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Abstract. Satellite measurements sample continuous fieldsl Introduction
of atmospheric constituents at discrete locations and times.

However, insufficient or inhomogeneous sampling, if not wellite dat v h d alobal
taken into account, can result in inaccurate average estimategéae lte data usually have very good global coverage,

and even induce spurious features. We propose to charfi‘nd th_ey are ther_efo_re _attractive for vari_ous analyses
acterize the spatiotemporal inhomogeneity of atmospherié)f spatiotemporal distributions of atmosphe_rlc parameters.
measurements by a measure, which is a linear combinatioh'owever’ measure_ments sample the continuous fields 9f
of the asymmetry and entropy of a sampling distribution. It atmospheric constituents, thermal structure and dynamic

is shown that this measure is related to the so-called sampling"’“,a:]maters only at dlscreI'Fe Iog:fatlons and tllmes. Ilnsuéflment
uncertainty, which occurs due to non-uniform sampling r INoMogeneous sampling (i no_t properly analyze .) can
patterns. result in inaccurate average estimates and even induce

We have estimated the sampling uncertainty of zonal mear?p#()u.s featttjres. ¢ i tainties is i
ozone profiles for six limb-viewing satellite instruments € importance of sampiing uncertainties 1S increas-

participating in the European Space Agency Ozone Climatén,gly recqgnlzed. For. example,. to create temperatgre
Change Initiative project using the high-resolution Ozonecllmatologles from radio-occultation measurements using

field simulated with the FInROSE chemistry-transport glffersnt sate_lhtes,dthe_ err(r)]r (rj]ueh to (I)rp|tal sampling
model. It is shown that the sampling uncertainty for the as been estimated using the high-resolution temperature

instruments with coarse sampling is not negligible and canﬂGId from ECMWF (European Centr.e for Med|u_m.—R_ange
eather Forecasts) and corrected in a deterministic way

be as large as a few percent. It is found that the standar%v )
deviation of the sampling uncertainty in the monthly zonal Foelsche .et al., 2011). Foelsche et 'al. (201.1) estlmated
mean data allows for a simple parameterization in terms oithe samp_llng error by comparing cllmatol_ogles der!ved
the product of the standard deviation of natural variationsf_rom vertical ECMWF profiles at the radio-occultation
and the proposed inhomogeneity measure. The samplin

gmes and locations with climatologies derived from the
uncertainty estimates improve the uncertainty quantificationc®MPlete 4-D ECMWF field. This is the typical approach
and can be used in comprehensive data analyses.

for estimating sampling uncertainties. Other recent works by
The focus of this work is the vertical ozone distributions

Guan et al. (2013) and Aghedo et al. (2011) evaluate the
measured by limb-viewing satellite instruments, but the?mpaCt of Sa_mp“”g patterns on sateliite a_nd climate model
developed methods can also be applied to different Satel”temter-companson_s, for Se"er?" atmosphen_c p.arameters and
ground-based and in situ measurements. for several .satellltes measuring in nad|r—V|eW|n.g geo_metry.

The sampling uncertainty was found to be insignificant

for the majority of variables, satellite instruments and

types of averaging. Satellite measurements of atmospheric
composition in a limb-viewing geometry have significantly
coarser sampling than measurements from nadir-viewing

satellite measurements. Recently, Toohey et al. (2013)
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estimated the sampling uncertainty (referred to as “samplingstatistical characterization/parameterization of the sampling
bias”) of monthly zonal mean profiles irf Batitude zones uncertainty.

for the satellite instruments participating in the SPARC This paper is organized as follows. In Sect. 2, we
(Stratospheric Processes and their Role in Climate) Datdriefly describe the satellite data used in our analyses
Initiative project (Tegtmeier et al., 2013). As shown in this and the chemistry-transport model FInROSE. Examples of
paper, stratospheric trace gas climatologies may contaispurious ozone distribution features induced by non-uniform
significant sampling uncertainties (up to 20% in somesampling are provided in Sect. 3. In Sect. 4, we propose an
regions for instruments with coarse sampling). The samplingnhomogeneity measure for the characterization of sampling
uncertainty is found to be greatest when natural variability patterns. Section 5 is dedicated to the characterization of the
is strongest, as intuitively expected. Non-uniform samplingsampling uncertainty in climatological ozone distributions
results not only in inaccurate averaged values, but it alsaand its parameterization. A summary section concludes the
affects the uncertainty estimates of the mean value, typicallypaper.

