (b) Solution for the global minimum. The estimated ΔHvap and am are 68 kJ mol-1 and 

0.84 respectively.  
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Figure 3. Estimated (bars) and true (red lines) volatility distribu-
tion for OA consisting of 10 %C∗

= 0.1 µg m−3, 30 % 1 µg m−3,
60 % 10 µg m−3, 1Hvap= 50 kJ mol−1 andam = 1, based on TD
pseudo-data.(a) Solution corresponding to a local minimum of
the objective function. The estimated vaporization enthalpy and ac-
commodation coefficient are1Hvap= 38 kJ mol−1 and am = 0.9.
(b) Solution for the global minimum. The estimated1Hvap andam

are 68 kJ mol−1 and 0.84, respectively.

2.3 Estimation of uncertainty

In an effort to explore in more detail the solution space for the
problem, we discretized the parameter space and simulated
all combinations of volatilities,1Hvap andam. We used once
more four bins for volatilities from 10−2 to 10 µg m−3, and
varied the mass fraction of each bin from 0 to 1 with a step
of 0.1. The values used for1Hvap were from 20 to 200, with
discrete values of 20, 50, 80, 100, 150 and 200 kJ mol−1, and
for am, the values were from 0.01 (large mass resistance) to
1 (no mass resistance), with discrete values of 0.01, 0.05,
0.1, 0.2, 0.5 and 1. We also tried in our simulations other
discretizations for the values of the vaporization enthalpy and
the mass accommodation coefficient, and they did not affect
the results. In the rest of the paper, the discretizations for the
1Hvap and theam described above will be used for all of the
simulations. For each simulation, the percentage error was
estimated from

Ei =
100

n

√√√√ n∑
i

(MFRi,guess− MFRi)2, (10)

where MFRi,guessis the MFR for a certain combination of pa-
rameters for data pointi (corresponding to a specific temper-
ature), MFRi is the “measured” MFR, andn is the number of
the different temperaturesTTD used in our “measurements”.

After performing simulations for all combinations of all
properties, we identified the combinations that led to small
errors (less than 2 %). From these values, we then calculated
a “best estimate” using the inverse error as a weighting fac-
tor:

x̄ =

N∑
i

[
(xi) ·

(
1
Ei

)]
N∑
i

[
1
Ei

] , (11)

wherexi is the value of propertyi (the mass fractions of the
volatility bin i or the vaporization enthalpy1Hvap or the ac-
commodation coefficient log(am)).

We also calculated the uncertainty range for all three prop-
erties by calculating the standard deviation (σ) of the corre-
sponding values:

σ =

√√√√√√√√
N∑
i

[(
(xi − x̄)2 ·

(
1
Ei

))]
N∑
i

[
1
Ei

] . (12)

The logarithms of the accommodation coefficient values
were used in order to avoid negative accommodation coeffi-
cient values inside the uncertainty range. We report one stan-
dard deviation as the uncertainty range in the rest of the pa-
per.

3 Results

The first parameter of the thermodenuder experiments ex-
plored was the number of measurements at different temper-
atures in the thermogram under consideration. In previous
studies, thermodenuder measurements vary between 6 (An
et al., 2007) and 12 measurements (Faulhaber et al., 2009).

A wide variety of cases of OA were tested during the
simulations once more. The results for a multicomponent
OA with mostly nonvolatile material (80 % 0.01 µg m−3, 5 %
0.1 µg m−3, 10 % 1 µg m−3 and 5 % 10 µg m−3), for the cases
of 6 and 12 measurements, are given in Fig. 4 as a representa-
tive example. For the first experiment, with a small number of
measurements (6 points), there is large uncertainty in the two
least volatile bins (with a standard deviation up to 0.25). The
uncertainty range in the least and most volatile bins (0.01 and
10 µg m−3) does not include the correct values for the distri-
bution. In the second experiment, twice as many measure-
ments were used (12 points), the estimated uncertainty range
is smaller (the standard deviation of all the predicted mass
fractions is less than 0.08), and it contains the correct volatil-
ity distribution. The relative error of the estimated1Hvap is
13 %, in both experiments. Finally, theam is underestimated
for both experiments, but with the second experiment (using
12 measurements), the uncertainty range includes the correct
value.

