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Abstract. Scintillometer measurements allow for estima-
tions of the refractive index structure parameterC2

n over large
areas in the atmospheric surface layer. Turbulent fluxes of
heat and momentum are inferred through coupled sets of
equations derived from the Monin–Obukhov similarity hy-
pothesis. One-dimensional sensitivity functions have been
produced that relate the sensitivity of heat fluxes to uncertain-
ties in single values of beam height over flat terrain. However,
real field sites include variable topography. We develop here,
using functional derivatives, the first analysis of the sensitiv-
ity of scintillometer-derived sensible heat fluxes to uncertain-
ties in spatially distributed topographic measurements. Sen-
sitivity is shown to be concentrated in areas near the center of
the beam path and where the underlying topography is clos-
est to the beam height. Relative uncertainty contributions to
the sensible heat flux from uncertainties in topography can
reach 20 % of the heat flux in some cases. Uncertainty may be
greatly reduced by focusing accurate topographic measure-
ments in these specific areas. A new two-dimensional vari-
able terrain sensitivity function is developed for quantitative
error analysis. This function is compared with the previous
one-dimensional sensitivity function for the same measure-
ment strategy over flat terrain. Additionally, a new method
of solution to the set of coupled equations is produced that
eliminates computational error.

1 Introduction

Large-aperture scintillometers infer the index of refraction
structure parameterC2

n over large areas of terrain in the at-
mospheric surface layer. The structure parameter for tem-
peratureC2

T is resolved, and this information solves for
the sensible heat fluxHS through the application of equa-
tions derived from the Monin–Obukhov similarity hypothe-
sis (Hartogensis et al., 2003; Moene, 2003). The sensible heat
flux in the atmospheric surface layer is given by

HS = −ρcpu?T?, (1)

whereρ is the density of air,cp is the heat capacity at con-
stant pressure,u? is the friction velocity, andT? is the tem-
perature scale (e.g.,Monin and Obukhov, 1954; Obukhov,
1971; Sorbjan, 1989; Foken, 2006). The temperature scale
T? is resolved by

T? =


±

√
C2

T

a
zeff

1/3(1− bζ )1/3 ζ ≤ 0,

±

√
C2

T

a

zeff
1/3

(1+ cζ 2/3)1/2
ζ ≥ 0,

(2)

(3)

where zeff is the effective beam height above the ground,
ζ ≡ zeff/l, where l is the Obukhov length (e.g.,Sorbjan,
1989), anda, b andc are empirical parameters. The values
of the empirical parameters are taken to bea = 4.9, b = 6.1,
andc = 2.2, as seen inAndreas(1989) after an adjustment
from the original values seen inWyngaard et al.(1971).
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These values may not be appropriate for all field sites. We
will assume thatC2

T is resolved by neglecting the influence
of humidity fluctuations, although this does not influence our
results.

As can be imagined from Eqs. (2) and (3), it is important
to know the heightz at whichC2

T is being sampled; this cor-
responds to the scintillometer beam height. The beam height
usually varies along the beam path. Even if turbulence is be-
ing sampled above an extremely flat field, uncertainty inz

will still be present. Previous studies such asAndreas(1989)
andHartogensis et al.(2003) have quantified the sensitivity
of HS to uncertainties inz over flat terrain. It is the goal of
this study to extend the theoretical uncertainty analysis of
Andreas(1989) andHartogensis et al.(2003) to take into ac-
count variable terrain along the path. The value of this is in
the ability to evaluate uncertainty estimates for scintillome-
ter measurements over variable terrain, as well as to study
the theoretical effect that the underlying terrain has on this
uncertainty.

The studies ofAndreas(1989) and Hartogensis et al.
(2003) assume an independently measured friction veloc-
ity u?. With large-aperture scintillometers,u? may be in-
ferred through the Businger–Dyer relation of wind stress,
which is coupled to the Monin–Obukhov equations (e.g.,
Hartogensis et al., 2003; Solignac et al., 2009). Alternatively,
with displaced-beam scintillometers, path-averaged values
of the inner-scale length of turbulencelo can be measured
(in addition toC2

n), which are related to the turbulent dis-
sipation rateε, which is in turn related through coupled
Monin–Obukhov equations tou? (e.g.,Andreas, 1992). As
a first step towards a variable terrain sensitivity analysis for
large-aperture scintillometers, we will assume independent
u? measurements such that the Businger–Dyer equation will
not be considered. Additionally, in order to take into account
thick vegetation, the displacement distanced is often intro-
duced. We will not consider this for the purposes of this
study.