characterized by the standard error of the mean (Toohey and

von Clarmann, 2013). A special sampling inhomogeneity

may appear also in comparisons of data measured by Dataand models

different methods, e.g., in comparisons of satellite and . i

ground-based observations. 2.1 Satellite ozone profile data

The focus of our study is the vertical distribution of ozone In this section, we briefly introduce the satellite ozone data
measured by satellite instruments using the limb-viewing ' y . .
that are used in our analyses and illustrations. We present

geometry. During our analyses of ozone distributions, we . . L :
encountered some puzzling features, which turned out tohere only the information that is important for studying the

be induced by non-uniform sampling patterns. We showszgpcl:;]r?bin%ir;%'?rt_}yih'\élZz;énfzmggggnzbom the satellite
examples of such spurious features, in order to attract théj P ’

attentlon' to the mportapcg of S.‘”‘mp"r!g gncertalnt|es N2.1.1 Harmonized data set of ozone profiles

geophysical analyses. This is the first objective of our paper.

The secor_1d objecti\_/e of our paper is characterizing_ thethe HARMonized data set of Ozone profiles (HARMOZ)
effect of orbital sampling on zonal monthly mean profiles 55 peen created in the framework of the ESA Ozone cci
by six limb and occultation satellite instruments participating project (Sofieva et al., 2013). It consists of user-friena|y
in European Space Agency (ESA) Climate Change Initiativejevel.2 ozone profiles from six satellite instruments:
project _(Ozone__cmr_lttp:_//www.esa-oz_one-CCI.o)'gW!thln Global Ozone Monitoring by Occultation of Stars (GO-
this project, which is aimed at creating homogenized andyios), Michelson Interferometer for Passive Atmospheric
merged ozone profile d_ata sets fro!'n ESA Envisat satelllteSc,unding (MIPAS) and Scanning Imaging Spectrometer
data and from E_SA Thqu Party Missions, monthly zo_nal for Atmospheric Chartography (SCIAMACHY) on board
mean data sets in 10Oatitude zones from each satellite Envisat, Optical Spectrograph and InfraRed Imaging System
mstrumenthaye been c.reated.Anangoust to the Qpproa}chq@gms) and Sub-Millimeter Radiometer (SMR) on board
used in previous studies, we have performe_d S|mulat|on50din, and Atmospheric Chemistry Experiment — Fourier
by the chemistry-transport model (CTM) FIinROSE for Transform Spectrometer (ACE-FTS) on board SCISAT-1.
evaluating sampling errors in monthly zonal mean datacompared to the original Level 2 data, the HARMOZ data
sets. We found that the sampling error for severalare screened for invalid values, presented on the same
satellite instruments is non-negligible; it depends on thepressure grid and in the same format. More details on the
sampling pattern, the natural ozone variability, and theyARMOZ data set can be found in Sofieva et al. (2013). The
ozone distribution (the results are presented in Sect. S)gata are available online dtttp://www.esa-o0zone-cci.org/

If a very good chemistry-transport model existed, it oq=node/16Dr at dx.doi.org/10.5270/esa-0zone_cci-limb
would allow for a correction of the sampling uncertainty occyltation profiles-2001_2012-v_1-201308 B B
(actually, sampling bias) in monthly zonal mean data in @ Taple 1 contains the parameters of the individual
deterministic way, analogous to the correction of samplingyaARMOZ data sets that are important for sampling studies.
bias in radio occultation temperature data using ECMWFpMiPAS and SMR measure during day and night, while
temperature fields (Foelsche et al., 2011). However, existingneasurements from other instruments are obtained at specific
chemistry-transport models do not have sufficient accuracygcal times. The best sampling is obtained by MIPAS and

for this purpose. Note also that such an approach cannogc|AMACHY: ACE-FTS has the coarsest sampling.
completely remove sampling biases. Therefore, there is a

need for a robust and simple measure that can characterize1.2 Microwave Limb Sounder

the inhomogeneity of distributions and, at the same time,

is related to the sampling uncertainty. Our other objectivesThe Microwave Limb Sounder (MLS) on board the EOS
are the creation of such an inhomogeneity measure and thAura satellite has been measuring thermal microwave
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Table 1.General information about the HARMOZ data sets.

