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Abstract. The Precipitation Estimation at Microwave Fre-
quencies (PEMW) algorithm was developed at the Institute
of Methodologies for Environmental Analysis of the Na-
tional Research Council of Italy (IMAA-CNR) for infer-
ring surface rain intensity (sri) from satellite passive mi-
crowave observations in the range from 89 to 190 GHz. The
operational version of PEMW (OPEMW) has been running
continuously at IMAA-CNR for two years. The OPEMW
sri estimates, together with other precipitation products, are
used as input to an operational hydrological model for flood
alert forecast. This paper presents the validation of OPEMW
against simultaneous ground-based observations from a net-
work of 20 weather radar systems and a network of more
than 3000 rain gauges distributed over the Italian Peninsula
and main islands. The validation effort uses a data set cover-
ing one year (July 2011–June 2012). The effort evaluates di-
chotomous and continuous scores for the assessment of rain
detection and quantitative estimate, respectively, investigat-
ing both spatial and temporal features. The analysis demon-
strates 98 % accuracy in correctly identifying rainy and non-
rainy areas; it also quantifies the increased ability (with re-
spect to random chance) to detect rainy and non-rainy areas
(0.42–0.45 Heidke skill score) or rainy areas only (0.27–0.29
equitable threat score). Performances are better than average
during summer, fall, and spring, while worse than average
in the winter season. The spatial–temporal analysis does not
show seasonal dependence except over the Alps and north-

ern Apennines during winter. A binned analysis in the 0–
15 mm h−1 range suggests that OPEMW tends to slightly
overestimate sri values below 6–7 mm h−1 and underestimate
sri above those values. With respect to rain gauges (weather
radars), the correlation coefficient is larger than 0.8 (0.9).
The monthly mean difference and standard deviation remain
within ±1 and 2 mm h−1 with respect to rain gauges (respec-
tively −2–0 and 4 mm h−1 with respect to weather radars).

1 Introduction

The accurate estimation of rainfall is crucial for many appli-
cations, including its short-term assessment and long-term
monitoring. A summary of recent activities, ongoing re-
search, and future plans about precipitation measurement and
modeling is given by Michaelides et al. (2009) and Tapiador
et al. (2012), while comprehensive overviews of precipita-
tion remote sensing from satellite and its applications are
given by Levizzani et al. (2007), Kidd and Levizzani (2011),
and Kucera et al. (2013). Nowadays, operational precipi-
tation products are routinely delivered through large pro-
grams, such as the US National Oceanic and Atmospheric
Administration (NOAA) operational hydrological products
(Ferraro et al., 2005) or the Satellite Applications Facility on
Support to Operational Hydrology and Water Management
(H-SAF; Mugnai et al., 2013). However, rainfall estimation
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algorithms, validation strategies, and assimilation into nu-
merical weather prediction and hydrological high-resolution
models are topics still under investigation, especially over
land (e.g., Anagnostou, 2004). Moreover, the likely increase
of extreme events due to climate-related forcing brings even
more importance to rainfall retrieval as a means for moni-
toring environmental hazards (e.g., Nunes and Roads, 2007).
Furthermore, the assessment of precipitation detection and
quantitative estimation from space remains a major issue
(e.g., Ebert et al., 2007). Precipitation estimate methods from
passive sensors use observations at visible (VIS), infrared
(IR), and microwave (MW) frequencies. Among them, the
microwave techniques provide the most direct observation of
precipitation as microwave radiation is less affected by cloud
droplets and interacts with precipitation-sized hydrometeors.
Regarding platforms, geosynchronous (GEO) and low Earth
orbit (LEO) satellites offer complementary features in terms
of revisit time and spatial resolution. While LEO satellites of-
fer low revisit time (only twice a day for a given place at mid-
latitude) but high spatial resolution (0.25–1 km for VIS-IR,
10–50 km for MW), GEO satellites ensure high revisit time
(on the order of 15 min) at moderate spatial resolution (1–
4 km for VIS-IR, > 100 km for MW). Given this limitation, so
far MW sensors have been deployed on LEO satellites only,
although GEO MW missions have been proposed (Savage et
al., 1995; Tanner et al., 2007). In the last decades, several
microwave radiometers aboard LEO satellites have been ex-
ploited for rainfall remote sensing (e.g., Special Sensor Mi-
crowave Imager, Advanced Microwave Sounding Unit, Trop-
ical Rainfall Measuring Mission Microwave Imager, Ad-
vanced Microwave Scanning Radiometer) and numerous re-
trieval algorithms have been developed (e.g., Spencer et al.,
1989; Wilheit et al., 1991; Ferraro and Marks, 1995; Staelin
and Chen, 2000; Kummerow et al., 2001; Bennartz et al.,
2002; Bauer et al., 2005; Boukabara et al., 2007, 2011; Lavi-
ola and Levizzani, 2009). Two processes are used to iden-
tify precipitation from MW observations: emission from rain
droplets (leading to MW radiation enhancement) and scatter-
ing caused by precipitating ice aloft (leading to MW radia-
tion depression). Emission is usually exploited over a cold
background (such as ocean, e.g., Wilheit et al., 1991), while
scattering must be used over land, where the surface has
higher and more variable emissivity (Spencer et al., 1989;
Ferraro and Marks, 1995). However, high-frequency MW
observations are less sensitive to the surface background
and thus can be exploited to retrieve precipitation over land,
ocean, and even problematic backgrounds, such as coastlines
(Staelin and Chen, 2000; Laviola and Levizzani, 2009).