We are thus considering a large-aperture scintillometer
strategy with independentu? measurements as inAndreas
(1989) and Appendix A ofHartogensis et al.(2003), and we
consider the line integral effective beam height formulation
from Hartogensis et al.(2003) andKleissl et al.(2008). The
effective height formulation is also discussed inEvans and
De Bruin (2011) and inGeli et al.(2012). The assumptions
behind this line integral approach are that the profile ofC2

T

above the ground satisfies the Monin–Obukhov profile at any
point along the beam path, and also thatHS is constant ver-
tically and horizontally within the surface layer region sam-
pled by the beam. In this case, two coupled effects must be
taken into account. Firstly, the scintillometer is most sensi-
tive to fluctuations in the index of refraction towards the cen-
ter of its beam. This is due to the optical configuration of
the scintillometer system; a unit-less optical path weighting
function takes this into account (e.g.,Ochs and Wang, 1974;
Hartogensis et al., 2003). The second effect is that, in areas

where the topography approaches the beam, theC2
T being

sampled is theoretically more intense than in areas where the
terrain dips farther below the beam.

In Sect. 2 of this paper, we define the sensitivity function
SHS,z(u) for the sensible heat fluxHS as a function of vari-
able topographyz(u), whereu is the relative path position
along the beam. In Sect. 3, we solve forSHS,z(u) for any
general givenz(u). In Sect. 4 we visualize the results by ap-
plying the resulting sensitivity function to the topography of
a real field site in the North Slope of Alaska. We then ap-
ply the resulting sensitivity function to examples of synthetic
beam paths. In Sect. 5 we discuss our results, and we con-
clude in Sect. 6.

2 Definition of the sensitivity function SHS,z(u)

Under stable conditions (ζ > 0), the set of equations to con-
sider consists of Eqs. (1) and (3), as well as

ζ =
κgT?zeff

u?
2T

, (4)

zeff =

 1∫
0

z(u)−2/3G(u)du

−3/2

, (5)

wherezeff is derived inKleissl et al.(2008) based on the
theory fromHartogensis et al.(2003), z(u) is the height of the
beam along the relative path positionu, T is the temperature,
G(u) is the optical path weighting function,g is gravitational
acceleration, andκ is the von Kármán constant (0.4).

For unstable conditions (ζ < 0), Eqs. (1), (2) and (4) are
considered, but Eq. (5) is replaced by

zeff =

zeff

2bζ

1−

√√√√√√1−
4bζ

zeff

 1∫
0

z(u)−2/3
(

1− bζ
z(u)

zeff

)−2/3

G(u)du

−3/2
 , (6)

wherezeff is derived inHartogensis et al.(2003).
The propagation of uncertainty from measurements such

asz(u) to derived variables such asHS will be evaluated in
the context of the inherent assumptions behind the theoretical
equations. A standard approximation (e.g., Taylor, 1997) to
the uncertainty in estimating the derived variablef = f (µ),
µ = (µ1,µ2, . . . ,µN ), by f̂ = f (x), a function of measure-
ment variablesx = (x1,x2, . . . ,xN ), is

σ 2
f =E

{
[f (x) − f (µ)]2

}
≈

N∑
i=1

(
∂f

∂xi

)2

E
[
(xi − µ2

i )
]

=

N∑
i=1

(
∂f

∂xi

)2

σ 2
i . (7)

The numerical indices indicate different independent
(measurement) variables, such asT , P , C2

n, u?, and beam
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wavelengthsλ andz. It is convenient to re-write Eq. (7) as(
σf

f

)2

=

N∑
i=1

S2
f,xi

σ 2
i

x2
i

, (8)

where the sensitivity functions Sf,x =

(Sf,x1,Sf,x2, . . . ,Sf,xN
) are defined as

Sf,xi
≡

xi

f

(
∂f

∂xi

)
. (9)

Sensitivity functions such as these are developed inAn-
dreas(1989) andAndreas(1992). They are each a measure
of the portion of relative error in a derived variablef re-
sulting from a relative error in the individual measurement
variablexi . The problem of resolving the uncertainty in the
derived variables is a matter of identifying the magnitude and
character of the measurement uncertainties, and then solving
for the partial derivative terms in Eqs. (7) and (9).