For cases of OA with more uniform volatility distributions
(e.g., cases where the mass fraction varies less than 0.2 be-
tween the bins), the use of 12 measurements instead of 6 gave
similar estimates for the three properties (volatility distribu-
tion, vaporization enthalpy and mass accommodation coeffi-
cient) and the same uncertainty ranges. In cases of extreme
volatility distributions, where most material is in one or two
volatility bins, as in the case of the example in Fig. 4, using
more measurements resulted in better estimates and smaller
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Table 1.Values of the true and estimated properties (volatility distribution, vaporization enthalpy, accommodation coefficient) for three OA
examples.

Test 1 Test 2 Test 3
OA with very low and Multiple- One-
high volatility material component OA component OA

True values C∗
i

= [0.01 0.1 1 10] C∗
i

= [0.01 0.1 1 10] C∗
i

= [0.01 0.1 1 10]
Xi = [0.6 0 0 0.4] Xi = [0 0.1 0.3 0.6] Xi = [0 0 1 0]
1Hvap= 100 kJ mol−1 1Hvap= 50 kJ mol−1 1Hvap= 80 kJ mol−1

am = 0.5 am = 1 am = 1

Optimization results C∗
i

= [0.01 0.1 1 10] C∗
i

= [0.01 0.1 1 10] C∗
i

= [0.01 0.1 1 10]
Xi = [0.63 0 0 0.37] Xi = [0.07 0.13 0.49 0.31] Xi = [0 0.88 0 0.12]
1Hvap= 92 kJ mol−1 1Hvap= 70 kJ mol−1 1Hvap= 181 kJ mol−1

am = 0.97 am = 0.72 am = 0.04
Ei = 1.09a Ei = 0.3 Ei = 0.81

a The error, given by Eq. (10), describes the quality of the fit.
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Figure 4. Estimated (bars) and true (red lines) parameter values for an OA with 80% 0.01 μg    

m-3, 5% 0.1 μg m-3, 10% 1 μg m-3, 5% 10 μg m-3, ΔHvap=80 kJ mol-1 and am=1 for: 6 

measurements (a) volatility distribution, (b) ΔΗvap, (c) am, and using 12 measurements for: (d) 

volatility distribution, (e) ΔΗvap and (f) am. The error bars represent the uncertainty of the 

estimated value. 
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Figure 4. Estimated (bars) and true (red lines) parameter values for
an OA with 80 % 0.01 µg m−3, 5 % 0.1 µg m−3, 10 % 1 µg m−3,
and 5 % 10 µg m−3, 1Hvap= 80 kJ mol−1 andam = 1 for 6 mea-
surements,(a) volatility distribution, (b) 1Hvap, and (c) am, and
using 12 measurements for(d) volatility distribution, (e) 1Hvap,
and(f) am. The error bars represent the uncertainty of the estimated
value.

uncertainty ranges than using only a small number of mea-
surements.

In Fig. 5, we examine two more cases of OA with ex-
treme volatility distributions using 12 pseudo-measurements.
In the first test, which is the same OA as in Test 1 discussed

in Sect. 2.2, the OA consists of two components: very low
volatility material (60 % 0.01 µg m−3) and high volatility ma-
terial (40 % 10 µg m−3). The estimated uncertainty range is
large, especially for the two least volatile bins (with an uncer-
tainty equal to 0.2), but it includes the actual volatility distri-
bution. Also, the estimated volatility distribution has the cor-
rect shape. The estimated vaporization enthalpy has an error
of 5 %, while the accommodation coefficient error is around
20 %.

In the second test, we assume that the OA consists of
very low volatility material (50 % 0.01 µg m−3) and rela-
tively high volatility material (50 % 1 µg m−3). The shape of
the volatility distribution of the OA is not captured by the in-
version results, the estimated uncertainty range is large (the
uncertainty of all the predicted mass fractions is around 0.2),
and the uncertainty range does not contain the actual volatil-
ity distribution. The error of the estimated1Hvap is 8 %. The
accommodation coefficient is underpredicted by one order
of magnitude (value equal to 0.15 instead of unity). The TD
measurements are not sufficient in this case for the accurate
estimation of the OA volatility distribution.

