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Abstract. The existence of various land surfaces always
leads to more difficulties in cloud detection based on satellite
observations, especially over bright surfaces such as snow
and deserts. To improve the cloud mask result over complex
terrain, an unbiased, daytime cloud detection algorithm for
the Visible and InfRared Radiometer (VIRR) on board the
Chinese FengYun-3A polar-orbiting meteorological satellite
is applied over the northwest region of China. The algo-
rithm refers to the concept of the clear confidence level from
Moderate Resolution Imaging Spectroradiometer (MODIS)
and the unbiased structure of the CLoud and Aerosol Unbi-
ased Decision Intellectual Algorithm (CLAUDIA). Six main
channels of VIRR centered at the wavelengths of 0.455, 0.63,
0.865, 1.595, 1.36, and 10.8 µm are designed to estimate
the degree of a pixel’s cloud contamination judged by the
clear confidence level. Based on the statistical data set dur-
ing four months (January, April, July, and October) in 2010,
seasonal thresholds are applied to improve the accuracy of
the cloud detection results. Flags depicting snow and water
are also generated by the specific threshold tests for special
surfaces. As shown in image inspections, the cloud detection
results over snow and deserts, adopting the proposed scheme,
exhibit better correlations with true-color images than the
VIRR official cloud mask results do. The performance of
the proposed algorithm has been evaluated in detail for four
seasons in 2011, using cloud mask products from MODIS
and the ground-based observations. The evaluation is based
on, overall, 47 scenes collocated with MODIS and 96 indi-
vidual matchups between VIRR and the ground-based ob-
servations from two weather stations located in the research
region. The quantitative validations suggest that the estima-
tions of clear-sky regions have been greatly improved by the

proposed algorithm, while a poor identification of the cirrus
clouds occurs over deserts.

1 Introduction

Distinguishing cloudy from clear-sky areas has always been
a challenging job for satellite remote sensing. The presence
of clouds contaminates radiometric observations (Kidder and
Vonder Haar, 1995), which may cause errors in the retrieval
of atmospheric compositions and parameters, especially for
the researches on aerosols (Kaufman et al., 2005). Consider-
ing the large effect of clouds on radiance, it is necessary to
provide techniques to separate clouds from clear-sky areas.

Many cloud detection algorithms have been proposed,
depending on the purposes of the observations and spec-
ifications of the imager. The International Satellite Cloud
Climatology Project (ISCCP) presented statistical-threshold
tests for visible and infrared radiance to differentiate cloudy
and clear scenes over various climate regions (Rossow,
1989; Rossow and Garder, 1993). The Advanced Very High
Resolution Radiometer (AVHRR) Processing scheme Over
cLouds, Land, and Ocean (APOLLO) used two visible and
three infrared bands to screen clouds (Saunders and Kriebel,
1988; Gesell, 1989; Kriebel et al., 2003). Clouds from
AVHRR (CLAVR) used sequential decision-threshold tree
tests to identify the pixels, which were classified into 2× 2
global area-coverage pixel arrays over cloud-free, mixed,
and cloudy regions (Stowe et al., 1991, 1994). The dy-
namic threshold cloud masking (DTCM) algorithm used dy-
namic thresholds to screen clouds over land for AVHRR
data and correctly identified a comparable or higher number
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of cloud-contaminated pixels compared with the CLAVR
scheme (Di Vittorio and Emery, 2002). The cloud mask
algorithm for the 36-channel Moderate Resolution Imag-
ing Spectroradiometer (MODIS) was determined by the fi-
nal confidence flags based on five groups of threshold tests
(Ackerman et al., 1998). Based on the infrared tri-spectral
algorithm, the cloud thermodynamic phase-discrimination
method applied to MODIS data introduced three additional
bands located at 0.65, 1.63, and 1.90 µm to improve the accu-
racy of phase retrieval (Baum et al., 2000). Ishida and Naka-
jima (2009) proposed an unbiased cloud detection scheme,
based on a neutral concept, to restructure the final confi-
dence flags of the MODIS cloud mask algorithm (MOD35)
and applied the CLoud and Aerosol Unbiased Decision In-
tellectual Algorithm (CLAUDIA) to a virtual imager to in-
vestigate the efficiency of existing and future spaceborne im-
agers (Nakajima et al., 2011). The Visible Infrared Imager
Radiometer Suite (VIIRS) cloud mask, derived from the au-
tomated analysis data, provided a critical data product for
the NPOESS (National Polar-orbiting Operational Environ-
mental Satellite System) program (Hutchison et al., 2005).
The cloud screening algorithm for Environmental Satellite
– Medium Resolution Imaging Spectrometer (ENVISAT-
MERIS) multispectral imagers was based on the extraction
of meaningful physical features to increase cloud detec-
tion accuracy (Ǵomez-Chova et al., 2007). For FengYun-
3A/Visible and InfRared Radiometer (FY-3A/VIRR), the
multiple-feature (single channel or multiple channels in com-
bination) thresholds, which were determined by a dynamic
histogram method or forward modeling results, were applied
into the official cloud mask scheme (Yang et al., 2011). A
daytime cloud detection algorithm with good performance
has also been adopted for FY-3A/VIRR recently. It was an
automatic daytime cloud mask technique based on the multi-
spectral threshold synthesis method inherited from MODIS.
By adding the difference between the 1.38 and 1.6 µm bands,
it provided improved results for high-cloud detection (He,
2011).