Here we seek a solution to the sensitivity function of sen-
sible heat flux as a function of topographySHS,z. In the flat
terrain case, the sensitivity functionSHS,z has a single com-
ponent, corresponding to the single measurement variable
z (Andreas, 1989). In our situation, however, we may imag-
ine that sincez(u) is distributed over one dimension instead
of a single value ofz, SHS,z will be composed of a spectrum
of components:

SHS,z = {SHS,z(u), 0 ≤ u ≤ 1}. (10)

We are thus aiming to expand the sensitivity function de-
noted “Sz” in Fig. 4 of Andreas(1989) (our SHS,z in Fig. 8)
from one dimension to infinitely many, owing to the fact that
some derived variables such aszeff are functions of an inte-
gral over continuous variablesz(u) andG(u) (we consider
for generality thatz(u) has a continuous uncertaintyσ(u)2).
In other words,zeff = zeff[z] is a functional, having argument
z = {z(u), 0 ≤ u ≤ 1}.

Being dependent on a continuum of measurement vari-
ables, the sensitivity functionSHS,z(u) here requires the cal-
culation of a so-calledfunctionalderivative,δzeff/δz(u) (e.g.,
Courant, 1953; Greiner and Reinhardt, 1996). Functional
derivatives have a long history of application to statistical er-
ror analysis (e.g., Fernholz, 1983; Beutner, 2010, and many
references therein).

For our purposes, a heuristic derivation ofδzeff/δz(u) re-
sults from an interpretation of the integral inzeff as the limit
of Riemann sums. That is,

zeff =

 1∫
0

z(u)−2/3G(u)du

−3/2

≡

(
lim

N→∞

N∑
i=1

zi
−2/3Gi · (1/N)

)−3/2

, (11)

where subscripti indicates thatu = (i/N). Upon discretizing
the input variables, we have(

∂zeff

∂zk

)
=

−
3

2

(
N∑

i=1

zi
−2/3Gi · (1/N)

)−5/2

∂

∂zk

(
N∑

i=1

zi
−2/3Gi · (1/N)

)

= −
3

2

(
N∑

i=1

zi
−2/3Gi · (1/N)

)−5/2

× −
2

3

(
zk

−5/3Gk · (1/N)
)

=

(
N∑

i=1

zi
−2/3Gi · (1/N)

)−5/2

zk
−5/3Gk · (1/N). (12)

Lettingk = arg mink |z(u)− zk| and taking the limitN →

∞, the desired functional derivative is given by

(
δzeff

δz(u)

)
=

 1∫
0

z(u)−2/3G(u)du

−5/2

z(u)−5/3G(u). (13)

We thus define

SHS,z(u) ≡
z(u)

HS[z]

(
δHS

δz(u)

)
(14)

as the sensitivity function of sensible heat fluxHS to uncer-
tainties in variable topographyz(u). It is our goal to evaluate
Eq. (14).

3 Solution of the sensitivity functionSHS,z(u)

3.1 Stable conditions (ζ > 0)

Under stable conditions, the set of Eqs. (1), (3), (4) and (5) is
coupled inl throughζ ; we begin de-coupling them by com-
bining Eqs. (3) and (4) to obtain

ζ = (±)
κgzeff

4/3
√

C2
T

u?
2T

√
a(1+ cζ 2/3)1/2

. (15)

Sinceζ > 0, the unsolved sign is positive. With the substi-
tution

3̂ ≡
κ2g2C2

T

u?
4T 2a

, (16)

we re-arrange Eq. (15) to obtain

ζ 2
+ cζ 8/3

− 3̂zeff
8/3

= 0, (17)
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wherezeff in the stable case is determined by a priori known
functionsz(u) andG(u) through Eq. (5). The value of3̂,
includingC2

T , is directly determined from the measurements.
The solution of Eq. (17) follows by re-writing it as a fourth-
degree algebraic equation inζ 2/3:

(ζ 2/3)3
+ c(ζ 2/3)4

− 3̂zeff
8/3

= 0, (18)

or more practically, it can be solved through fixed-point re-
cursion on the function

ζ =

√
3̂z

8/3
eff

1+ cζ 2/3
≡ F̂ (ζ ), (19)

where we must consider the positive root. Note that since
Eq. (18) is fourth degree, Galois theory states that it has an
explicit solution form (e.g.,Edwards, 1984). It is thus pos-
sible in theory to writeHS = h(z(u),C2

n,P ,T ,λ,u?), where
h is an explicit function of the measurements; however, it
would be quite an unwieldy equation.

We do not need an explicit solution in order to study the
sensitivity; we can use the chain rule and implicit differen-
tiation as inGruber and Fochesatto(2013). We establish the
variable inter-dependency using Eq. (17) as a starting point.
The tree diagram for any set of measurements under stable
conditions is seen in Fig.1. The measurements are at the ends
of each branch, and all other variables are dependent.