Vertical range Local time Vertical resolution Average number
in HARMOZ of profiles per
day
GOMOS 250-1x 104 hPa ~10p.m. 2 km below 30 km, 3 km above 40 km,~ 110
a linear transition between

MIPAS 400-5x 102 hPa ~10p.m. and~10a.m. profile-dependent, 3-5km ~ 1000
SCIAMACHY  250-5x 1072 hPa ~10a.m. profile-dependent, 3-5km ~ 1300
OSIRIS 450-1x 10~ 1 hPa ~6a.m. and~6p.m. ~ 2-3km, altitude-dependent ~ 250
SMR 300-5x 1072 hPa ~6a.m. and~6p.m. profile-dependent; 2.5-3.5km ~ 250
ACE-FTS 450-2 10~*hPa sunrise and sunset ~3km ~11

emission from the atmospheric limb in five spectral bandsmodel photodissociation rates are calculated using a radiative
from 115GHz to 2.5THz from August 2004 to present transfer model PHODIS (Kylling et al., 1997). In addition,
(Waters et al., 2006http://mls.jpl.nasa.gov/index-eos-mis. 30 heterogeneous reactions on/in liquid binary aerosols and
php). Aura is in a sun-synchronous orbit at about 705 kmtype la, Ib and Il polar stratospheric clouds are included in
altitude with 98 inclination, a 98.8 min period, and an the model.

ascending equatorial crossing time of13:45LT. MLS In this study, we compared the FiInROSE ozone fields with
measures during day and night and provides near-globathe model data sub-sampled at locations and times corre-
coverage from 82S to 82 N with about 3500 limb scans sponding to the satellite measurements. The spatiotemporal
daily. MLS v3.3 ozone profiles measured with a vertical resolution of FInROSE is sufficient to capture most of the
resolution of~3km are used in our analyses. Differences ozone variability, and it is therefore well suited for this study.
between the v3.3 and v2.2 ozone data are typically les$-urthermore, the model’s spatial resolution is similar to the
than a few percent, except in the upper troposphere aneéffective resolution of the ozone profiles measured in the
lower stratosphere, especially in the tropics, where the (finetimb-viewing geometry. Small-scale ozone variability (e.g.,
resolution) v3.3 profiles exhibit larger vertical oscillations perturbations due to gravity waves) is not considered in our
than the v2.2 profiles (Froidevaux et al., 2008; Livesey et al.,analysis, neither in the model nor in the data.

2013a, b).

2.2 Simulations with FInROSE chemistry-transport 3 Examples of spurious features induced by sampling
model patterns

FINROSE is a global three-dimensional offline chemistry- |n this section, we present examples of spurious features
transport model (CTM) developed for middle atmosphereinduced by inhomogeneous sampling patterns. We selected
studies (Damski et al., 2007). The model dynamics (i.e..the examples where these features are clearly seen, and
temperature, horizontal winds and surface pressure) is taketherefore they are “extreme” in the sense that they are
from external sources. In this study FInROSE was run withrelated to highly non-uniform distributions. However, these
the ECMWF ERA-Interim data, with 30 min time step, with examples are not artificially constructed, as they were
32 vertical levels from the surface up to 0.1hRa6okm)  encountered during our analyses of satellite data sets.
and with a horizontal resolution of°3longitude by 1.8
latitude. 3.1 Quasi-periodic structures

FINROSE uses tropospheric abundances of chemical
composition as boundary conditions. At the lower boundary,During our analyses of longitudinal distributions of ozone
monthly averages are used for ozone and water vapor, andsing MLS observations, we noticed quasi-periodic 0s-
trends are imposed for long-lived gases. In the stratosphereillatory patterns when the data were averaged in small
FinROSE produces distributions of 40 species and familiedongitudinal bins. An example of such oscillations is shown
taking into account both chemistry and dynamics (only thein Fig. 1a. In this example, MLS ozone profiles at latitudes
long-lived constituents are transported). The model include€60-70 N measured during three days, 14-16 October 2007,
about 120 homogeneous reactions and 30 photodissociatioare averaged (median estimates) ii8ngitude bins (the
processes. Chemical kinetic data, reaction rate coefficientbins are chosen to be small for a better view of the
and absorption cross sections are based on the Jaffect). The MLS measurements are located at the edge
Propulsion Laboratory compilation by Sander et al. (2006),of the forming polar vortex, where ozone gradients are
including updates from the available supplements. Thestrong, even in a relatively small latitude zone 60-X0
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Figure 1. (a) Ozone mixing ratio from MLS observations at 60=Mon 14-16 October 2007, averaged tl8ngitude bins(b) the mean
FinROSE field for 14-16 October 2007 at latitudes 60-NM0(c) the FINROSE ozone field sampled at MLS locations, for the same dates
14-16 October 2007 and averaged in the same way as the MLS dat@)andnber of observations (grey diamonds) and inhomogeneity
measures in latitud#|5; and in timeHime, for each longitude bin.