To acquire more accurate cloud masking results, the po-
tential impact of various land surfaces should also be con-
sidered in the algorithm. Especially bright surfaces, such as
snow and deserts, with large reflectance similar to that of
clouds could probably be classified as cloudy under clear-
sky conditions. Focusing on improving the cloud detection
over bright surfaces, researchers have tried several methods.
For discrimination of snow-covered areas, the Normalized
Difference Snow Index (NDSI) has been widely used for
many sensors. Defined by the two bands centered at 0.57 and
1.65 µm, NDSI was introduced for Landsat Thematic Map-
per (TM) images (Dozier, 1984, 1989). For the Vegetation
(VGT) sensor, the Normalized Difference Snow/Ice Index
(NDSII) was proposed, which was based on the reflectance
values of red and mid-infrared spectral bands (Xiao et al.,
2001). NDSI was also applied in the cloud detection algo-
rithm of MODIS (Ackerman et al., 1998). By adding the

cloud-phase identification, cloud detection over snow/ice for
MODIS was developed (King et al., 2004). With the 1.6,
2.2, and 1.38 µm observations from MODIS, two multispec-
tral enhancement techniques were proposed for distinguish-
ing between regions of clouds and snow cover (Miller et al.,
2005). Six extra tests were also applied for MODIS to iden-
tify clouds over desert regions in daytime imagery, which in-
cluded a 13.9 µm and a 6.7 µm single brightness temperature
test, a 1.38 µm reflectance test, and three brightness temper-
ature difference tests (11 minus 12 µm, 3.7 minus 11 µm, and
3.7 minus 3.9 µm) (Ackerman et al., 1998). To improve the
performance of the cloud mask in the vicinity of desert areas,
data from 0.4 µm were also used based on the strong contrast
between highly reflective clouds and less reflective cloud-
free desert regions (Hutchison and Jackson, 2003). For water-
covered regions, the Normalized Difference Vegetation In-
dex (NDVI) was an effective discrimination method. Defined
by the red and near-infrared bands, NDVI was widely ap-
plied in vegetative studies (Nemani and Running, 1989; De-
fries and Townshend, 1994; Carlson and Ripley, 1997). For
water-covered regions, the value of NDVI was always nega-
tive compared with clouds and other primary land surfaces.
Based on this fact, NDVI was also adopted to discriminate
water areas (Giglio et al., 2003; Lunetta et al., 2006; Gao et
al., 2007).

In this paper, an unbiased daytime cloud detection algo-
rithm based on CLAUDIA is applied to FY-3A/VIRR data
over the northwest region of China. For multispectral thresh-
old tests, it is necessary to provide a method to regroup the
results of each single test to produce the final result. Accord-
ing to the regrouping schemes, prevailing algorithms are de-
signed into two main categories: clear conservative (such as
APOLLO and MOD35) and cloud conservative (such as IS-
CCP). The CLAUDIA algorithm provides a new concept to
recombine the individual threshold test result. It refers to the
multiple threshold method employed in the MODIS cloud
mask scheme but reconstructs the calculation method for the
final confidence flags to realize neutral results (Ishida and
Nakajima, 2009). With the unbiased technique, the mixed
pixels, in which clouds and surfaces are both included, are
not directly identified as clouds or clear-sky areas. Instead,
the clear confidence levels are applied. This technique pro-
vides a more accurate cloud mask result that is not biased to
either clear or cloudy. With those advantages, the concept of
the unbiased algorithm is introduced into the cloud detection
for FY-3A/VIRR in our project, to improve the official cloud
mask product of VIRR over the northwest region of China.
Over the regions with the complex terrain, specific threshold
tests are also added into the improved algorithm to separate
the special clear-sky surfaces such as snow and water into
distinct categories. The seasonal thresholds used in this pa-
per are determined based on the statistical data of 2010.

This paper includes five sections. Section 2 describes the
background and data we used. Section 3 provides details of
the threshold experiments and descriptions of the improved

Atmos. Meas. Tech., 6, 549–563, 2013 www.atmos-meas-tech.net/6/549/2013/



X. Wang et al.: Improved cloud mask algorithm for FY-3A/VIRR data over the northwest region of China 551

cloud mask algorithm for FY-3A/VIRR. The cloud detection
results and validations of the proposed algorithm are then
presented in Sect. 4. Finally, Sect. 5 provides a summary and
discussion.

2 Background and data

2.1 Background

The existence of bright land surfaces, which share similar
radiative characteristics with clouds, always leads to errors
in cloud detection. Over snow-covered regions, the high re-
flectance and cold temperature make it difficult to distinguish
clouds from clear-sky areas. A similar problem exists when
the underlying surface is a desert. Thus, the cloud detec-
tion algorithm cannot only depend on the single wavelength
threshold test. Instead, it is necessary to add more effective
techniques to avoid the false identifications. In this study, the
region from 34 to 40◦ N and from 73 to 82◦ E, which lies in
the northwest region of China, was chosen for cloud detec-
tion experiments. The various land surfaces over this region
(including snow/ice, desert, water, and land) always lead to
errors when screening clouds. In this paper, the cloud detec-
tion results have been significantly improved by our combi-
nation of the unbiased algorithm and specific threshold tests
for special surfaces over the studied region.

2.2 Data

FY-3A, China’s new generation polar-orbiting meteorologi-
cal satellite, is capable of a wide range of spectral detection,
from ultraviolet, visible, infrared, to the microwave spec-
trum. It operates at the altitude of 831 km. The local time of
the descending node is 10:05:00 UTC. An on-board sensor,
VIRR, which has ten bands in the wavelengths from 0.44 to
12.5 µm, the scanning range of±55.4◦ and a resolution of
1.1 km, is one of its key instruments (Dong et al., 2009).