The required global partial derivatives are now defined
through the variable definitions, the above equations, and the
tree diagram. We have(

δHS

δz(u)

)
=

(
∂HS

∂T?

)((
∂T?

∂zeff

)
ζ

+

(
∂T?

∂ζ

)(
∂ζ

∂zeff

))(
δzeff

δz(u)

)
. (20)

We will need one derivative that we are not able to retrieve
directly from explicit definitions. By implicitly differentiat-
ing Eq. (17) under the guidance of the tree diagram seen in
Fig. 1, we derive(

∂ζ

∂zeff

)
=

(
43̂zeff

5/3

3ζ + 4cζ 5/3

)
=

1

zeff

(
4ζ(1+ cζ 2/3)

3+ 4cζ 2/3

)
. (21)

The functional derivative term
(

δzeff
δz(u)

)
for stable conditions

has been evaluated in Eq. (13).

3.2 Unstable conditions (ζ < 0)

Under unstable conditions, the set of Eqs. (1), (2), (4) and (6)
is coupled inl throughζ ; note thatzeff is coupled toζ in the
unstable case. We combine Eqs. (2) and (4) to obtain

ζ = (±)
κg

√
C2

T

u?
2T

√
a
zeff

4/3(1− bζ )1/3. (22)

Figure 1.Variable inter-dependency tree diagram for the stable case
(ζ > 0). The measurement variables are at the end of each branch;
all other variables are derived.

Since ζ < 0, the sign is negative. With the substitution

3̆ ≡

(
κg

√
C2

T

u?
2T

√
a

)3/4

, this leads to

zeff =
1

3̆

(−ζ )3/4

(1− bζ )1/4
→

ζ

zeff
= −3̆(bζ 2

− ζ )1/4. (23)

We substitute Eq. (23) into Eq. (6) to obtain

ζ =

1

2b

1−

√√√√√√ 1+ 4b3̆(bζ 2
− ζ )1/4

·

[
1∫
0

(z(u) + bz(u)23̆(bζ 2
− ζ )1/4)−2/3G(u)du

]−3/2

≡ F̆ (ζ ). (24)

This single equation is in the single unknownζ , sincez(u),
G(u) and3̆ are known; it is also in the fixed-point formζ =

F̆ (ζ ). The tree diagram for the unstable case is seen in Fig.2.
Evaluation of global partial derivatives proceeds analogously
to the stable case as in Eq. (20). Now we have(

δHS

δz(u)

)
=

(
∂HS

∂T?

)((
∂T?

∂zeff

)(
∂zeff

∂ζ

)
+

(
∂T?

∂ζ

)
zeff

)(
δζ

δz(u)

)
. (25)

To pursue the solution ofSHS,z(u), we will need to solve

for
(

∂zeff
∂ζ

)
by the differentiation of Eq. (23):(

∂zeff

∂ζ

)
=

(2bζ − 3)

43̆(−ζ )1/4(1− bζ )5/4
=

zeff(3− 2bζ )

4ζ(1− bζ )
. (26)

We can solve for
(

δζ
δz(u)

)
by implicit differentiation of

Eq. (24). In finding
(

δζ
δz(u)

)
, it is useful to define

f (3̆,ζ(z(u),3̆),z(u)) ≡ 1+ 4b3̆(bζ 2
− ζ )1/4

·

 1∫
0

(z(u)+ bz(u)23̆(bζ 2
− ζ )1/4)−2/3G(u)du

−3/2

, (27)
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where, from Eqs. (24) and (27), we have√
f = (1− 2bζ ). (28)

From Eq. (27), we have(
δf

δz(u)

)
=

(
∂f

∂ζ

)(
δζ

δz(u)

)
+

(
δf

δz(u)

)
ζ

, (29)

such that, by implicitly differentiating Eq. (28) and then sub-
stituting, we derive

(
δζ

δz(u)

)
=

−

(
δf

δz(u)

)
ζ(

∂f
∂ζ

)
+ 4b(1− 2bζ )

,

=

−
4ζ(1−bζ )
(1−2bζ )

(
z(u) + bz(u)23̆

(
bζ 2

− ζ
) 1

4

)−
5
3 (

1+ 2bz(u)3̆(bζ 2
− ζ )

1
4

)
G(u){[

1∫
0

(
z(u) + bz(u)23̆(bζ 2 − ζ )

1
4

)−
2
3
G(u)du

]

+b3̆(bζ 2
− ζ )

1
4

 1∫
0

(
z(u) + bz(u)23̆(bζ 2

− ζ )
1
4

)−
5
3
z(u)2G(u)du



−
4(bζ 2

− ζ )
3
4

3̆

 1∫
0

(
z(u) + bz(u)23̆(bζ 2

− ζ )
1
4

)−
2
3
G(u)du


5
2

 (30)

All the information we need to solve forSHS,z(u) is now
resolved.