(examples of ozone distributions can be found for example ain  Sect. 4). This inhomogeneity in combination with
http://mls.jpl.nasa.gov/plots/mls/mls_plot_locator.phphe strong ozone gradients results in the observed spurious
observed quasi-periodic structures are not real; they arescillations in these MLS ozone distributions. As expected,
induced by the MLS sampling pattern in the presencethe oscillations disappear if larger longitude bins are used.
of strong ozone gradients. Indeed, the ozone field fromWe note that such spurious oscillatory patterns would also
FINROSE simulations, being averaged over the consideretbe observed with other satellite data sets (e.g., MIPAS or
period 14-16 October 2007, is smooth (Fig. 1b). However, if SCIAMACHY), and this sampling effect is not specific only
the FinROSE ozone field is sampled at the MLS locationsto MLS.

and averaged in the same way as the MLS data, the

longitudinal distribution has a very similar quasi-periodic 3.2 Representation of annual cycles

pattern (Fig. 1c).

The reason for the appearance of such oscillations is thator analyses of ozone time series and trends, monthly
some of the longitudinal bins have a very small number ofzonal mean data are usually used (e.g., Kyrola et al., 2013;
measurements (1 or 2), as shown in Fig. 1d. The distributioflNewchurch et al., 2003; Randel and Wu, 2007; Staehelin
of measurements is very inhomogeneous for such smal¢t al., 2001). Sometimes (if the latitude zone is rather

bins (the inhomogeneity measure will be discussed belowide), the representation of the annual ozone cycle can
differ significantly between various satellite measurements.
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Such an example in presented in Fig. 2 (top panel), whichwhere N is the number of binsu(i) is the number of
shows monthly zonal mean ozone number densities abbservations in the biiy andng is the sample size. H(i) =
15hPa £ 30km) averaged in the latitude zone 40280 0 for some bin, the corresponding term in Eq. (3) contributes
for GOMOS and MIPAS. In summer, GOMOS and MIPAS with its limit value, zero. The size of the bins for evaluating
data are rather close to each other, while in winter GOMOSentropy should be selected according to the variability of
data indicate significantly lower ozone values than MIPAS. a considered parameter: within a bin, the natural variations
This is seen especially clear in years 2005—-2008; the relativahould be small. Perfectly homogeneous sampling patterns
differenceS3MISMIPAS . 200 9% estimated from the monthly haveE = 1.

zonal mean data is shown by black lines in Fig. 2(bottom). Asymmetry or entropy separately does not always describe

This difference in representation of the seasonal cyclethe inhomogeneity of distributions properly, as illustrated
is largely induced by inhomogeneous sampling. Indeed,n Fig. 3 with an example of very simple artificial 1-D
when using only collocated data in this latitude zone, suchdistributions in 10 bins. For example, the distributions in
seasonal cycle in difference between GOMOS and MIPASpanels a and b of Fig. 3 are perfectly symmetric£ 0), but
ozone is not observed (Fig. 2, bottom). In our analysis,the distribution for Fig. 3b is significantly less homogeneous
we used two collocation criteria: “strict”, based on the than that of Fig. 3a, as indicated by the different entropy
effective horizontal resolution of the measurements (distanc¢and thus inhomogeneity) values. The distributions in Fig. 3c
d <400 km, time separationr <4h), and a more relaxed and d have the same entropy but a different asymmetry.
(distanced < 1000 km, time separation: < 24 h, latitude  Our measured characterizes the distribution for Fig. 3c as
differenceAd| < 2°). These collocation criteria were also more homogeneous (smalléf), as expected from visual
used while creating the bias tables for the HARMOZ datainspection.
sets (Sofieva et al., 2013). As shown in Fig. 2 (bottom), The linear combinationH, of asymmetry and entropy
the difference between collocated GOMOS and MIPAS characterizes the inhomogeneity better than each component
ozone data at this altitude is nearly constany %, with separately. Since asymmetry and entropy are conceptually
small variations. Therefore, the different representation ofdifferent measures, we taldeand (1— E) with equal weights
ozone annual cycles in this example is a feature inducedn Eg. (1). The inhomogeneity measukeranges from 0 to
by non-uniform sampling. GOMOS data do not provide 1: the largerH is, the less homogeneous the distribution is.
a uniform sampling in this relatively wide latitude zone; In case of a single data point, its central location has the
thus the annual cycle is represented differently in MIPAS smallest inhomogeneity (Fig. 3e and f). However, in the case
and GOMOS data. If smaller latitude zones are used, thiof several measurements, the locations close to the center
spurious feature practically vanishes (not shown here). have the same weight as others: the distributions shown in
Fig. 3g and h have the same asymmetry and entropy values,
thus the same inhomogeneity.