In this study, six main channels of VIRR L1 (level 1) data
are used for the cloud detection algorithm (Table 1). The
performance of the improved cloud mask algorithm is ex-
amined through comparisons with the VIRR official cloud
mask product, the MODIS cloud mask product (MOD35),
and the ground-based observations from the Meteorological
Information Comprehensive Analysis and Process System
(MICAPS). The VIRR official cloud mask product is gener-
ated by the multiple-feature (single channel or multiple chan-
nels in combination) threshold tests determined by a dynamic
histogram method or forward modeling results (Yang et al.,
2011). As one of the basic products for VIRR, it is released
in hierarchical data format version 5 (HDF5), and can be ob-
tained from the website of the National Satellite Meteoro-
logical Center (online at:fy3.satellite.cma.gov.cn). MICAPS
is an interactive computer system that integrates all meteo-
rological, satellite, and radar data into one computer work-
station (Li et al., 2010). Data used for validations include the

Table 1.FY-3A/VIRR Channels used for the cloud detection algo-
rithm in this study.

Channel Wavelength (µm) Primary use

1 0.58–0.68 Cloud/surface
2 0.84–0.89 Cloud/surface
4 10.3–11.3 Cloud/surface
6 1.55–1.64 Cloud/snow
7 0.43–0.48 Cloud/surface
10 1.325–1.395 Cirrus cloud

total amount of cloud cover from MICAPS ground-based ob-
servations in the research region, which can be attained from
Peking University (email: xyl@pku.edu.cn).

3 Methodology

The cloud detection algorithm is mainly based on the
CLAUDIA algorithm, which adopts the threshold concept in
MOD35 but reconstructs the scheme for calculating the fi-
nal confidence flag (Ishida and Nakajima, 2009; Nakajima et
al., 2011). According to the channel settings of VIRR, new
groups are proposed to estimate the unbiased final clear con-
fidence level. Additional steps are also added for cloud dis-
crimination over special surfaces.

3.1 Traditional threshold definition and tests

The thresholds in this study are determined by the statisti-
cal data obtained from original observations of VIRR on-
board FY-3A in 2010. In this analysis, four months (January,
April, July, and October) are selected to represent conditions
in four seasons. The results are classified into five different
types: snow, water, desert, land (except desert and snow), and
clouds.

The traditional thresholds are determined based on the sta-
tistical results of the single channel or index. Figure 1 illus-
trates the concept of the estimation of the clear confidence
level for the traditional threshold test. The definitions of the
three thresholds are quite similar to those of MODIS: the low
limit, the high limit, and the thresholdT . The low and high
limits define the cloudy conditions (confidence level 0) and
the clear conditions (confidence level 1). These two param-
eters are determined by the minimum and maximum values
of the overlapping intervals between the two categories ac-
cording to the statistical data. The value ofT determines the
pass or fail threshold within two limits. It is assigned by the
technique applied in the delineation of rain areas (Lovejoy
and Austin, 1979). We define a loss functionf as

f =
Ab

A
+

Ba

B
, (1)

www.atmos-meas-tech.net/6/549/2013/ Atmos. Meas. Tech., 6, 549–563, 2013
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Table 2.Threshold values of single reflectance tests during four seasons.

Channel Wavelength Month Low limit High limit T Loss
(µm) (%) (%) (%) function

1 0.58–0.68 Jan 8.06580 19.34070 16.07099 0.08320
Apr 10.66770 35.44770 25.53573 0.10756
Jul 11.41110 32.10240 28.37796 0.09233
Oct 14.26080 25.65960 20.41618 0.02886

2 0.84–0.89 Jan 6.57140 24.35960 19.73466 0.09884
Apr 17.91460 40.08540 29.88685 0.12845
Jul 10.69620 40.08540 32.73809 0.10705
Oct 15.85220 31.96470 25.68084 0.06487

10 1.325–1.395 Jan 5.83847 34.18231 23.12820 0.17885
Apr 10.62262 46.90996 31.66926 0.14353
Jul 8.81728 50.15957 30.72872 0.20359
Oct 12.33770 53.31892 19.71432 0.27033

Fig. 1.Concept of the confidence levels with three threshold values.

whereA andB represent the total statistical numbers of pix-
els from two types or categories, respectively. The value ofT

is the threshold to determine which type the pixel belongs to.
After the classification byT , Ab is the number ofA incor-
rectly classified asB according toT , andBa is the number
of B incorrectly classified asA. As the value ofT changes,
the loss functionf varies. When the loss functionf achieves
a minimum such that the sum of the incorrect classified ratio
reaches the lowest value, the threshold value can be defined
as the finalT .

3.1.1 Single reflectance tests

In the visible and near infrared bands, optically thick clouds
usually have greater reflectance compared with the underly-
ing surface. This is now used as an effective method to iden-
tify cloudy areas. The channels at 0.66 and 0.88 µm, the most
common bands used in this spectral range, have exhibited
good performance in cloud masking. However, reflectance

tests may falsely identify bright surfaces, such as deserts and
snow-covered areas, as clouds. The statistical results pre-
sented here provide the reflectance distributions of the dif-
ferent surface types and clouds (Fig. 2).

Figure 2a illustrates the histograms of the reflectance at
channel 0.58–0.68 µm. The reflectance of snow and clouds
covers a broad range, while other types show a relatively nar-
row distribution. Figure 2b shows the ranges of reflectance
covered by the five different types and indicates where their
median values lie (shown by slash marks). The large over-
lap between clouds and snow generally results in difficul-
ties in distinguishing them. However, for land, desert, and
water, there is less overlap, so these surface types can be
mostly differentiated from clouds and snow by the threshold
tests. Thus, two major categories can be identified as follows:
Cloud (including clouds and snow), and Clear (all the others).
All single reflectance thresholds are determined on the basis
of the classification criteria. Figure 2b also shows where the
three specific thresholds are located for cloud types (clouds
and snow) vs. clear types. The two black lines represent the
low and high limits. TheT value is indicated by a red line.