3.3 Full expression for the sensitivity functionSHS,z(u)

Since we are considering an independentu? measurement,

we haveST?,z(u) = SHS,z(u) =
z(u)
T?

(
δT?

δz(u)

)
. We obtain

ST?,z(u) = (31)



z(u)−2/3G(u)
1∫
0

z(u)−2/3G(u)du

(
1

3+4cζ2/3

)
ζ > 0,

−z(u)(z(u) + bz(u)23̆(bζ2
− ζ )

1
4 )−

5
3

·(1+ 2bz(u)3̆(bζ2
− ζ )

1
4 )G(u){[

1∫
0

(z(u) + bz(u)23̆(bζ2
− ζ )

1
4 )−

2
3 G(u)du

]
+b3̆(bζ2

− ζ )
1
4

·

[
1∫
0

(z(u) + bz(u)23̆(bζ2
− ζ )

1
4 )−

5
3 z(u)2G(u)du

]
−

4(bζ2
−ζ )

3
4

3̆

·

[
1∫
0

(z(u) + bz(u)23̆(bζ2
− ζ )

1
4 )−

2
3 G(u)du

] 5
2


ζ < 0.

(32)

Figure 2. Variable inter-dependency tree diagram for the unstable
case (ζ < 0). The measurement variables are at the end of each
branch; all other variables are derived.

4 Application of the results for the sensitivity function
SHS,z(u)

4.1 Imnavait Creek basin field campaign

As an example, we use topographic data from the Imnavait
Creek basin field site (UTM 5N 650220.5 East, 7615761.5
North), where there is a campaign to determine large-scale
turbulent fluxes in the Alaskan tundra; it is seen in Figs.3a
and4. We assume for simplicity that vegetation patterns, wa-
ter availability, and other changes across the basin that could
affect the flow in the atmospheric surface layer do not repre-
sent a significant source of surface heterogeneity. The eleva-
tion data seen in Fig.3a are from a 5 m resolution digital ele-
vation map (DEM), which has a roughly 0.5 m standard devi-
ation in a histogram of the difference between the DEM ele-
vations and 50 randomly distributed GPS ground truth points,
as seen in Fig.3b. Note that the systematic offset between the
DEM and the GPS ground truth measurements does not con-
tribute to systematic error inz(u). Note also that some of this
spread in data may be due to an active permafrost layer.

For this field site, we can solve forζ under unstable con-
ditions through Eq. (24). As can be seen in Fig.5, we ar-
rive at the solution forζ with the recursively defined series
[F̆ (ζguess), F̆ (F̆ (ζguess)), F̆ (F̆ (F̆ (ζguess))), . . . ] that is guar-
anteed to converge monotonically for anyζguess< 0.

A plot of ζ as a function of3̆ for this field site is seen in
Fig. 6. Note that the relationship betweenζ and3̆ is bijec-
tive; any value of3̆ is uniquely associated with a value of
ζ .

Considering the field case study of the Imnavait Creek
basin, where the height of the beam over the terrainz(u)

and the standard path weighting functionG(u) are seen in
Figs.3a and4, Eqs. (31) and (32) lead to the sensitivity func-
tion seen in Fig.7. Note thatSHS,z(u) is a function ofu and
ζ only, since, for any one beam height transectz(u), 3̆ is
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Figure 3.Topography and space view of the Imnavait Creek basin, North Slope of Alaska. The scintillometer beam runs roughly north–south
on a 1.04 km path. The emitter and receiver are each raised off the ground by 3.8 m. Vegetation along the path is representative of Arctic
tundra. Superimposed is a histogram of 50 points of the GPS ground truth elevation survey minus the DEM elevation.
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Figure 4. Height of the beam above the groundz and the path
weighting functionG as functions of relative path positionu, us-
ing the Imnavait experimental site as seen in Fig.3a. Uncertainties
are based on the approximate standard deviation in the histogram in
Fig.3b, although they do not influence the analysis presented in this
study.

mapped bijectively with respect toζ through Eq. (24), as
seen in Fig.6.

Note that if we consider a constant ratio ofσz(u)
z(u)

, system-
atic error propagation can be re-written as

1∫
0

σz(u)

z(u)
SHS,z(u)du =

σz(u)

z(u)

 1∫
0

SHS,z(u)du

 . (33)

The term in square brackets on the right of Eq. (33) is plot-
ted in Fig.8.