In order to evaluate how general the above results of the
proposed volatility estimation method are, we performed ad-
ditional tests using ten randomly generated volatility dis-
tributions. The sets of parameters used are shown in Ta-
ble 2. The ten first parameter sets have random OA volatility
distributions, a vaporization enthalpy equal to 90 kJ mol−1

(chosen as a reasonable intermediate value between 20 and
200 kJ mol−1), and an accommodation coefficient of 0.1
(chosen as a medium mass resistance). Additional cases with
either low (sets 11–13) or high mass transfer resistance (sets
14–16) and cases with low (sets 11 and 13) or higher vapor-
ization enthalpies (sets 12, 15 and 16) were also examined.

The inversion results are shown in Table 3. They include
the average absolute errors for the VBS bins, the relative er-
ror (%) for the vaporization enthalpy, and the errors foram (in
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2960 E. Karnezi et al.: A theoretical analysis

Table 2.Sets of random volatility distributions used for the evaluation of different inversion approaches.

OA
Mass fraction

1Hvap
parameter set 0.01 µg m−3 0.1 µg m−3 1 µg m−3 10 µg m−3 (kJ mol−1) am

1 0.135 0.06 0.14 0.665 90 0.1
2 0.45 0.04 0.315 0.195 90 0.1
3 0.255 0.115 0.47 0.16 90 0.1
4 0.235 0.045 0.025 0.695 90 0.1
5 0.565 0.23 0.175 0.03 90 0.1
6 0.105 0.21 0.59 0.095 90 0.1
7 0.375 0.405 0.15 0.07 90 0.1
8 0.375 0.095 0.07 0.46 90 0.1
9 0.145 0.435 0.25 0.17 90 0.1
10 0.245 0.085 0.08 0.59 90 0.1
11 0.565 0.23 0.175 0.03 70 1
12 0.565 0.23 0.175 0.03 140 1
13 0.245 0.085 0.08 0.59 60 1
14 0.245 0.085 0.08 0.59 120 0.01
15 0.135 0.06 0.14 0.665 120 0.01
16 0.105 0.21 0.59 0.095 140 0.01
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Figure 5. Estimated (bars) and true property values (red lines) using 12 TD measurements, for 

two types of OA. (a) volatility distribution, (b) ΔΗvap, (c) am for OA with 60% 0.01 μg m-3 and 

40% 10 μg m-3, ΔHvap=100 kJ mol-1 and am=1 and (d) volatility distribution, (e) ΔΗvap, (f) am for 

OA with 50% 0.01 μg m-3 and 50% 1 μg m-3, ΔHvap=150 kJ mol-1 and am=1 for: The error bars 

represent the uncertainty of the estimated value. 
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Figure 5.Estimated (bars) and true property values (red lines) using
12 TD measurements, for two types of OA.(a) Volatility distribu-
tion, (b) 1Hvap, (c) am for OA, with 60 % 0.01 µg m−3 and 40 %
10 µg m−3, 1Hvap= 100 kJ mol−1 and am = 1, and(d) volatility
distribution,(e)1Hvap, and(f) am for OA, with 50 % 0.01 µg m−3

and 50 % 1 µg m−3. 1Hvap= 150 kJ mol−1 andam = 1. The error
bars represent the uncertainty of the estimated value.

orders of magnitude). These results indicate that an accurate
estimation of the OA volatility distribution is challenging in
most cases. The volatility distribution was estimated with av-
erage absolute errors less than 0.1 for six out of the sixteen
cases tested (sets 1, 4, 8, 9 10 and 13), and for the rest of
the cases, the errors were up to 0.22. The average relative er-
ror of the estimated1Hvap was roughly 10 %. The error for
the estimated accommodation coefficient varied from half to
almost one and a half order of magnitude. Concerning the un-
certainties (not shown), the uncertainty range of the volatility
distribution in most of the cases was large (around 0.2). Ex-
ceptions are the cases with most material in the lowest and
highest volatility bins, where the uncertainty range is 0.05–
0.15. The uncertainty in the estimated1Hvap for most of the
cases was around 20 %. The uncertainty in the estimated ac-
commodation coefficient varied from less than one order of
magnitude to two orders of magnitude.