Because it is near a strong water vapor absorption region,
the band 1.38 µm test is quite effective at detecting thin cirrus
clouds (Gao et al., 1993). Due to the sufficient water vapor in
the lower atmosphere, the channel at 1.38 µm receives little
scattered solar radiance from the surface or low-level clouds.
Radiance increases when cirrus clouds are located above al-
most any atmospheric water vapor. Taking this into consid-
eration, the reflectance threshold test at 1.38 µm of VIRR is
applied primarily to separate cirrus clouds from clear-sky ar-
eas and thick clouds. The single-reflectance thresholds used
in this study are shown in Table 2.

Atmos. Meas. Tech., 6, 549–563, 2013 www.atmos-meas-tech.net/6/549/2013/
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Fig. 2. (a)Histograms and(b) ranges of the reflectance distributions of the different surface types and clouds at channel 1 (0.58–0.68 µm)
of VIRR during April in 2010; for(b) the locations of the median values shown as slash marks, the low limit and high limit for clear skies
vs. clouds and snow shown as black lines,T shown as red line.

Fig. 3.Histograms of(a) NDSI and(b) NDVI distributions during January in 2010.

3.1.2 NDSI and NDVI tests

To separate snow and water into distinct categories, NDSI
and NDVI thresholds are used respectively in the cloud de-
tection algorithm. This section focuses mainly on the thresh-
old tests of these two indices.

While the reflectance of snow cover and clouds are very
similar at wavelengths below about 1 µm, they diverge in the
near infrared and achieve a maximum difference at wave-
lengths between about 1.55 and 1.75 µm (Rees, 2006). Thus,
the normalized difference snow index (NDSI) was proposed
and developed for the discrimination between snow and
clouds/surface (Dozier, 1984, 1989). Here, the NDSI used
for VIRR is defined as

NDSI =
r1 − r6

r1 + r6
, (2)

where r1 and r6 are the reflectances at channels 1 (0.58–
0.68 µm) and 6 (1.55–1.64 µm). The statistical histogram
shows that snow and clouds could be distinctly separated by
NDSI (Fig. 3a). Compared with clouds, snow typically has
higher NDSI values, corresponding to its radiative proper-
ties. Table 3 lists the specific thresholds.

Table 3. Threshold values of NDVI and NDSI tests during four
seasons.

Test Month Low High T Loss
limit limit function

NDVI Jan −0.27090 −0.24456 −0.27090 0.01923
Apr −0.12216 −0.01322 – –
Jul −0.22387 0.10374 −0.01420 0.02740
Oct −0.15437 0.02718 −0.04726 0.00151

NDSI Jan 0.24712 0.77336 0.61549 0.09735
Apr 0.14484 0.70123 0.58439 0.26589
Jul 0.12627 0.73872 0.67135 0.13091
Oct 0.08245 0.85194 0.47489 0.15634

The normalized difference vegetation index (NDVI) is de-
fined with the radiance measured by two bands in the red and
near infrared as

NDVI =
r2 − r1

r2 + r1
, (3)

where r1 and r2are the reflectances at channels 1 (0.58–
0.68 mum) and 2 (0.84–0.89 µm). Figure 3b illustrates the

www.atmos-meas-tech.net/6/549/2013/ Atmos. Meas. Tech., 6, 549–563, 2013
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Fig. 4.The scatter diagrams and linear thresholds for channel 4 (10.3–11.3 µm) and channel 7 (0.43–0.48 µm) during four seasons.

distribution of NDVI. Because the reflectance of the visible
channel is greater than that of the near-infrared channel, the
NDVI values for water are negative. For land or desert, NDVI
values are greater than or around zero. This difference can be
used to mask water regions. Table 3 provides the thresholds
for four seasons. For April, because there was no overlap be-
tween water and the other types in its category, the pixels
covered with water could be picked up only by the value of
the low limit.

3.2 Linear threshold definition and tests

To pick up the residual cloudy pixels over the bright desert,
channel 7 (0.43–0.48 µm) and channel 4 (10.3–11.3 µm) are
used together in the algorithm. For the wavelength at chan-
nel 7, there is a strong contrast between the more highly re-
flective clouds and the less reflective cloud-free desert. Com-
bined with channel 4, where the cloud has a lower brightness
temperature than clear sky, this contrast separates cloudy pix-
els from bright desert surfaces.

Figure 4 shows the scatter diagrams for these two chan-
nels. The cloudy pixels can be clearly discriminated from
the clear-sky surfaces, especially from the bright desert. Ac-
cording to the distribution in Fig. 4, a linear threshold is

Table 4. The definition values of the linear threshold test during
four seasons.

Test Month Slope Intercept Loss
function

Linear threshold Jan 3.0 232.0 0.04430
Apr 0.0 270.0 0.03393
Jul 6.0 166.0 0.07534
Oct 3.0 238.0 0.00131

introduced here to discriminate the residual cloudy pixels
from the clear category. The linear form is determined by
two factors: the slope and the intercept. As mentioned in
Sect. 3.1, when the loss functionf achieves a minimum, the
line defined by the two factors is chosen to be the final linear
threshold. Figure 4 and Table 4 provide the linear thresholds
and the loss function values for different seasons.

Atmos. Meas. Tech., 6, 549–563, 2013 www.atmos-meas-tech.net/6/549/2013/
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3.3 Cloud detection algorithm

3.3.1 Unbiased confidence flag

CLAUDIA classifies individual tests into two groups based
on the trend observed in each test, which is distinct from
other prevailing approaches of classification based on the
wavelength domain or the primary target of each test (Ishida
and Nakajima, 2009). We applied CLAUDIA to this study.
To realize unbiased cloud detection, two groups need to be
formed: tests that tend to be clear conservative (Group 1),
and tests that exhibit trends of being cloud conserva-
tive (Group 2). The criteria for classifying individual tests
are based on the method proposed by Ishida and Naka-
jima (2009). According to the criteria, the single threshold
tests of VIRR can be classified into two groups: Group 1
(clear conservative) includes the channels 1 and 2 reflectance
tests; and Group 2 (cloud conservative) contains only the re-
flectance test for channel 10.