4.2 Synthetic scintillometer beam paths

It is interesting to examine the sensitivity function over syn-
thetic paths that are representative of commonly used paths
in scintillometry. Two synthetic paths can be seen in Fig.9.
They include a slant path as well as a quadratic path repre-
senting a beam over a valley.

The sensitivity functionST?,z(u) = SHS,z(u) for synthetic
path 1 (the quadratic path) seen in Fig.9 is seen in Fig.10.
For synthetic path 2 (the slant path), the sensitivity function
is seen in Fig.11.
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Figure 5. Graphical visualization of the fixed-point
solution of Eq. (24). The recursively defined series
[F̆ (ζguess), F̆ (F̆ (ζguess)), F̆ (F̆ (F̆ (ζguess))), . . . ] converges mono-
tonically for anyζguess< 0. A typical value of3̆ = 1/4 is used,
representing slightly unstable conditions in the atmospheric surface
layer. The initial guess isζguess= −1, and the path of convergence
is shown by the red line. The Imnavait Creek basin terrain and
beam path are used forz(u), along with the standard path weighting
functionG(u) as seen in Figs.3a and4.

Figure 6. Solution of Eqs. (19) and (24) produced with a monoton-
ically converging series as explained in the text and as visualized in
Fig. 5. The Imnavait Creek basin terrain and beam path are used for
z(u), along with the standard path weighting functionG(u) as seen
in Figs.3a and4. The mapping betweenζ and3̆ and betweenζ and
3̂ is bijective. Note that the solution ofζ for 3̆ = 1/4 corresponds
to the intersection of̆F with ζ in Fig. 5.
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Figure 7. Sensitivity functionSHS,z(u) = ST?,z(u). For stable con-
ditions (ζ > 0), ST?,z(u) is given in Eq. (31). For unstable condi-
tions (ζ < 0), ST?,z(u) is given by Eq. (32), where values forζ
as a function of3̆ are obtained through a numerical solution of
Eq. (24), which may be visualized with Fig.6. The Imnavait Creek
basin terrain and beam path are used forz(u), along with the stan-
dard path weighting functionG(u) as seen in Figs.3a and4.

5 Discussion

A sensitivity function mapping the propagation of uncer-
tainty fromz(u) toHS has been produced for a large-aperture
scintillometer strategy incorporating independentu? mea-
surements, and the line integral footprint approach to vari-
able topography developed inHartogensis et al.(2003) and
Kleissl et al.(2008). This was accomplished by mapping out
the variable inter-dependency as illustrated in the tree dia-
grams in Figs.1 and2, and by applying functional deriva-
tives. The solution toSHS,z(u) is given in Eqs. (14), (31) and
(32).

As seen in Figs.3a, 4, and7, our results forST?,z(u) =

SHS,z(u) show that sensitivity to uncertainties in topographic
heights is generally higher under unstable conditions, and
it is both concentrated in the center of the path and in ar-
eas where the underlying topography approaches the beam
height. This finding intuitively makes sense, since scintil-
lometers are more sensitive toC2

T at the center of their beam
path, andC2

T decreases nonlinearly in height above the sur-
face and strengthens with greater instability. For the Imnavait
Creek basin path, the value ofSHS,z(u) increases to 3 at small
dips in the beam height beyond the halfway point of the path,
as seen in Fig.7. Note that the asymmetry alongu of SHS,z(u)

corresponds to the asymmetry of the path, which is mostly at
a higher (> 6 m) height in the first half, and at a lower height
(≈ 4 m) in the second half, as seen in Fig.4. Also note that
the local maxima inSHS,z(u) occur at roughlyu ≈ 60 % and
u ≈ 65 %; these correspond directly to topographic protuber-
ances seen in Figs.3a and4. Note that the total error inHS
is contributed from the whole range ofu alongSHS,z(u), so
even though we may have values of up to 3 in the sensitivity
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Figure 8. Average value ofST?,z(u) = SHS,z(u) over beam pathu,

given by
∫ 1
0 ST?,z(u)du, and the flat terrain sensitivity functionSz

derived inAndreas(1989) (for ζ > 0, the functions are identical).
For stable conditions (ζ > 0), ST?,z(u) is given by Eq. (31). For
unstable conditions (ζ < 0), ST?,z(u) is given by Eq. (32), where
values forζ as a function of̆3 are obtained through a numerical so-
lution of Eq. (24), which may be visualized in Fig.6. The Imnavait
Creek basin terrain and beam path are used forz(u), along with the
standard path weighting functionG(u) as seen in Figs.3a and4.

functions, our error bars may still be reasonable. The aver-
age value ofSHS,z(u) alongu is never higher than 1, as seen
in Fig. 8. Knowledge of where the concentration in sensitiv-
ity is allows us to decrease our uncertainty greatly by taking
high-accuracy topographic measurements in these areas, es-
pecially for Arctic beam paths, which must be low due to thin
boundary layers.