Based on the above results, it is evident that it is very dif-
ficult to estimate the three properties accurately and with a
small uncertainty range, since there are many combinations
of properties than can lead to a thermogram quite similar to
the one from the pseudo-experiment. So, even if the uncer-
tainty estimation method proposed here is a step forward, the
TD inversion results are either too uncertain or sometimes
erroneous. The TD measurements using one residence time
(17 s) are not sufficient to constrain the three properties, since
equilibrium is not reached in most cases. It is clear that im-
provements in the volatility measurement approach itself are
needed. A number of ideas are explored in the next section.
These include using more than one TD residence time or us-
ing measurements on much longer timescales (e.g., isother-
mal dilution measurements).
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4 Improvements in the volatility measurement method

4.1 Use of two residence times

In order to improve the method for the estimation of the OA
volatility distribution, 1Hvap and am, we simulated “mea-
surements” using two residence times (Lee et al., 2010), but
with half the data points for each measurement (6 points for
each residence time). We used two residence times of 17 and
34 s. The estimation of the volatility distributions was im-
proved, but the improvement in most cases was small to mod-
est. For example, for the case of OA consisting of very low
volatility material (50 % 0.01 µg m−3) and relatively high
volatility material (50 % 1 µg m−3), the correct volatility dis-
tribution was still not retrieved, the uncertainty range once
again was large (equal to 0.2), and it did not contain the ac-
tual volatility distribution. The relative error of the estimated
1Hvap was 6 %. The accommodation coefficient was under-
predicted by one order of magnitude (value equal to 0.12 in-
stead of unity).

We performed a number of tests with different OA sys-
tems. The use of two residence times resulted in improved es-
timates in some cases (e.g., single-component systems), but
in the majority of the cases, the improvement was marginal.
The results were often quite similar to those of the one resi-
dence time discussed above (with twice the data points). This
was due to the fact that in most cases, the system is still far
from equilibrium. We concluded that just doubling the res-
idence time was not sufficient and that the residence time
should increase to tens of minutes in most of the cases. This
is very difficult though for continuous flow systems, so the
next step was the exploration of the utility of evaporation
measurements at much longer timescales than those that can
be reached with a TD.

4.2 Isothermal dilution experiments

We tested the effectiveness of performing only isothermal
dilution measurements instead of TD measurements. The
isothermal evaporation of OA can take place in a smog cham-
ber, and allows residence times of a few hours (Grieshop et
al., 2009). The isothermal evaporation results at room tem-
perature do not depend on1Hvap, but only onC∗ andam. We
assume that we dilute our OA samples during the injection in
the chamber with a 10-fold volume of clean air, so in this
way, the initial gas and particle concentrations are lowered
by a factor of 10, and the system is out of equilibrium. We
allow the aerosol to evaporate in the chamber for 2 h and as-
sume that its concentration is measured every 10 min. The er-
ror distribution used for the isothermal dilution is also based
on the variability of the corresponding laboratory data. We
“corrupted” the time-dependent mass transfer model predic-
tions with a random error, assuming a uniform distribution
with a standard deviation given by
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Figure 6.  Isothermal dilution measurements (MFR as function of time) for an aerosol with 60% 

0.01 μg m-3, 40% 10 μg m-3, ΔHvap=100 kJ mol-1 and am=1. The red line corresponds to the true 

properties of the aerosol and the black dots are the ‘measured’ MFR values.  
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Figure 6. Isothermal dilution measurements (MFR as a function of
time) for an aerosol with 60 % 0.01 µg m−3 and 40 % 10 µg m−3,
1Hvap= 100 kJ mol−1 andam = 1. The red line corresponds to the
true properties of the aerosol, and the black dots are the “measured”
MFR values.

σ = 0.05· MFRtrue+ 0.03, (13)

where MFRtrue are the correct MFR values.
A typical set of isothermal dilution “measurements” is

shown in Fig. 6. The organic particles reach equilibrium
with the gas phase after approximately thirty minutes in this
pseudo-experiment. The inversion results for the case of OA
consisting of very low volatility material (60 % 0.01 µg m−3)

and high volatility material (40 % 10 µg m−3), are shown in
Fig. 7. The estimated volatility distribution had significant
error, and the uncertainty was large (equal to 0.2). The ac-
commodation coefficient was estimated within 20 %.

The dilution method was also used for the random sets
of volatility distributions shown in Table 2, and the results
are shown in Table 3. The average absolute errors for the
VBS bins were around 0.2, and the errors for the accommo-
dation coefficient in all cases were up to one order of mag-
nitude. Isothermal dilution did not consistently improve the
estimated volatility distributions and the accommodation co-
efficient compared to the use of TD measurements. The un-
certainty remains large, since there are still many combina-
tions of the two properties that can lead to similar dilution
curves.