At the Institute of Methodologies for the Environmental
Analysis of the National Research Council of Italy (IMAA-
CNR) a number of approaches have been proposed to re-
trieve cloud and rainfall information from satellite observa-
tions (Romano et al., 2007; Ricciardelli et al., 2008, 2010;
Di Tomaso et al., 2009). In particular, the Precipitation Es-
timation at Microwave Frequencies (PEMW) algorithm was

developed to infer rain rates from satellite passive microwave
observations in the 89 to 190 GHz range (Di Tomaso et
al., 2009). The PEMW algorithm relies on satellite obser-
vations made by the Advanced Microwave Sounding Unit/B
(AMSU/B) or the Microwave Humidity Sounder (MHS) on-
board the NOAA satellites and/or the European Polar Satel-
lite MetOp-A. The PEMW performances were tested (Di
Tomaso et al., 2009) at relative high latitudes against the
UK NIMROD radar network, and at tropical low latitudes
against rain gauges. The rain gauges, belonging to the US
Atmospheric Radiation Measurement (ARM) program, are
deployed on the island of Nauru in the tropical western Pa-
cific. A total of 6 case studies were used for the validation
of the PEMW algorithm against the NIMROD radar obser-
vations, while less than 30 satellite overpasses were used for
the validation against the one-point rain gauge measurements
in Nauru. Since then, the operational version of PEMW
(OPEMW) has been running at IMAA-CNR in support to
numerical hydrometeorology and flood-hazard-alert systems.
However, the validation of OPEMW over the geographical
area where its estimates are actually utilized – i.e., the Ital-
ian territory – has never been tested before. Thus, similarly
to what was proposed by Antonelli et al. (2010), this analysis
carries out a detailed validation of the OPEMW product by
comparing the satellite estimation against the weather radar
and rain gauge networks deployed over the Italian territory.

This paper is organized as the follows: Sect. 2 describes
the data set under consideration, Sect. 3 summarizes the
methodology used for data comparison, Sect. 4 reports the
results of the data analysis, and Sect. 5 summarizes the quan-
titative results and draws the final conclusions.

2 Data set

2.1 OPEMW

OPEMW is the software package developed at IMAA-
CNR that implements and runs the PEMW algorithm oper-
ationally. OPEMW has been running at IMAA-CNR since
2010 in support to numerical hydrometeorology and flood-
hazard-alert systems. The details of PEMW are described in
Di Tomaso et al. (2009). Here we just want to mention that
PEMW consists in a precipitation estimation algorithm ex-
ploiting passive MW observations in the frequency range 89
to 190 GHz together with prior knowledge of the nature of
precipitation events. Radiative transfer simulations in a vari-
ety of different atmospheric scenarios are used to fit an ex-
tensive set of regression curves between rain rate and linear
combinations of the radiances to be observed. Various atmo-
spheric and surface conditions (land and water) are consid-
ered, including extreme events, in order to derive the domain
for the regression coefficients. The procedure automatically
selects the most appropriate scenario and hence the most suit-
able coefficients fitting a model between the observations
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and rain rate. This selection is based on the assumption that
given the real scenario, the regression curves all retrieve sim-
ilar rain rates. Thus, PEMW is a specific version of a more
general approach that optimizes the distance of the param-
eters of the regression curves with respect to the estimated
rain rate. The advantages of PEMW include a good spa-
tial and temporal resolution, little influence from the back-
ground surface, high sensitivity to light rain, and a rain rate
estimate that is consistent throughout the channels. Poten-
tial weaknesses are inherent with issues related to the cross-
scan observations and to the instrumental absolute calibra-
tion. PEMW was developed to work with observations from
AMSU/B, flying aboard the NOAA Polar Operational En-
vironmental Satellites (POES). PEMW was later adapted to
work with observations from MHS, flying aboard the most
recent NOAA POES satellites and the European Polar Sys-
tem (EPS) MetOp-A belonging to the European Organisa-
tion for the Exploitation of Meteorological Satellites (EU-
METSAT). POES and EPS are respectively the US and Eu-
ropean contributions to the Initial Joint Polar-Orbiting Op-
erational Satellite System (IJPS). Here we just mention that
both AMSU-B and MHS are cross-track, line-scanning mi-
crowave radiometers measuring radiances in five channels in
the frequency range from 89 to 190 GHz. AMSU-B and MHS
exploit similar channels: center frequencies for the AMSU-
B channels are 89, 150, 183± 1, 183± 3, and 183± 7 GHz;
while for the MHS channels are 89, 157, 183± 1, 183± 3,
and 190 GHz. Therefore, the two instruments differ only at
channel numbers 2 (150 vs. 157 GHz) and 5 (183± 7 vs.
190 GHz); however, the differences are more technical rather
than functional, and the two channel duplets show the same
fundamental features. AMSU-B and MHS fly at a nomi-
nal altitude of 850 km and they observe the Earth scan-
ning circa±50◦ across nadir, taking 90 consecutive fields
of view (FOVs) per scan. The five channels are co-registered
with 1.1◦ antenna beam width. At nadir, the footprint cor-
responds to a circle of diameter approximately 16 km. Due
to the cross-track observation geometry, away from nadir the
FOVs have an ellipsoidal shape. The FOV axes range from
16 km× 16 km at nadir to 51 km× 25 km at maximum scan-
ning angle (Bennartz, 2000). The first axis refers to the cross-
track and the second to the along-track direction. Further de-
tails on the instruments features can be found in the NOAA
KLM user’s guide (NCDC/NOAA, 2008) and the ATOVS
Level 1b Product Guide (EUMETSAT, 2010). At the time
of writing there are five operational NOAA POES satellites
(namely the N-15, N-16, N-17, N-18, and N-19) spaced ap-
proximately 2–6 h apart and carrying either the AMSU-B (N-
15, N-16, and N-17) or the MHS (N-18 and N-19) instru-
ments; in addition, there are two operational EPS satellites,
MetOp-A and MetOp-B, both carrying the MHS instrument.

The AMSU-B and MHS raw data are received in near-
real time at IMAA-CNR and processed with the AAPP code
(UK Met Office, 2011). The level 1c data are then processed
by OPEMW, and the rain rate product is sent to CETEMPS
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Figure 1: An example of the graphical output of OPEMW (the MHS FOVs are represented as 3 

uniform circles along the scan line). The surface rain intensity (sri) product is color-coded 4 

according to the vertical bar (in mm/h) and layered over the Meteosat Second Generation (MSG) 5 

10.8 µm image (in normalized inverted grey scale). Data obtained from MHS on NOAA N-18 6 

overpass at 01:22 UTC and MSG observations at 01:00 UTC on 5 July 2011. 7 

Fig. 1. An example of the graphical output of OPEMW (the MHS
FOVs are represented as uniform circles along the scan line).
The surface rain intensity (sri) product is color-coded according
to the vertical bar (in mm h−1) and layered over the Meteosat
Second Generation (MSG) 10.8 µm image (in normalized inverted
greyscale). Data obtained from MHS on NOAA N-18 overpass at
01:22 UTC and MSG observations at 01:00 UTC on 5 July 2011.