For example, if the random error inz(u) in the Imnavait
Creek basin were 0.5 m, the relative error resulting inHS due
to uncertainty inz(u) alone would be just 2 % under slightly
unstable conditions wherĕ3 = 1/4 andζ ≈ −3.75, whereas
if we reduce the uncertainty inz(u) to 0.1 m, the relative er-
ror in HS due to uncertainty inz(u) would be just 0.3 %, so
with a reasonable number of survey points (100), the error
can be quite small. However, if we look at Fig.3b, we see
that there is significant systematic error, perhaps due to shift-
ing permafrost. If we have a perfectly even systematic error
across the whole map, then this error is not propagated. How-
ever, if we have even a small amount of systematic error such
as 0.5 m distributed around the center of the beam path near
the local maxima in sensitivity, we can easily achieve 10 %
to 20 % relative error inHS. In comparison to other vari-
ables, the values forSHS,u? are similar in magnitude toSHS,z

under unstable conditions, smaller under neutral conditions,
and larger under stable conditions (Andreas, 1989). Under
unstable conditions, error fromu? may therefore be similar
in magnitude to error fromz(u); however, for path-averaged
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Figure 9. Synthetic path beam heights including a quadratic path
(path 1) and a slant path (path 2).

u? scintillometer strategies, this is not an issue. ForC2
n, the

sensitivity functions are usually smaller, but in isolated re-
gions they are larger (Andreas, 1989).

The average value ofSHS,z(u) over the beam path reduces
to identical results to the flat terrain sensitivity functionSz

from Andreas(1989) (which would be denotedST?,z here)
under stable conditions wherezeff is de-coupled fromζ , and
nearly identical results (depending on the path) under unsta-
ble conditions wherezeff is coupled toζ , as seen in Fig.8.
It is unknown as to whether the addition of equations for
path-averagedu? measurements such as the Businger–Dyer
relation seen inHartogensis et al.(2003) andSolignac et al.
(2009), or displaced-beam scintillometer strategies as seen in
Andreas(1992), would change these results significantly.

We note that the study ofHartogensis et al.(2003) eval-
uated a function similar toSHS,z for flat terrain with an
independentu? measurement (the 2003 Eq. 7 is ignored);
however, atζ ≈ 0 they found a sensitivity of 1/2 instead
of 1/3 as found inAndreas(1989). The difference in the
results between these two studies is not due to the dif-
ferences between single- and double-wavelength strategies.
The Obukhov length (denoted byLMO in Hartogensis et al.,
2003) is a function ofzLAS through the 2003 Eqs. (5) and (6).
The addition of chain rule terms to reflect the dependence of
l on z in Hartogensis et al.’s (2003) Eq. (A2) resolves dif-
ferences between Hartogensis et al.’s (2003) Fig. A1 and An-
dreas et al.’s (1989) Fig. 4; the flat-terrain sensitivity function
for ζ < 0 is

SHS,z = ST?,z =
1− 2bζ

3− 2bζ
6=

1− 2bζ

2− 2bζ
=

z

HS

(
∂HS

∂z

)
l

, (34)

which is given correctly inAndreas(1989).

Atmos. Meas. Tech., 7, 2361–2371, 2014 www.atmos-meas-tech.net/7/2361/2014/



M. A. Gruber et al.: Error propagation of uncertainties in topography to scintillometer-derived heat fluxes 2369

u

ζ

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

1

−10
0

−10
−1

−10
−2

0

1

2

3

4

u

ζ

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

0

1

2

3

4

Figure 10. Sensitivity functionSHS,z(u) = ST?,z(u). For stable
conditions (ζ > 0), ST?,z(u) is given in Eq. (31). For unstable con-
ditions (ζ < 0), ST?,z(u) is given by Eq. (32), where values forζ
as a function of3̆ are obtained through a numerical solution of
Eq. (24), which may be visualized with Fig.6. Synthetic beam path
1 (the quadratic path) is used forz(u), along with the standard path
weighting functionG(u) as seen in Figs.9 and4.