4.3 Combination of TD and isothermal dilution
measurements

We continued with the test of effectiveness of combin-
ing TD and isothermal dilution “measurements” using the
same method as in Sect. 2.3. We used the same discretiza-
tion for the values of the volatility distribution, the vapor-
ization enthalpy and the accommodation coefficient, and
constructed, using the evaporation model, the theoretical
thermograms. Using random numbers based on a normal
distribution (for the case of thermodenuder measurements)
and uniform distribution (for the case of isothermal dilution
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Table 3.Results for the sets of random volatility distributions using different inversion approaches.

TD measurements Dilution measurements TD and dilution measurements

Average Relative Error for Average Error for Average Relative Error for
OA absolute error error (%) for am (orders absolute error am (orders absolute error error (%) am (orders

parameter set for VBS bins 1Hvap of magnitude) for VBS bins of magnitude) for VBS bins for1Hvap of magnitude)

1 0.05 6 0.43 0.13 0.39 0.02 11 0
2 0.13 3 0.06 0.11 0.17 0.02 2 0.16
3 0.1 8 0.1 0.51 0.19 0.07 2 0.02
4 0.08 10 0.45 0.19 0.36 0.02 4 0.1
5 0.14 4 0.28 0.12 0.44 0.14 0.7 0.46
6 0.1 10 0.02 0.15 0.02 0.07 10 0.04
7 0.14 7 0.13 0.06 0.19 0.07 2 0.05
8 0.07 4 0.17 0.18 0.34 0.04 0.9 0.06
9 0.09 3 0.04 0.07 0.21 0.09 0.1 0.34
10 0.06 11 0.45 0.16 0.46 0.06 11 0.37
11 0.14 14 1.17 0.12 1.06 0.1 14 0.77
12 0.11 14 0.95 0.12 1.06 0.06 23 0.96
13 0.06 2 0.3 0.07 0.17 0.08 0.04 0.24
14 0.18 25 1.22 0.2 0.75 0.33 17 1
15 0.22 14 1.12 0.21 0.83 0.3 8 1.22
16 0.11 11 0.63 0.18 0.50 0.17 4 0.32
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Figure 7. Estimated (bars) volatility distribution and accommodation coefficient and true (red 

lines) values using isothermal dilution “measurements”, for an OA with 60% 0.01 μg m-3 and 

40% 10 μg m-3, ΔHvap=100 kJ mol-1 and am=1. (a) volatility distribution and (b) am.  
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Figure 7. Estimated (bars) volatility distribution and accommoda-
tion coefficient and true (red lines) values using isothermal dilu-
tion “measurements”, for an OA with 60 % 0.01 µg m−3 and 40 %
10 µg m−3; 1Hvap= 100 kJ mol−1 andam = 1. (a) Volatility dis-
tribution and(b) am.

measurements), we produced pseudo-measurements for the
different experiments. For the resulting 24 measurements
(12 for each TD and dilution pseudo-experiment), we then
performed the error minimization with the percentage error
given by Eq. (10), treating equally the TD and isothermal di-
lution measurements. In the case of Test 1 (Table 1) shown
in Fig. 8, the estimated volatility distribution has the correct
shape, and the corresponding uncertainty range is small (un-
certainty less than or equal to 0.1). The1Hvap and theam
were estimated within a few percent. In another challenging
test (Fig. 9), the shape of the volatility distribution is again
predicted correctly. The estimated value of the vaporization
enthalpy has an error of only 7 %, and the estimated accom-
modation coefficient is 0.4 instead of unity.

We also repeated all the tests of Table 2. The re-
sults are shown in Table 3. In 70 % of the cases, the
volatility distribution was reproduced with absolute errors
less than 0.1. The average relative error of the estimated

1Hvap was roughly 7 %. The error for the estimated accom-
modation coefficient for the cases of OA varied from less
than half an order of magnitude up to one order of magni-
tude. The uncertainties (not shown) for the volatility distri-
bution in 70 % of the cases were not higher than 0.05–0.1.
The uncertainties for the vaporization enthalpy were around
10 %. The accommodation coefficient, for the cases of OA
with a value equal to 0.1, had an uncertainty of half an or-
der of magnitude. For cases where the accommodation co-
efficient was equal to unity, it was underpredicted, with an
uncertainty varying from half an order of magnitude (set 13),
to one order of magnitude (set 11), to two orders of magni-
tude (set 12). For the cases of OA (sets 14 to 16) where the
accommodation coefficient is equal to 0.01, it was overesti-
mated by up to one order of magnitude.