The spurious oscillations in MLS longitude—altitude
distributions, which were discussed in Sect. 3.1 and shown
in Fig. 1a, are well explained by the proposed inhomogeneity
measure. Figure 1d shows the inhomogeneity measures in
latitude Hja; and in time Hyjme, for each longitude bin. The
H— }(A +(1-E)). (1)  same periods are observed in the inhomogeneity values, with

2 peaks corresponding to small numbers of measurements.

Let x be a coordinate that characterizes positions of The simple inhomogeneity measure (Eg. 1) is one-

4 Measure of inhomogeneity

We will characterize the inhomogeneity of a sampling
distribution by the linear combination of two classical
inhomogeneity measures, asymmetrand entropyE':

measurements. Asymmetry is defined as dimensional. It could also be constructed for two- or multi-
[{x) — xo dimensional cases by combining the corresponding 1-D
A=2———, (2) inhomogeneity measures. For example, a two-dimensional

Ax
where (x) is the mean location of measurements in a cell
of the width Ax with the central pointxg. Asymmetr - L e
ranges from O for symmetric distribﬁtions to 1 )f/or stror):gly range forH will be also from O to 1. This is discussed further

L Y - in Sect. 5.
asymmetric distributions. This asymmetry measure has been
used, for example, for characterization of inhomogeneity of
ozone monthly zonal mean data in the recent study by Kyréla L ) .
et al. (2013). The entropy definition considers tiat is  ° Estimating sampling uncertainty in
divided into smaller bins. Then the entropy can be defined climatological data
as (e.g., Shannon and Weaver, 1949)

inhomogeneity measure can be constructed as a weighted
mean H = w1 Hy + w2 Hy, where w1 +w» =1. Then the

. . In order to estimate sampling uncertainties in monthly zonal
E— -1 Z n(i) o (@) 3) mean data for the HARMOZ instruments, we have performed
log(N) — ng ng )’ simulations with the FiInROSE chemistry-transport model for
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Figure 2. Top: monthly zonal mean ozone number density at 15 hP20(km), latitudes 40—-60N. Bottom: relative difference of GOMOS
and MIPAS ozone at 15 hPa, for the same latitude zone 40N@3timated using monthly zonal mean data (black line) and using collocated
GOMOS-MIPAS data (green and magenta lines).
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Figure 3. Examples of artificial distributions and their characterization by asymmgtentropyE, and inhomogeneity measufg, Eq. (1).

years 2005-2009. The ozone field was simulated with a higmearly all locations. For coarse samplers (GOMOS, OSIRIS,
resolution of 1.5 in latitude and 3 in longitude. Then the ACE-FTS), the sampling error is not negligible and can be as
monthly mean model data in 10atitude bins from 90S large as a few percent (sometimes, even up &9 %). It can

to 9 N were compared with those sampled according toalso be noticed that the sampling uncertainties are enhanced
the locations of the satellite measurements. An example ofn the regions of high ozone variability (upper troposphere
the absolute differenceA| = |(xFinrosE — (xsap| between and lower stratosphere (UTLS), mid- and high northern
the full (xrinrose and sub-sampledxsy) monthly zonal latitudes), as expected. The sampling error magnitude is
mean ozone field for January 2008 is shown in Fig. 4, forin perfect agreement with that reported by Toohey et
the sampling patterns of each HARMOZ data set. Largeal. (2013), who presented many illustrations of sampling
sampling errors are strongly correlated with inhomogeneousias statistics. In our paper, we will not show a similar
distributions in certain latitude ranges, as indicated by thecharacterization for each month and year, but we take a
inhomogeneity measures in latitude, longitude and timefurther step in the sampling uncertainty characterization via
shown in the lower panels of Fig. 4. The inhomogeneity isits parameterization, as described below.

computed using the profile locations; therefore, less dense The sampling error depends on the sampling pattern
sampling at lower altitudes is not taken into account in thisand the ozone distribution in a particular month (i.e., it
illustration. For instruments with dense sampling (MIPAS depends on the spatiotemporal correlation of the ozone
and SCIAMACHY), the sampling errors are small in field). The absence of a sufficiently accurate CTM does not
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. . . where Hiy; and Hijime are inhomogeneities in latitude and in