(Centre of Excellence for the integration of remote sensing
and modeling for the prediction of severe weather) and also
stored in the IMAA-CNR archive. The present version (V4)
of OPEMW has been running since May 2011. The data set
considered here covers one full year, from July 2011 to June
2012. For this period the three AMSU-B instruments were
unavailable due to instrumental failures, and the MetOp-B
was still in its pre-launch and commissioning phases; thus
the following analysis focuses on MHS observations from N-
18, N-19, and MetOp-A. An example of the operational sur-
face rain intensity (sri, mm h−1) map product by OPEMW
is shown in Fig. 1. Note that the horizontal resolution of
OPEMW sri product is the same as for MHS (i.e., varying
with scan angle). However, the operational graphical output
is represented as uniform circles to clearly display the scan
line direction.

2.2 Weather radar network

Microwave weather radars are considered a fairly established
technique for retrieving rain rate fields over large areas from
measured reflectivity volumes. In the framework of the na-
tional early-warning system for multi-risk management, the
Italian Department of Civil Protection (DPC) was appointed
to complement the existing weather radar systems in or-
der to increase the coverage of the Italian territory. The
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resulting Italian national weather radar network is coordi-
nated by the DPC, in collaboration with regional authorities,
research centers, the Air Traffic Control service (ENAV),
and the Meteorological Service of the Air Force (CNMCA).
Once completed, the Italian radar network shall include 25
C-band (∼ 5 GHz) radars (including 7 polarimetric systems)
and 5 dual-polarized X-band (∼ 10 GHz) radars, deployed
throughout the country (Vulpiani et al., 2008a). Currently,
the radar network is composed of 20 weather radars: 10 C-
band radars belonging to regional authorities (5 of which
are polarimetric), 2 C-band radars owned by ENAV, and 6
C-band radars (two of which are polarimetric) plus 2 X-
band polarimetric radars owned directly by the DPC. The
DPC collects radar data in near real-time by satellite links
to the two national radar primary centers (RPC), one lo-
cated at the DPC headquarters in Rome and the other at the
Centro Internazionale in Monitoraggio Ambientale (CIMA)
Research Foundation in Savona. Procedures for mitigating
ground clutter, anomalous propagation, and beam blockage
effects are applied (Vulpiani et al., 2008b). The radar vol-
umes are then centrally processed to produce the so-called
radar network composite (RNC) of products such as the ver-
tical maximum intensity (VMI, dBZ), the constant altitude
plan position indicator (CAPPI, dBZ), the surface rain in-
tensity (sri, mm h−1), and the 1 h accumulated surface rain
total (srt, mm). The sri product is computed applying the
reflectivity–rainfall (Z–R) relationship proposed by Mar-
shall and Palmer (1948) to the lowest beam map (LBM)
product. The latter is the near-ground reflectivity map ob-
tained from the corrected radars volume data using the low-
est height reflectivity value in each vertical column. All prod-
ucts are obtained over a grid of 1400× 1400 km2 with spatial
resolution of∼ 1 km and temporal resolution of 15 min; the
gridded products are then distributed to the hydrological and
meteorological regional services. The RNC sri product, used
here, represents the best radar estimate available for the pe-
riod under analysis. It must be underlined that this was not
adjusted to match rain gauge products, even though statisti-
cal techniques are being tested (Marzano et al., 2012). Proce-
dures to improve the quality of the RNC sri product, includ-
ing attenuation compensation, polarimetric rainfall inversion
techniques, and adaptive algorithms to retrieve mean vertical
profiles of reflectivity (VPR) are currently under validation
at the DPC (Vulpiani et al., 2008a, 2012). An example of the
RNC sri product is shown in Fig. 2 for the same time interval
of Fig. 1.

2.3 Rain gauge network

Several rain gauge networks have been deployed over the
Italian territory through the years, which belong to indepen-
dent regional and national authorities. DPC was recently ap-
pointed to manage the existing rain gauge networks in col-
laboration with other regional and national authorities. This
integrated network is one of the densest in the world, with
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Figure 2: An example of the graphical output of RNC (courtesy of DPC). The surface rain intensity 2 

(sri) product is color-coded according to the vertical bar (in mm/h) and layered over the Meteosat 3 

Second Generation (MSG) 10.8 µm image (in normalized inverted grey scale). Data obtained from 4 

RNC at 01:15 UTC and MSG observations at 01:00 UTC on 5 July 2011 (i.e. within 7 minutes from 5 

data in Figure 1). Note that here the time displayed at the bottom is in CEST (Central Europe 6 

Summer Time). 7 

Fig. 2. An example of the graphical output of RNC (courtesy of
DPC). The surface rain intensity (sri) product is color-coded accord-
ing to the vertical bar (in mm h−1) and layered over the Meteosat
Second Generation (MSG) 10.8 µm image (in normalized inverted
greyscale). Data obtained from RNC at 01:15 UTC and MSG obser-
vations at 01:00 UTC on 5 July 2011 (i.e., within 7 min from data in
Fig. 1). Note that here the time displayed at the bottom is in CEST
(Central Europe Summer Time).