The estimation of the clear confidence level for the indi-
vidual threshold test has been described above (see Sect. 3.1).
When the observed values are higher than the high limit
(or lower than the low limit), probably due to clear sky,
the confidence level is assigned to be 1, whereas, if the ob-
served values are lower than the low limit (or higher than
the high limit), with cloudy properties, the confidence level
is recorded at 0. The confidence level is set at 0.5 when the
observation equals the value ofT . Observations between the
low and high limits are divided into two parts: higher thanT

or lower; and the confidence level between 0 and 1 is deter-
mined by two linear interpolations.

The final confidence flags are determined by the equa-
tions proposed in CLAUDIA, which are quite different from
MOD35. According to the classification criteria of CLAU-
DIA, there are two groups for the proposed algorithm:
group 1 includes data from channel 1 and 2 of VIRR that
exhibit the trend of clear conservative; group 2 includes the
observations from channel 10 of VIRR that exhibit the trend
of cloud conservative. The most significant characteristic of
CLAUDIA is that the cloud conservative equation is used
to combine the confidence level of individual threshold tests
from the clear conservative group (group 1). The cloud con-
servative group (group 2) employs the clear conservative
equation conversely. The contradictory combination of the
group characteristics and equations could probably cancel
out the possible bias. Thus, the final confidence flags of the
proposed algorithm for VIRR can be calculated as follows

Q1 = 1 −
√

(1 − q1) (1 − q2), (4)

Q2 = q10, (5)

Qfinal =

√
Q1Q2, (6)

whereq1, q2, andq10 represent the values of individual con-
fidence level at channels 1, 2, and 10, respectively,Q1 and
Q2 are the values of confidence level for groups 1 and 2, and
Qfinal is the final confidence flag.

Fig. 5.The flow chart of the improved cloud detection algorithm.

When finishing these steps, the pixels can be divided into
the two categories defined above: cloud or clear types (see
Sect. 3.1.1).

3.3.2 Special surface mask

Three specific tests are set for cloud screening over spe-
cial surfaces: NDSI, NDVI, and combined two-channel tests.
Based on the values of the final confidence level, the pix-
els are classified into two categories: Cloud types (Qfinal be-
tween 0 and 0.5) and Clear types (Qfinal between 0.5 and 1).
The pixels included in the Cloud category are selected for the
NDSI test, and the remaining pixels are passed onto the other
two tests. These tests, which are excluded from the calcula-
tion of the final confidence level, are designed on the basis
of the characteristics of the special surfaces. Based on the
classifications of the unbiased algorithm, it could be more
accurate to apply these tests independently to separate clear-
sky special surfaces into distinct categories. In addition, it
provides flags for the special surfaces instead of the overall
clear-sky classification, which could be convenient for users
of the cloud detection results, to select proper regions for
their research purposes and targets. Figure 5 shows the flow
chart of the improved cloud detection algorithm.

4 Cloud mask results and comparisons

The validation of the cloud detection algorithm is difficult
because of the lack of observations, which could only be ob-
tained from ground truth measurements of lidar or weather
stations. In this section, we focus on the validation of the
proposed algorithm over complex terrain by visual image in-
spection and quantitative analysis. Visual image inspection
can be applied to identify obvious problems in cloud masking
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Fig. 6. The case over deserts on 6 March 2011, at 05:25:00 UTC.(a) The gray-scale image of VIRR channel 4 (10.3–11.3 µm);(b) the
true-color VIRR image composed of channel 1 (red), channel 9 (green), and channel 7 (blue);(c) the cloud mask result from the algorithm
proposed in this study;(d) the official cloud mask product image from VIRR.

with the knowledge of cloud and surface spectral properties,
but provides poor quantitative evaluation. The quantitative
analysis in this study can be obtained by the comparison with
the collocated MODIS cloud mask product and the ground-
based observations from MICAPS.

4.1 Image analysis

The visual image analysis for the performance of the pro-
posed cloud mask algorithm is attained through the com-
parison with the true-color image of VIRR and its official
cloud mask product. The VIRR official cloud mask product
contains four confidence levels: high confidence of clouds
(cloudy), low confidence of clouds (uncertain), low confi-
dence of clear sky (probably clear), and high confidence
of clear sky (clear). The improved cloud mask result pro-
vides the specific value of confidence level for each pixel,
except pixels covered by water, snow, and residual clouds
over deserts. For comparison, the cloud mask image is also
divided into four levels by the value of the final confidence
level: above 0.75 (clear), between 0.5 and 0.75 (probably
clear), between 0.25 and 0.5 (uncertain), and less than 0.25
(cloudy).

Figure 6 shows the cloud mask result over the desert region
located from 37.6 to 40◦ N and from 77.6 to 80.8◦ E. Data
were obtained on 6 March 2011, at 05:25:00 UTC. Figure 6a

is the gray-scale image of VIRR channel 4 (10.3–11.3 µm).
Figure 6b is the true-color VIRR image composed of chan-
nel 1 (red), channel 9 (green), and channel 7 (blue). Figure 6c
is the cloud mask result obtained from the algorithm pro-
posed in this study. Figure 6d is the image of VIRR official
cloud mask product. Compared with the VIRR official cloud
mask product, the cloud detection result from the proposed
algorithm is in good agreement with the infrared image and
the true-color image. The proposed cloud mask scheme pro-
vides more accurate areas covered by clouds, especially for
the cloud located at the left bottom of the image. By applying
the two-channel linear threshold test, the residual clouds (la-
beled as light blue) have been detected, and the cloud detec-
tion result has been greatly improved over the bright desert.
Apparently, the official cloud mask result overestimates the
amount of clouds, and cannot identify the clear-sky pixels
between the clouds.