Equations (7), (9), (31), and (32) may be implemented into
computer code for routine analysis of data. It is worth noting
that the sign ofζ is an a priori unknown from the measure-
ments. Thus, for any set of measurements, we should calcu-
late the set of all derived variables and their respective uncer-
tainties assuming both stable and unstable conditions, and if
uncertainties in the range ofζ overlap withζ = 0 for either
stability regime, we should then consider the combined range
of errors in the two sets.

In the application of Eq. (7), we must recognize computa-
tional errorσfc. Previous studies have incorporated a cycli-
cally iterative algorithm that may not converge, as seen
in Andreas(2012), or that may converge to an incorrect
solution, as illustrated in the section on coupled nonlin-
ear equations inPress et al.(1992). We have developed
techniques to eliminate this error. For unstable cases (ζ <

0), the solution ofζ follows from Eq. (24), which is in
fixed-point form. The solution to Eq. (24) is guaranteed
to converge monotonically with the recursively defined se-
ries [F̆ (ζguess), F̆ (F̆ (ζguess)), F̆ (F̆ (F̆ (ζguess))), . . . ] as seen
in Traub(1964) and inAgarwal et al.(2001), and as demon-
strated in Fig.5. We may solve for the stable case (ζ > 0)
recursively using Eq. (19), whereF̂ (ζ ) demonstrates conver-
gence properties that are similar to those ofF̆ (ζ ) in Eq. (24).
It was found to be practical to makeζguess= ±1.

Future expansions of the results presented here should
focus on including multiple wavelength strategies to eval-
uate the latent heat flux andHS, as well as on including
path-averagedu? measurements usinglo andC2

n scintillome-
ter strategies as inAndreas(1992) or using a point mea-
surement of wind speed and the roughness length via the
Businger–Dyer relation (e.g.,Panofsky and Dutton, 1984;
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Figure 11. Sensitivity functionSHS,z(u) = ST?,z(u). For stable
conditions (ζ > 0), ST?,z(u) is given in Eq. (31). For unstable con-
ditions (ζ < 0), ST?,z(u) is given by Eq. (32), where values forζ
as a function of3̆ are obtained through a numerical solution of
Eq. (24), which may be visualized with Fig.6. Synthetic beam path
2 (the slant path) is used forz(u), along with the standard path
weighting functionG(u) as seen in Figs.9 and4.

Solignac et al., 2009). Modification of the analysis for in-
cluding path-averagedu? measurements involves the addi-
tion of one or two more equations (e.g., Eq. 8 inSolignac
et al., 2009, or Eqs. 1.2 and 1.3) inAndreas, 1992) to sub-
stitute into Eqs. (17) and (24), as well as the definition of
new tree diagrams to reflect thatu? is now a derived variable.
In these cases, either the turbulence inner-scale lengthlo or
a point measurement of wind speed and the roughness length
replacesu? as a measurement;u? is derived through infor-
mation from the full set of measurements. Note that ifu? is
derived through measurements includingz, Eq. (1) implies
that SHS,z = ST?,z + Su?,z. It is worth investigating whether
computational error can still be eliminated in these cases.

We have considered here the effective height line integral
approach derived inHartogensis et al.(2003) and Kleissl
et al.(2008) to take into account variable topography. Even if
we assume a constant flux surface layer, under realistic wind
conditions, turbulent air is advected in from nearby topog-
raphy. For example, in the Imnavait Creek basin path seen
in Fig. 3a, if wind comes from the west, the turbulent air
being advected into the beam path comes from a volume
that is higher above the underlying topography than if wind
came from the east. Sensitivity studies should be produced
for two-dimensional surface integral methods that take into
account the coupling of wind direction and topography on an
instrument footprint (e.g.,Meijninger et al., 2002; Liu et al.,
2011). Additionally, a new theory may be developed for het-
erogeneous terrain involving complex distributions of water
availability and roughness length such as the terrain in the
Imnavait Creek basin.
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6 Conclusions

Sensitivity of the sensible heat flux measured by scintillome-
ters has been shown to be highly concentrated in areas near
the center of the beam path and in areas of topographic pro-
trusion. The general analytic sensitivity functions that have
been evaluated here can be applied for error analysis over any
field site as an alternative to complicated numerical methods.
Uncertainty can be greatly reduced by focusing accurate to-
pographic measurements in areas of protrusion near the cen-
ter of the beam path. The magnitude of the uncertainty is
such that it may be necessary to use high-precision LIght
Detection And Ranging (LIDAR) topographic data as inGeli
et al. (2012) for Arctic field sites in order to avoid large er-
rors resulting from uneven permafrost changes since the last
available DEM was taken. Additionally, computational error
can be eliminated by following a computational procedure as
outlined here.
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