more than 3000 rain gauges (Vulpiani et al., 2012). Fig-
ure 3 shows the distribution of the rain gauges over Italy.
The average distance between neighboring rain gauges is less
than 10 km. These are a tipping bucket type of rain gauge
with 0.2 mm h−1 minimum detectable rain rate. A reduced
set (∼ 300) is provided with heating to prevent snow and
ice clogging and to measure the water equivalent of frozen
precipitation. Rain gauge data acquisition and processing are
performed by regional authorities at different temporal inter-
vals, ranging from 5 to 30 min. Typically 65–85 % of the to-
tal number of rain gauges are available at the same time. The
rain gauge network (RGN) data are collected and centrally
processed in near-real time by the DPC. The set of 1 h accu-
mulated rain for each rain gauge of the network represents
the RGN surface rain intensity (sri, mm h−1) product. The
DPC distributes the RGN sri product through DEWETRA,
a Web-based software developed by CIMA Research Foun-
dation on behalf of the DPC. Figure 3 also shows the RGN
sri (color-coded according to the accumulated rain thresholds
referring to the last 24 h) for the same 1 h period containing
the satellite overpass in Fig. 1 and the radar composite in
Fig. 2. The point measurements of rain gauges are upscaled
into the satellite FOVs, as will be discussed in Sect. 3.1.
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Fig. 3. The distribution of more than 3000 rain gauges over Italy.
The figure shows 1 h accumulated rain (sri) between 01:00 and
02:00 UTC on 5 July 2011 (i.e., the 1 h period containing both
Figs. 1 and 2). Rain gauges are indicated with circles and color-
coded as follows: grey→missing data; white→no rain; green
→0 < sri< T1; yellow→T1 < sri < T2; orange→T2 < sri < T3; red
→T3 < sri; where Ti (with i =1–3) represent three thresholds for
light, moderate, and intense rainfall, whose values differ depending
on the respective catchment (data courtesy of DPC, image obtained
using DEWETRA).

3 Methodology

The OPEMW sri product is validated against the sri prod-
ucts from the radar network composite (RNC) and the rain
gauge network (RGN). The data set considered here covers
one full year (July 2011–June 2012). Data from the three
sources were treated for (i) checking data quality, (ii) finding
space–time colocation, and finally (iii) computing statistical
scores.

3.1 Space–time colocation

The OPEMW surface rain intensity product is colocated with
the ground-based products so that each satellite FOV is asso-
ciated with the corresponding surface rain intensity values
derived from RNC and RGN. The temporal colocation is ob-
tained as follows:

– Each OPEMW sri product is associated with the time
of the satellite overpass, since it is a nearly instanta-
neous observation.

– Then, the procedure searches for a RNC sri product
within 8 min before/after the satellite overpass, which

is usually found since the RNC sri product is available
every 15 min.

– Finally, the procedure searches for the RGN sri prod-
uct that corresponds to the 1 h time period in which the
satellite overpass has occurred.

Units for OPEMW, RNC, and RGN sri products are mm h−1

and thus are comparable. However, OPEMW and RNC sri
products correspond to nearly instantaneous observations. In
contrast, the RGN sri product is computed as hourly accu-
mulated rainfall. The comparison between these products in-
herently includes the uncertainty related to rainfall variability
within an hour. The spatial colocation is obtained by convo-
luting either the RNC or RGN sri products to the satellite
FOVs, taking into account the antenna pattern, assumed as
Gaussian, and the ellipsoidal shape at different viewing an-
gles (Bennartz, 2000). For each FOV, the convolution usually
takes 200–1000 RNC pixels and 5–180 rain gauges. Thus,
high surface rainfall intensity values (e.g., sri > 50 mm h−1)
that are detected locally at few RNC pixels or RGN sites are
typically smoothed by the convolution with the surrounding
lower values falling within the same FOVs. Therefore, sri at
the scale of satellite FOV seldom exceeds 20 mm h−1.

3.2 Data quality

The single FOV estimate is in general prone to geolocation
and colocation errors. In fact, satellite observations suffer
from considerable geolocation errors. Errors up to two pix-
els can be in both the along- and the cross-track direction,
leading to considerable geographical misplacement. More-
over, additional geolocation uncertainty stems from the par-
allax error. This error increases proportionally with increas-
ing observation angle and altitude of the cloud melting layer,
and it can contribute to the misplacement of raining areas
of up to 10 km (Antonelli et al., 2010). Additional uncer-
tainty is related to the spatial heterogeneity; the so-called
beam-filling problem (Kummerow, 1998) refers to the fact
that the observed precipitating area does not fill the satellite
FOV homogeneously, due to spatial variability in the sub-
FOV scale. Finally, sources of inconsistencies between satel-
lite and ground-based observations may be related to erro-
neous measurements.

Therefore, measures for data quality control are applied
during the spatial colocation procedure. Geolocation errors
are mitigated according to the platform during the produc-
tion of level 1c data. To minimize the inconsistency related
to beam-filling issues, we perform the following data screen-
ing with respect to RNC. The procedure discards the FOVs
that are only partially covered (less than 3 / 4 of the total area)
by RNC pixels. Furthermore, it considers only the FOVs that
contain nearly all (95 %) clear or rainy RNC pixels (i.e.,
leaving 5 % tolerance with respect to considering completely
clear or rainy FOVs only). Similarly, with respect to RGN the
procedure discards the FOVs with less than 10 rain gauge
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measurements falling within the FOV area. Furthermore, it
considers only the FOVs for which more than 95 % of the
associated rain gauges detected either rain or no rain.

Instrument errors may affect all the instruments consid-
ered here, i.e., satellite microwave radiometers and ground-
based radars and rain gauges. A first quality control (QC) is
performed by the data providers, which should ensure proper
functioning and calibration. The QC flags provided are used
to screen out potentially erroneous data. In addition, we dis-
carded RGN data that resulted as suspicious due to telecom-
munication problems (wrong coordinates or time/date, re-
dundant data, etc.). Measuring errors related to weather con-
ditions (such as wind, frozen precipitation) are not taken into
account. In order to prevent unrealistic sri values entering
the statistical analysis, the procedure discards RGN sri val-
ues higher than 150 mm h−1, assumed to be the upper limit
for 1 h accumulated precipitation. The same upper limitation
is adopted for the instantaneous RNC sri values. In addi-
tion, the radar echoes generated by non-meteorological tar-
gets are discriminated from weather returns by combining
the static clutter map, the Doppler velocity, and the texture
of the reflectivity field (Vulpiani et al., 2012). Additionally,
a median filter is applied to remove residual clutter echoes.
Partial beam-blocking sectors are identified through an em-
pirical visibility map (EVM), which is derived directly from
the radar observations. Measures to mitigate the effects of at-
tenuation are not applied to RNC at the current stage. Radar
attenuation likely causes a systematic underestimation of sri.
The other instrument errors mentioned above are likely to
produce random effects depending upon time, location, and
weather conditions; therefore we believe their effects are mit-
igated by the temporal and spatial averaging of the analysis
described below.