Figure 7 shows a scene over a snow-covered region from
34.6 to 37◦ N and from 74.5 to 77.7◦ E, on 22 January 2011
at 05:35:00 UTC. Figure 7a is the VIRR gray-scale image
of channel 6 (1.55–1.64 µm). The settings of the other three
images are the same as those in Fig. 6. The difference be-
tween the reflectance of snow cover and clouds achieves a
maximum at wavelengths between about 1.55 and 1.75 µm,
and snow shows a lower reflectance (Rees, 2006). Based on
this fact, the dark-colored areas in Fig. 7a could probably
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Fig. 7. The case over snow-covered region on 22 January 2011 at 05:35:00 UTC.(a) The gray-scale image of VIRR channel 6 (1.55–
1.64 µm);(b) the true-color VIRR image composed of channel 1 (red), channel 9 (green), and channel 7 (blue);(c) the cloud mask result
from the algorithm proposed in this study;(d) the official cloud mask product image from VIRR.

be identified as snow-covered regions. Combined with the
true-color image, it is apparent that the region is largely cov-
ered by snow. Compared with the VIRR official cloud mask
product, the proposed cloud detection algorithm has greatly
improved the result over the snow-covered region. The snow-
covered areas (shown in yellow), which should be masked as
clear-sky pixels, have been modified by the proposed cloud
mask scheme. The official product provides incorrect distri-
butions of clouds and underestimates the areas of clear-sky
surface. This could probably introduce errors into the subse-
quent researches.

4.2 Comparison with cloud mask products from
MODIS

The MODIS cloud detection algorithm is probably the most
comprehensive cloud detection scheme, which employs in-
formation from 19 out of 36 channels. To provide quantita-
tive validation, the MODIS cloud mask product (MOD35),
as a high-quality cloud mask product, is taken as “truth” for
the evaluation of the proposed cloud mask algorithm. In or-
der to collocate MODIS with VIRR data, the time difference
is limited within 5 min. For the different spatial resolutions
between these two observations, the distances between the
pixels from VIRR and MODIS are calculated as below:

S = 2 × 6378.137 arcsin

√
sin2 a

2
+ cos(lat1) cos(lat2) sin2 b

2
, (7)

a = lat1 − lat2, (8)

b = lon1 − lon2, (9)

whereS represents the distance between two pixels, lat1, lat2,
lon1, and lon2 are the latitudes and longitudes of two pixels,
respectively. The minimum distance is then applied to collo-
cate MODIS with VIRR. However, the distance should not
exceed 1 km.

For quantitative validation, three indices are applied for
the comparison with MOD35: the probability of detection
(POD), the false-alarm ratio (FAR), and the hit rate (HR)
(Cheng and Brown, 1995; Behrangi et al., 2010; Karlsson
and Dybbroe, 2010). The definitions (referring to notations
in Table 5) in this study are as below:

PODclear = d/(c + d), (10)

FARclear = b/(b + d), (11)

PODcloudy = a/(a + b), (12)

FARcloudy = c/(a + c), (13)

HR = (a + d)/(a + b + c + d), (14)

wherea represents the number of pixels identified as cloudy
by both VIRR and MODIS.d represents the number of pixels
identified as cloud-free by both VIRR and MODIS.b andc
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Table 5. The notations used for the definitions of POD, FAR, and
HR scores.

Scenario VIRR VIRR
cloudy clear

MODIS cloudy a b

MODIS clear c d

are the numbers of pixels showing different classifications
between VIRR and MODIS.

The POD and FAR provide the accuracy of the cloud de-
tection algorithm in determining either cloudy or clear-sky
conditions. The high POD and low FAR values represent
good-quality cloud detection results. The HR value is the
measurement of the overall efficiency of the cloud masking
algorithm. All of the defined indices are calculated based on
the total collocated data set for the validation of the proposed
algorithm. For MOD35 and the official products of VIRR,
the cloudy pixels include high confidence of clouds (cloudy)
and low confidence of clouds (uncertain); the clear-sky ones
contain low confidence of clear sky (probably clear) and high
confidence of clear sky (clear). For the proposed algorithm,
the pixels with the confidence level between 0 and 0.5 and
the residual cloudy pixels over deserts are classified as clouds
for quantitative analysis, while the remaining pixels belong
to the cloud-free category. Table 6 summarizes the accumu-
lated results for POD, FAR, and HR during four seasons
of 2011. The desert (37.6–40◦ N, 77.6–80.8◦ E) and snow-
covered (34.6–37◦ N, 74.5–77.7◦ E) regions are selected for
the validation.

For the scenes over snow-covered regions, the values of
FAR for cloudy pixels have been greatly improved by the
proposed cloud mask algorithm. However, the values of POD
for cloudy pixels provided by the proposed scheme are lower
than those of the official product. When focusing on the
cloud-free pixels, the proposed algorithm has significantly
increased the values of POD, but the scores of FAR are
not as low as expected. The analysis for the POD and FAR
over desert scenes shows similar trends. The HR scores for
the proposed scheme are practically identical or even bet-
ter than those for the official product, except for the sum-
mer months over deserts and the winter months over snow.
Figure 8 shows two cases during the seasons with poor
HR scores. Figure 8a–d illustrates the snow-covered scene
on 12 December 2011 (VIRR at 05:25:00 UTC, MODIS at
05:20:00 UTC). Figure 8a is the VIRR gray-scale image of
channel 6 (1.55–1.64 µm); Fig. 8b is the MODIS cloud detec-
tion product; Fig. 8c and d are the results from the proposed
algorithm and the official VIRR product, respectively. Con-
sidering the difference between the reflectance of snow cover
and clouds at wavelengths between about 1.55 and 1.75 µm,
the dark-colored areas in Fig. 8a could probably be identi-
fied as snow-covered regions. Apparently, the snow-covered

Table 6. Accumulated results of the proposed algorithm for POD,
FAR, and HR validation scores during four seasons. Corresponding
values are given for the VIRR official products in brackets.