Problems appeared in the three cases (sets 5, 9, and 13) in
which less than 20 % of the OA evaporated, and in the three
cases where equilibrium was not reached (sets 14, 15, and
16). Using a higher initial dilution (100 times dilution), the
actual volatility distribution was captured in sets 9 and 13,
with uncertainties equal to 0.2 and 0.1, respectively. Results
for set 5 improved marginally, because further evaporation
could not be achieved due to the large amount of nonvolatile
material in the OA. The longer residence times improved the
accuracy of the estimated volatility distributions (errors less
than 0.1). The errors in1Hvap and the accommodation coef-
ficient were also reduced in all cases.

Summarizing, using both TD and dilution experiments re-
produced volatility distributions with average uncertainties
between 0.05 and 0.1 for most cases, provided that more than
20 % or so of the aerosol evaporated during dilution and that
the system had enough time to come close to equilibrium.
The vaporization enthalpy was estimated with average errors
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Figure 8. Estimated (bars) and true (red lines) parameter values combining TD and isothermal 

dilution measurements, for an OA with 60% 0.01 μg m-3 and 40% 10 μg m-3, ΔHvap=100 kJ mol-1 

and am=1 for: (a) volatility distribution, (b) ΔΗvap, (c) am. 
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Figure 8. Estimated (bars) and true (red lines) parameter val-
ues combining TD and isothermal dilution measurements, for
an OA with 60 % 0.01 µg m−3 and 40 % 10 µg m−3, 1Hvap=

100 kJ mol−1 andam = 1 for (a) volatility distribution,(b) 1Hvap,
and(c) am.

less than 10 % in most cases. Estimation of the accommoda-
tion coefficient was more challenging than the other param-
eters. Problems occur mostly when evaporation in dilution
experiments is less than 20 %, or when equilibrium is not
reached.

5 Conclusions

Multiple combinations of parameters (C∗, 1Hvap, am) can
lead to practically indistinguishable thermograms during TD
measurements. The estimated volatility distribution, based
on the minimum error, can be wrong by several orders of
magnitude due to the multiple solutions that exist, leading
to multiple local minima of the objective function. We intro-
duce a new method combining forward modeling, introduc-
tion of experimental error and inverse modeling with error
minimization for the interpretation of existing TD measure-
ments. With this method, using an ensemble of “best solu-
tions”, we were able to calculate a best estimate and an uncer-
tainty range for the estimated volatility distribution, the va-
porization enthalpy and the accommodation coefficient. We
show that this uncertainty range is often large and sometimes
does not even include the true value of the properties, with
the exception in the estimation of the vaporization enthalpy,
where the errors are around 5–20 % in most cases tested.

Experimental approaches that would improve the method
were explored. The performance of TD measurements un-
der multiple residence times results in a small to modest
improvement in the results, since equilibrium is still not
reached. The idea of using experiments on a totally longer
timescale in order to achieve equilibrium was then examined
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Figure 9. Estimated (bars) and true (red lines) parameter values combining TD and isothermal 

dilution measurements, for an OA with 50% 0.01 μg m-3 and 50% 1 μg m-3, ΔHvap=150 kJ mol-1 
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Figure 9. Estimated (bars) and true (red lines) parameter values
combining TD and isothermal dilution measurements, for an OA
with 50 % 0.01 µg m−3 and 50 % 1 µg m−3, 1Hvap= 150 kJ mol−1

andam = 1 for (a) volatility distribution,(b) 1Hvap, and(c) am.

with the use of dilution measurements. Use of isothermal di-
lution on its own instead of TD measurements usually leads
to worse estimates of the volatility distribution compared to
the TD. However, combining both TD and isothermal dilu-
tion measurements leads to promising results in the majority
of the cases. Cases for which problems remain include those
in which the OA does not come close to equilibrium after di-
lution, or when the corresponding evaporated fraction is less
than 20 %. Increased dilution and longer residence times can
help in these cases. The approach combining TD and isother-
mal dilution measurements is recommended for future stud-
ies of OA volatility in both the lab and the field.
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