3.3 Statistical scores

The validation of the OPEMW sri product against the
ground-based RNC and RGN reference products is per-
formed through the assessment of a number of statistical
scores. Here we present both dichotomous and continuous
scores, used to assess quantitatively the accuracy of rain de-
tection and estimation, respectively.

The dichotomous scores are used for the assessment of
rain detection accuracy. Rain detection is Boolean, as it as-
sumes the value of 0 in the case of no rain and 1 in the case of
rain detected (i.e., sri > 0 mm h−1). The dichotomous scores
are computed from the contingency table, which reports the
number of hit, miss, false alarm, and correct null events of
OPEMW vs. RNC and RGN detections (see Appendix A).
The dichotomous scores include the accuracy, the frequency
bias (FB) score, the probability of detection (POD), the false
alarm ratio (FAR), the Heidke skill score (HSS), and finally
the equitable threat score (ETS). Equations for these scores
are given in the Appendix A. The accuracy score indicates
the fraction of all the FOVs that has been correctly identified

as rainy or non-rainy; however, the high occurrence of non-
rainy FOVs strongly influences this accuracy score. Similarly
to this, the HSS indicates the fraction of correctly identified
FOVs (as rainy or non-rainy), but after eliminating the frac-
tion correctly identified due to random chance. The ETS in-
dicates the fraction of correctly identified FOVs as rainy after
eliminating the fraction due to random chance. The FB score
indicates whether there is a tendency to over- or underesti-
mate the area subject to rain (bias score > 1 or < 1, respec-
tively). Finally, the POD quantifies the ability to detect the
rainy FOVs only, while the FAR provides a measure for the
fraction of non-rainy FOVs that have been erroneously de-
tected as rainy.

The continuous scores, used for the assessment of sri esti-
mation accuracy, are applied to the data set after the “bin-
ning” following the approach introduced by Ferraro and
Marks (1995). In this approach the reference data (RNC and
RGN) are binned in 1 mm h−1 sri intervals and the corre-
sponding satellite estimates are averaged and associated with
each bin. The binned analysis is extremely useful, as it mini-
mizes match-up errors between ground and satellite obser-
vations and it ensures equal emphasis on the entire range
of sri. The data set after the binning is used to compute
the mean (AVG), standard deviation (STD), and root-mean-
squared (RMS) difference, the correlation coefficient (COR),
and the slope (SLP) and intercept (INT) of a linear fit. Fi-
nally, the full data set (i.e., before binning) was processed
to compute the monthly mean and standard deviation of the
RGN-OPEMW and RNC-OPEMW differences. These num-
bers provide quantitative information on the annual varia-
tion of the accuracy of OPEMW sri estimate with respect
to ground references.

4 Results

The results of the validation of the OPEMW sri product
against the ground-based RNC and RGN reference prod-
ucts are presented for the 1 yr data set under consideration
(July 2011–June 2012). Figure 4 presents the histograms of
OPEMW, RGN, and RNC sri products for the full data set
after the colocation procedure. Note that the events with sri
larger than 15 mm h−1 have been grouped in the last bin,
as their number is quite small (< 0.002 %), especially for
OPEMW (< 10). The distributions of the three sri sources
look quite similar, except that OPEMW shows more cases
at small values (sri∼ 1 mm h−1) and fewer cases at large val-
ues (sri≥ 15 mm h−1) relative to the other two sources. Note
also that RGN data are only available over land, while RNC
data are available both over land and ocean (at ratio∼ 1 / 2).
Since precipitation estimates based on MW radiances are in-
herently better over ocean than over land, due to less uncer-
tainty related to surface emissivity, we expect data over ocean
to positively impact on the overall OPEMW-RNC compari-
son.
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The following sections report the results of the dichoto-
mous statistical assessment, the continuous statistical assess-
ment, and a spatial and temporal analysis.

4.1 Dichotomous statistical assessment

The dichotomous statistical assessment was performed over
the whole data set, containing more than 650 000 OPEMW-
RGN match-ups and more than 1 600 000 OPEMW-RNC
match-ups. We assume a detection limit of 0.5 mm h−1,
which means that sri values smaller than this limit are set
to zero. The overall results are reported in Table 1, also di-
vided into four seasons: summer (July–September 2011), fall
(October–December 2011), winter (January–March 2012),
and spring (April–June 2012). Considering all data, the ac-
curacy score shows that OPEMW correctly identifies most
of the FOVs as rainy or non-rainy (accuracy of 98 % for both
RGN and RNC). However, the accuracy score is heavily in-
fluenced by the high occurrence of non-rainy FOVs (96 and
98 % for RGN and RNC, respectively), as previously antici-
pated. The fraction of correct detection after eliminating the
portion due purely to random chance is given by the HSS and
ETS scores, respectively considering or not the correct null
events (no rain). The perfect value for HSS and ETS is 1.0,
while here these get to HSS= 0.42 (0.45) and ETS= 0.27
(0.29) with respect to RGN (to RNC). The perfect value for
FB score is 1.0, while here it becomes a bit larger with re-
spect to both RGN and RNC, indicating that OPEMW has
a tendency to slightly overestimate the precipitating areas.
As a consequence, the FAR is rather high (64 %), while the
POD is within 55 % (60 %) for RGN (RNC). Table I also re-
ports the dichotomous scores computed by breaking the data
set into the four seasons introduced above, thus providing
information on the seasonal behavior of the OPEMW perfor-
mances. All the scores indicate that performances better than
the annual average are found for summer, fall, and spring,
while substantially worse than average for the winter sea-
son. In particular, the low values for POD and HSS together
with the high values for FAR and FB seem to suggest that
OPEMW tends to overestimate the precipitating areas during
winter.