Scenario Month POD FAR POD FAR HR
(2011) cloudy cloudy clear clear (%)

(%) (%) (%) (%)

desert 12∼ 02 21.66 8.78 98.00 43.37 60.65
7 scenes (30.57) (24.68) (90.40) (42.39) (61.12)
03∼ 05 41.29 6.99 97.28 34.55 71.16
7 scenes (47.75) (23.22) (87.36) (34.34) (68.88)
06∼ 08 71.49 2.40 95.73 41.94 78.57
5 scenes (80.08) (4.88) (90.02) (34.92) (82.98)
09∼ 11 73.52 6.36 86.85 44.49 77.19
3 scenes (69.64) (5.32) (89.71) (47.08) (75.17)

snow 12∼ 02 59.04 18.63 73.32 52.42 63.84
4 scenes (94.11) (32.70) (9.78) (54.32) (65.74)
03∼ 05 55.21 32.18 77.76 32.82 67.41
9 scenes (94.86) (51.99) (12.82) (25.38) (50.48)
06∼ 08 77.72 20.23 67.52 35.22 73.86
7 scenes (93.59) (30.18) (33.33) (24.05) (70.83)
09∼ 11 77.64 15.65 68.56 41.57 74.79
5 scenes (95.86) (25.68) (27.72) (24.56) (74.45)

regions have been identified as clouds by the official prod-
uct of VIRR. For the MODIS cloud detection product, the
snow-covered regions in the left bottom of the image have
been correctly classified as clear-sky pixels. However, there
are still some snow-covered pixels in the right bottom of the
image that are identified as cloudy ones. For the proposed
algorithm, the low POD for clouds and the high FAR for
clear pixels are probably caused by the underestimation of
clear-sky areas over snow-covered surfaces for MODIS. Fig-
ure 8e–h provides a scene over deserts on 24 August 2011
(VIRR at 05:00:00 UTC, MODIS at 05:05:00 UTC). Fig-
ure 8e is the true-color VIRR image composed of channel 1
(red), channel 9 (green), and channel 7 (blue); Fig. 8f–h
represent the cloud detection results from MODIS, the pro-
posed algorithm, and the official VIRR product. For the re-
gion in the upper left part of the image, both of the MODIS
and VIRR official cloud detection products provide practi-
cally identical estimations that uncertain clouds existed in
this area. The poor identifications of the cirrus clouds by the
proposed algorithm result in low POD scores of clouds and
high FAR scores for clear pixels over deserts. In addition, the
false identifications of the special terrain, in the right bottom
of the image by MODIS, could be another reason for the poor
detection of the proposed algorithm.

4.3 Comparison with ground-based observations from
MICAPS

Ground-based observations from MICAPS can also be com-
pared with the cloud detection results. Two weather sta-
tions located in the research region are used for compar-
isons: the Hetian site (79.93◦ E, 37.13◦ N), and the Bachu
site (78.57◦ E, 39.8◦ N). The total amount of clouds observed
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Fig. 8. Two cases during the seasons with poor HR scores compared with MODIS.(a)–(d) The snow-covered case on 12 December 2011
(VIRR at 05:25:00 UTC, MODIS at 05:20:00 UTC).(a) The VIRR gray-scale image of channel 6 (1.55–1.64 µm);(b)–(d) the cloud detection
results from MODIS, the proposed algorithm, and the official VIRR product, respectively.(e)–(h) The case over deserts on 24 August 2011
(VIRR at 05:00:00 UTC, MODIS at 05:05:00 UTC).(e) The true-color VIRR image composed of channel 1 (red), channel 9 (green), and
channel 7 (blue);(f)–(h) the cloud detection results from MODIS, the proposed algorithm, and the official VIRR product, respectively.

at these weather stations, which is presented as the ratio of
clouds in the naked-eye observed sky, can be used for the
validation. According to the rules of ground measurement, if
the average height of the clouds is 4 km and the angle of view
is 10◦, the area for cloud observation covers approximately
1617 km2 (Malberg, 1973). Thus, for the cloud detection im-
age based on satellite observations, the percentage of clouds
is calculated in the region centered at the weather station with
a radius of 22.7 km. Considering the passing time of FY-3A,

the ground-based observations at 14:00:00 LT are used for
the validation. Table 7 lists the comparisons.

Compared with the ground-based observations, the pro-
posed cloud mask results yield mostly good correlations ex-
cept for some cases where the estimated amount of clouds
is generally smaller than the observations at weather sta-
tions. For ground-based observations, the curvature of the
Earth may result in overestimation of low clouds with a small
horizontal angle because openings between clouds can be
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Fig. 9.Two cases with poor correlations for comparisons with ground-based observations centered at the Bachu and Hetian sites. The red rect-
angles represent the weather stations; the gray-scale images of VIRR channel 4 (10.3–11.3 µm)(a) on 24 November 2011 at 06:05:00 UTC
for the Bachu site and(b) on 16 February 2011 at 06:05:00 UTC for the Hetian site;(c) and(d) the corresponding cloud mask results obtained
from the algorithm proposed in this study.

overlooked. For satellite observations, the presence of thin
cirrus clouds may result in underestimation due to the poor
identification of them in space (Malberg, 1973). For the over-
all 96 matchups in 2011, the proposed cloud detection al-
gorithm and ground-based observations agree on 92.0 % of
the time with the existence of clear (23/25), and 78.9 %
of the time with the presence of clouds (56/71). Figure 9
shows the two cases with poor correlations centered at the
Bachu and Hetian sites with a 4◦

× 4◦ array. For the case on
24 November 2011, the infrared image (Fig. 9a) reveals that
the Bachu site was covered by cirrus clouds. By adding the
linear threshold test, parts of the residual cirrus clouds over
deserts have been screened out, but the proposed cloud mask
scheme still underestimates the amount of cirrus clouds. For
the case on 16 February 2011, the high, thin cirrus clouds
located to the southeast of the site are also not identified by
the proposed algorithm. For the northwest regions of China,
the atmosphere is well known for its dryness especially over
desert regions. The lack in water vapor in this area may cause
difficulties for the identifications of the thin cirrus clouds by
1.38 µm observations (Ben-Dor, 1994). In addition, the cases
that have shown poor correlations with ground-based ob-
servations are mostly from the transitional months between
seasons. The thresholds during transitional seasons without

modifications may also introduce errors into the cloud detec-
tion results.