0ol 35km 40 Iggs ? | time, respectively. Here we taki|;; and Hiime With equal
B il y=X (L weights. In the future, when detailed information about the
0.8} y= . 1 ozone spatiotemporal variability will be available, weighting
N of the one-dimensional inhomogeneities might be optimized.
0.7 JR O 1 To find the sampling uncertainty parameterization, we used
T 06 ,/*k ] only the sampling patterns of coarse samplers GOMOS,
\ba, Z | OSIRIS and ACE-FTS, which provide a wide range of
205¢ PY I inhomogeneity values. For each of these three instruments,
b?; 0.4 9,’+ we computed the sampling errak (i.e., the difference
P between the continuous and sub-sampled FInROSE ozone
0.3r J field averages) corresponding to eacht 1dtitude bin and
0.2 ya | each month in years 2005-2009. We divided the range of
7 inhomogeneity values into intervals containingl00—200
01 Y estimates of sampling error (the centers of the inhomogeneity
, bins are indicated by symbols in Fig. 5). Then we calculated

0 02 04 0.6 0.8 1 the standard deviation of sampling errors normalized by
inhomogeneity ozone natural variability in the corresponding bins(%(g),

I;igurle 5. Th(_e dependen(;e of normalized sampling uncertaintywhich approximates the ratig”i%’*{ The estimates of
e ON the inhomogeneity measukkot, for 35km (blue), 40km  natyral variability ona: for each month and each latitude
(re(f) and 45 km (green); error bars corresponddouhcertaint_y. bin are taken from the LLM climatology (McPeters et
Black dgshed line corresponds to the Ie_ast_—squares fit using thsl_’ 2007). For stratospheric altitudesys can also be
Eq. (4), -€. Osample= Hig” - onat Black solid line corresponds to estimated from the FinROSE fields (the results of sampling
the relationosampie= Fot - onat error parameterization will be the same). We considered
three altitudes levels: 35km, 40km and 45km, where the

o _ . LLM climatology is represented by satellite data and thus
allow for a characterization and correction of the samplingcan provide realistic estimates of ozone natural variability.

error/bias in a deterministic way, as done by Foelsche eﬁzigure 5 shows the dependence of the estima&ade
a[. (2011). Our estimates of sampling uncertainty with theas a function ofHy; for the three altitude Ievelg.natThe
FiNROSE model, as well as the analogous study by Toohey,nerimental data shown in Fig. 5 are very close to the

et al. (2013), clearly indicate enhancements of sampling,a_t0-one line: the correlation coefficient betwe&Am™e
uncertainty for coarse sampling patterns and for regions ot Hiot is very high,~0.98. The non-linear Ieast-sga?tjares
high ozone variability. These (expected) findings promptgi; of 4| experimental data points in Fig. 5 by the function
us to parameterize the sampling uncertainty as a function, Eq. (4) gives the estimate of parameter=0.95+

of the natural variability and the inhomogeneity measure.q o2, which is very close to one. Therefore, we suggest

We propose to characterize the sampling uncertainty as a8 rameterizing the sampling uncertainty with the following
additional random error of monthly zonal mean data modele imple relation:

as a Gaussian random variable with zero mean and standard

deviationosample Our objective is to find a parameterization osample= Hot - Onat: (6)
of osample Which depends on the inhomogeneity measure
H and the standard deviation of natural variatieng; in This relation, which is intuitively expected, allows for

a spatiotemporal cell. Sinc@sample should approach zero a sufficiently accurate parameterization of the sampling
whenH — 0 oronat— 0 and with dimensional analysis, itis uncertainty of monthly zonal mean ozone profiles. For
reasonable to assume the following functional dependence:the monthly zonal mean ozone data from the HARMOZ

instruments, which are created in the framework of the

Osample= Onat- HY, (4) Ozone_cci projecthttp://www.esa-ozone-cci.org/?q=node/
166), the profiles of inhomogeneity measure in latitude and in
whereais the parameter to be estimated. time are provided in the data files. Then the total uncertainty

In case of monthly zonal mean data, the inhomogeneity®f the monthly zonal mean daief, can be estimated as
in longitude is very small for all HARMOZ instruments. , 5 2
Therefore, we define the combined (total) inhomogeneity of’tot = mean™ 9sample @)

the considered satellite measurements as where omean is the standard error of the mean, which can

1 be computed as;r%ean:% (s? is the sample variance,
Hiot = E(Hlat'f‘ Hiime), ) N is the sample size), andsample Can be parameterized
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