Note that the quantitative values of the above scores de-
pend upon the assumed sri detection limit. For example,
Fig. 5 shows the monthly mean POD as computed using three
different detection limits (0.5, 1.0, and 5.0 mm h−1) with re-
spect to either RGN or RNC. Figure 5 confirms the seasonal
behavior of OPEMW estimates and the performance degra-
dation during the winter season (with respect to both RGN
and RNC). The behavior, however, becomes less evident as
the detection limit increases. Finally, considering the whole
data set, the POD reaches 60 % (66 %) with a sri threshold of
1 mm h−1, while it reaches 83 % (88 %) with a sri threshold
of 5 mm h−1 for RNC (RGN). This demonstrates the increas-
ing OPEMW detection skills as the rainfall becomes more
intense.
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Figure 4: Histograms of OPEMW (top), RGN (middle), and RNC (bottom) surface rain intensity 3 

(sri) products (vertical axis in log scale). Values larger than 15 mm/h are grouped in the last bin.  4 

5 

Fig. 4. Histograms of OPEMW (top), RGN (middle), and RNC
(bottom) sri products (vertical axis in log scale). Values larger than
15 mm h−1 are grouped in the last bin.
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Figure 5: Monthly POD as computed using three detection thresholds: 0.5 (black), 1.0 (blue), and 3 

5.0 (red) mm/h. Solid and dashed lines indicate OPEMW results as compared with RGN and RNC, 4 

respectively. The value for RGN at 5 mm/h threshold is missing in January due to insufficient data 5 

points. 6 

7 

Fig. 5.Monthly POD as computed using three detection thresholds:
0.5 (black), 1.0 (blue), and 5.0 (red) mm h−1. Solid and dashed lines
indicate OPEMW results as compared with RGN and RNC, respec-
tively. The value for RGN at 5 mm h−1 threshold is missing in Jan-
uary due to insufficient data points.

www.atmos-meas-tech.net/6/3181/2013/ Atmos. Meas. Tech., 6, 3181–3196, 2013



3188 D. Cimini et al.: Validation of satellite OPEMW precipitation product

Table 1.Results of the dichotomous statistical assessment for OPEMW sri product with respect to RGN (blue) and RNC (red) products.

RGN RNC

Sum. Fall Win. Spr. All Sum. Fall Win. Spr. All

Acc. 0.99 0.98 0.96 0.97 0.98 0.99 0.99 0.97 0.98 0.98
HSS 0.46 0.54 0.18 0.54 0.42 0.49 0.58 0.26 0.57 0.45
ETS 0.30 0.37 0.10 0.37 0.27 0.33 0.41 0.15 0.40 0.29
FB 1.99 0.97 3.44 1.08 1.54 1.73 1.29 2.81 1.08 1.10
POD 0.70 0.55 0.44 0.57 0.55 0.67 0.67 0.53 0.60 0.60
FAR 0.65 0.44 0.87 0.47 0.64 0.61 0.48 0.81 0.45 0.64
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Figure 6: Top panels: Percentage histograms of binned analysis for OPEMW sri against RGN (left) 3 

and RNC (right) sri products. Bottom panels: Standard deviation of OPEMW sri data falling into 4 

each 1 mm/h bin of RGN (left) and RNC (right). Blue and red bars indicate all and hits-only data, 5 

respectively. 6 

 7 

8 

Fig. 6. Top panels: percentage histograms of binned analysis for OPEMW sri against RGN (left) and RNC (right) sri products. Bottom
panels: standard deviation of OPEMW sri data falling into each 1 mm h−1 bin of RGN (left) and RNC (right). Blue and red bars indicate all
and hits-only data, respectively.

4.2 Continuous statistical assessment

As already mentioned, the continuous statistical assessment
was applied to the data set after the “binning” following the
approach in Ferraro and Marks (1995). The data sets in Fig.
4 have been processed such that the reference data, either
RNC or RGN sri products, are binned in 1 mm h−1 sri inter-
vals, and the corresponding satellite estimates are averaged
for each bin and the averaged OPEMW sri value is associ-
ated with that bin. We choose 1 mm h−1 bins to be consis-
tent with Di Tomaso et al. (2009), and thus produce results
that are directly comparable. Larger sri bins or even rainfall
classes (e.g., light, moderate, heavy) could have been cho-
sen, though we do not expect the conclusions to be greatly
affected. The results of the binning are shown in Fig. 6 in
terms of percentage histograms, i.e., the percentage of all
data that fell into each bin. Clearly, considering all the match-
up data, including non-raining FOVs, a large portion (∼ 60–
70 %) falls in the first bin. Conversely, a more balanced his-
togram is obtained when considering hits only (i.e., raining
pixels correctly detected). In any case, the number of satellite
estimates falling into each bin decreases drastically with in-
creasing sri values. Accordingly, the binning analysis is less
and less reliable as the sri value increases and the number of

available satellite estimates decreases. In particular, we lim-
ited the analysis to bins with a number of satellite estimates
larger than 5, causing the sri range to be bound in the 0–15
mm h−1 range. Figure 6 also shows the standard deviation of
OPEMW sri data falling into each bin, either considering all
data or hits only. This standard deviation increases with sri
for the first few bins and then it becomes nearly constant at
∼ 4 mm h−1. The results of the binning analysis are shown
in Fig. 7, where we compare OPEMW sri estimates against
both RGN and RNC for the entire year under consideration.
The results are presented considering all data and hits only,
whose distribution and deviation are shown in Fig. 6. The
binned scatter plots show a reasonably good correlation be-
tween OPEMW and RGN/RNC sri products. However, it is
noticeable that OPEMW tends to slightly overestimate lower
sri values and, conversely, underestimate larger sri, with a
hinge point roughly around 6–7 mm h−1. Up to 7 mm h−1