5 Conclusions

An unbiased, daytime cloud detection algorithm was pro-
posed for clear-sky and cloudy pixels discriminations over
the northwest region of China for VIRR on board the Chinese
FengYun-3A polar-orbiting meteorological satellite. This
cloud detection algorithm provided the degree of a pixel’s
cloud contamination using the clear confidence level from 0
(cloudy) to 1 (clear), and also generated flags for the special
surfaces such as snow or water in the research region. Six
main channels (0.455, 0.63, 0.865, 1.595, 1.36, and 10.8 µm)
of VIRR were designed to improve the cloud detection re-
sults during four seasons over the complex terrain of the fo-
cused region.

The algorithm was based on the unbiased scheme em-
ployed in CLAUDIA, which provided a neutral concept
to combine the cloud detection result from the individual
threshold test. According to the set of VIRR channels, new
groups were designed for our algorithm to acquire the unbi-
ased final confidence level of pixels. Additional tests for the
identifications of the special surfaces were also applied in our
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Table 7.Comparisons between ground-based observations and the VIRR cloud mask results of the proposed algorithm.

Time Percentage of clouds (%) Time Percentage of clouds (%)

mm/dd/UTC VIRR Hetian VIRR Bachu mm/dd/UTC VIRR Hetian VIRR Bachu

01/05/0555 0 0 81 70 07/09/0610 81 90 90 90
01/10/0600 0 0 0 0 07/10/0550 67 90 34 60
01/21/0555 16 70 0 0 07/15/0555 98 90 99 90
01/26/0600 0 0 0 0 07/20/0600 0 10 1 10
01/31/0605 100 70 100 70 07/31/0555 96 90 100 90
02/05/0610 29 40 90 70 08/05/0600 0 0 0 0
02/16/0605 0 50 32 40 08/10/0605 0 90 88 90
02/21/0610 0 0 86 70 08/15/0610 100 90 81 90
02/22/0550 100 70 92 70 08/31/0610 98 90 100 90
03/09/0610 0 0 0 0 09/01/0550 76 90 100 90
03/10/0550 0 0 0 0 09/06/0555 0 0 4 0
03/15/0555 20 90 51 70 09/22/0555 29 90 0 10
04/05/0600 100 90 59 90 09/27/0600 57 60 11 20
04/10/0605 27 50 8 90 10/02/0605 0 0 0 0
04/15/0610 0 0 0 0 10/23/0610 46 10 100 90
04/26/0605 0 0 0 10 10/24/0550 2 0 36 90
05/01/0610 0 0 0 90 10/29/0555 79 40 100 90
05/02/0550 0 20 0 90 11/14/0555 0 90 16 90
05/18/0550 4 20 17 60 11/19/0600 25 20 100 90
05/23/0555 0 10 0 10 11/24/0605 32 70 0 60
05/28/0600 0 10 0 0 11/29/0610 0 0 0 0
06/13/0600 0 10 84 90 12/16/0550 85 90 89 90
06/18/0605 7 90 1 70 12/21/0555 100 70 99 90
06/23/0610 64 90 0 10 12/26/0600 58 10 98 90

algorithm including the NDSI and NDVI tests for snow and
water flags, and a new two-channel linear threshold test for
the extraction of the residual cloudy pixels over deserts. In
order to provide accurate cloud detection results, seasonal
thresholds were used in our algorithm, which were deter-
mined based on the statistic data set from four months (Jan-
uary, April, July, and October) in 2010.

Through image inspections, we found that the cloud de-
tection results over snow and deserts adopting the proposed
scheme exhibited better correlations with true-color images
than the VIRR official cloud mask results did. The perfor-
mance of the proposed algorithm was also evaluated in detail,
during four seasons in 2011, based on the overall 47 scenes
collocated with the cloud mask products from MODIS and
the 96 individual matchups between VIRR and the ground-
based observations from two weather stations in the research
region. Comparisons with corresponding cloud detection re-
sults from MODIS showed significantly higher POD scores
of clear pixels for the proposed algorithm than those for the
official VIRR scheme. The HR scores were mostly higher
for the proposed algorithm, except for several months with
somewhat lower HR values due to the poor identifications
of cirrus clouds. The quantitative validation with the ground-
based observations suggested that the results from the pro-
posed algorithm and the observations from two weather

stations agreed on 92.0 % of the time with the existence of
clear (overall 25 clear days), and 78.9 % of the time with the
presence of clouds (overall 71 cloudy days). The poor corre-
lations were mostly during the transitional seasons and under
conditions with thin cirrus clouds. The poor identification of
the cirrus clouds over deserts was probably due to the dryness
of the atmosphere in the research region. The identification
of the high cirrus clouds under dry atmospheric conditions
is a difficult problem in cloud detection, which requires fur-
ther investigations. The determination and validation of the
thresholds during the transitional seasons, which were not
considered in this paper, are also potential areas in which to
improve the cloud detection results. This topic has to be in-
vestigated in our future studies as well.
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