OPEMW is well correlated with the ground reference, es-
pecially with RGN, while the scatter increases substantially
for sri >10 mm h−1, likely due to the low number of cases (as
seen in Fig. 6). Overall, the mean difference is within 1.2–
3.3 mm h−1 and the STD is within 2.7–3.5 mm h−1, while
the correlation is within 0.8–0.9. The agreement in terms of
RMS is better with RNC than RGN. The bias for both RGN
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Figure 7: Scatter plot of binned analysis for the 1 yr period under analysis (July 2011-June 2012). y-3 

axis report the OPEMW sri product, while x-axis report RGN sri (left) and RNC sri (right) 4 

products. Blue markers indicate results using all data, while red crosses indicate results considering 5 

hits only. Main statistics are shown, as the number of available bins (N), the mean (AVG), standard 6 

deviation (STD), and root-mean squared (RMS) difference, the correlation coefficient (COR), and 7 

the slope (SLP) and intercept (INT) for a linear fit. Numbers after the +/- sign indicate the 95% 8 

confidence interval. Error bars indicate one std of OPEMW sri values within each bin. 9 
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Fig. 7. Scatter plot of binned analysis for the 1 yr period under analysis (July 2011–June 2012). They axes report the OPEMW sri product,
while thex axes report RGN sri (left) and RNC sri (right) products. Blue markers indicate results using all data, while red crosses indicate
results considering hits only. The following main statistics are shown: the number of available bins (N), the mean (AVG), standard deviation
(STD), and root-mean-squared (RMS) difference, the correlation coefficient (COR), and the slope (SLP) and intercept (INT) for a linear fit.
Numbers after the+/− sign indicate the 95 % confidence interval. Error bars indicate one STD of OPEMW sri values within each bin.

and RNC is lower when considering hits only. However, the
results above are influenced by larger sri values, which again
are less reliable due to much lower statistical significance.
Nevertheless, there may be reasons for the OPEMW under-
estimation at high sri related to the precipitation mechanism.
Although the synthetic training of the PEMW algorithm also
accounted for extreme scenarios (Di Tomaso et al. 2009),
Fig. 7 seems to suggest that it works better for stratiform (rel-
atively lower) rather than for convective (relatively higher)
rainfall. The analysis of the influence of precipitation type
on algorithm performances shall be the object of future re-
search.

The same analysis, but dividing the data set into the four
seasons introduced earlier, is repeated in Figs. 8 and 9 against
RGN and RNC, respectively. In Fig. 8 we see that OPEMW
agrees quite well with RGN in summer, winter, and spring,
showing mean difference within 1.1 mm h−1, STD within
1.9 mm h, RMS within 2.1 mm h−1, and correlation greater
than 0.9. However, the range of valid sri is limited to less
than 10 mm h−1 by the low occurrence of higher sri values.
The results for the fall season resemble those for the whole
year in Fig. 7. Note that fall is characterized by high occur-
rence of heavy precipitation over Italy. Orographic precipi-
tation and mesoscale convective systems play an important
role due to steep slopes in the vicinity of large coastal ar-
eas, often causing localized hailstorms with cluster organized
cells (Ferretti et al., 2013). Similarly, Fig. 9 shows results
with respect to RNC. Here differences between the four sea-
sons are less evident. Note, however, that OPEMW tends to
overestimate small sri values with respect to RNC (Fig. 9),
but not so much with respect to RGN (Fig. 8). We attribute
this to the underestimation of the sri field by RNC related to
the complex orography of the Italian territory; in fact com-

plex orography causes, apart from substantial ground clutter,
a range-dependent underestimation due to beam divergence
and altitude (Marzano et al., 2004). Mitigation measures are
currently under testing at DPC, but are not applied to the cur-
rent version of RNC.

4.3 Spatial–temporal assessment

The spatial and temporal distribution of the retrieval uncer-
tainties are also important to characterize the OPEMW per-
formances, especially over a territory with complex orogra-
phy and large seasonal variability such as Italy. To investi-
gate this, we have divided the geographical area in Figs. 1–3
into a 14◦ × 14◦ longitude–latitude grid with 0.1◦ step and
computed for each pixel the mean absolute difference be-
tween OPEMW and ground-reference (either RGN or RNC)
sri products for each of the four seasons introduced above.
The results are shown in Figs. 10 and 11 with RGN and RNC
respectively as reference. Note that, as anticipated, Fig. 11
shows that the agreement is generally better over ocean than
over land. Figures 10 and 11 do not seem to show any par-
ticular geographical–seasonal effect, except for an increase
in mean absolute difference over the Alps and along the
northern Apennines during winter. There are likely a num-
ber of reasons concurring to this effect. In fact, precipitation
over the mountains is often snow during winter, which in-
creases the uncertainty of ground-based measurements. In
fact, tipping bucket rain gauges often get clogged by snow,
and even those provided with a heating system can only mea-
sure the water equivalent of frozen precipitation, which is
affected by substantial measuring errors (e.g., evaporation
loss). At the same time, radar quantitative precipitation esti-
mation is degraded in mountainous areas, due to (i) the more
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Figure 8: Scatter plot of seasonal binned analysis with respect to RGN; clockwise from top-left 3 

panel: Summer (July-August-September 2011), Fall (October-November-December 2011), Winter 4 

(January-February-March 2012), and Spring (April-May-June 2012). Markers and statistics are as 5 

in Fig. 7. Error bars have been omitted for improving figure readability. 6 

 7 

Fig. 8.Scatter plot of seasonal binned analysis with respect to RGN. Clockwise from top-left panel: summer (July-August-September 2011),
fall (October-November-December 2011), winter (January-February-March 2012), and spring (April-May-June 2012). Markers and statistics
are as in Fig. 7. Error bars have been omitted to improve figure readability.

complex orography, causing enhanced beam blockage and
ground clutter, and (ii) the presence of snow/ice hydrome-
teors, adding uncertainty to the assumptions concerning par-
ticle size, distribution, and phase (Germann et al., 2006). The
increased difference may also be caused by the presence of
snow on the ground, which is a well-known source of un-
certainty for passive microwave estimates of rainfall. As de-
scribed in Di Tomaso et al. (2009) the PEMW algorithm ap-
plies methods to avoid snow on the ground being detected
as rainfall, based on the observations from the channels less
sensitive to ground emissivity. The effects of these methods
were shown by Di Tomaso et al. (2009), concluding that the
number of false alarms is reduced considerably, but not com-
pletely set to zero. The above reasons concur with the in-
creased mean absolute difference over the main mountain
ridges, as well as to the relative larger FAR and smaller POD
reported in Table 1 and Fig. 4 during winter.

In Fig. 10 we also notice larger mean absolute difference
values over Sicily than for the rest of Italy. This is more ev-

ident during winter, but it seems to be present during the
other seasons as well. Since there is no hint of this feature
in Fig. 11, we attribute it to larger uncertainties affecting the
rain gauge network deployed in that region.

Finally, in order to quantify the accuracy of the sin-
gle FOV estimate and to detect its seasonal features, we
used the whole match-up data set (more than 650 000 for
OPEMW-RGN and more than 1 600 000 for OPEMW-RNC)
and computed the monthly mean difference between ground-
reference (either RGN or RNC) and OPEMW sri products.
The results are shown in Fig. 12, where the error bars in-
dicate the STD of the monthly mean difference. Figure 12
shows that, with respect to RGN, OPEMW tends to under-
estimate sri from September to May, while the opposite is
the case in June, July, and August, though the monthly mean
difference remains within± 1 mm h−1. Conversely, with re-
spect to RNC, OPEMW seems to overestimate sri through-
out the year, with monthly mean difference within−2 and
0 mm h−1. These results are likely influenced by the large
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Figure 9: Scatter plot of seasonal binned analysis as in Fig. 8, but with respect to RNC. Clockwise 3 

from top-left panel: Summer, Fall, Winter, and Spring. Markers and statistics are as in Fig. 7. Error 4 

bars have been omitted for improving figure readability. 5 
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Fig. 9. Scatter plot of seasonal binned analysis as in Fig. 8, but with respect to RNC. Clockwise from top-left panel: summer, fall, winter,
and spring. Markers and statistics are as in Fig. 7. Error bars have been omitted to improve figure readability.

amount of relatively low sri dominating the statistics (see
Fig. 6), for which OPEMW agrees quite well with RGN but
it is larger than RNC, as seen already in Figs. 7–9. As al-
ready anticipated, this feature is mainly related to the com-
plex orography of the Italian territory. The standard deviation
of the monthly mean difference does not seem to show an ev-
ident seasonal behavior, with values between 2 and 4 mm h−1

(except for March 2012).

5 Conclusions

One year of surface rain intensity (sri) data produced by
the operational procedure OPEMW developed at IMAA-
CNR has been validated against ground-based reference
sri products from rain gauge (RGN) and weather radar
(RNC) networks deployed over the Italian territory. The
data set spans from July 2011 until June 2012, exploit-
ing more than 3000 rain gauges and 20 weather radars.
Ground-based observations have been temporally and spa-
tially colocated with the satellite observations for a total of

more than 650 000 OPEMW-RGN match-ups and more than
1 600 000 OPEMW-RNC match-ups. The distribution of sri
shows that OPEMW generates more cases at smaller values
(sri∼ 1 mm h−1) and fewer cases at larger values (sri≥ 15
mm h−1) relative to the two ground-based references.

The assessment of OPEMW rain detection is performed
over the whole data set, showing 98 % accuracy in correctly
identifying rainy and non-rainy FOVs. The FB score is larger
than unity, indicating that OPEMW has a tendency to slightly
overestimate the precipitating areas. Consistent results are
obtained against RGN and RNC. As a consequence, the FAR
is rather high (64 %), while the POD is 55 % (60 %) with re-
spect to RGN (RNC). Taking RGN as reference, OPEMW
shows an increase (with respect to random chance) in the
ability to detect rainy and non-rainy FOVS (HSS= 0.42) as
well as in the ability to detect rainy FOVs only (ETS= 0.27).
Similar results are obtained when taking RNC as reference
(HSS= 0.45 and ETS= 0.29). When breaking the data set
into seasons, all the dichotomous scores indicate perfor-
mances better than average in summer, fall, and spring, while
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Figure 10: Maps of seasonal mean absolute difference with respect to RGN; clockwise from top-left 3 

panel: Summer (July-August-September 2011), Fall (October-November-December 2011), Winter 4 

(January-February-March 2012), and Spring (April-May-June 2012). The vertical color bar is in 5 

mm/h. The black arrow in the lower-left panel indicates Sicily. 6 

Fig. 10.Maps of seasonal mean absolute difference with respect to RGN. Clockwise from top-left panel: summer (July-August-September
2011), fall (October-November-December 2011), winter (January-February-March 2012), and spring (April-May-June 2012). The vertical
color bar is in mm h−1. The black arrow in the lower-left panel indicates Sicily.

substantially worse than average in the winter season. Low
POD, HSS, and ETS values together with high FAR and FB
values all seem to suggest that OPEMW tends to overes-
timate the precipitating areas during winter. These results,
including the seasonal trend, are comparable with numbers
found in Ebert et al. (2007), though those were obtained for
24 h accumulated rain. It is also noted that the OPEMW de-
tection skills become better for increasing rainfall intensity
(POD up to 66 and 88 % for detection limit set to 1 and
5 mm h−1, respectively).

The assessment of OPEMW estimation accuracy demon-
strates reasonable agreement with RGN/RNC sri products.
However, OPEMW tends to slightly overestimate lower sri
values, and conversely to underestimate larger sri, with a
hinge point roughly around 6–7 mm h−1. Up to 7 mm h−1

OPEMW is well correlated with the ground reference, es-
pecially with RGN; the dispersion increases substantially for
sri > 10 mm h−1, likely due to the low number of cases with
rainfall higher than 10 mm h−1. Taking RGN (RNC) as ref-
erence, the mean difference is 3.3 (2.2) mm h−1, the stan-
dard deviation is 3.4 (2.7) mm h−1, and the correlation is
0.8 (0.9). In terms of RMS difference, results improve by

10 % when considering only the hit events. Better agreement
is found with RNC rather than RGN; this result is partially
due to the smaller differences over ocean, though it is also
strongly influenced by the larger and statistically less sig-
nificant sri values. When breaking the data set into seasons,
the estimation accuracy does not show substantial difference
from the results above, except that intense rainfall events are
pretty much limited to the fall season. For low to moder-
ate sri values (sri < 8 mm h−1), OPEMW agrees well with
RGN but tends to overestimate RNC. The latter result may
be explained by the likely RNC sri underestimation due to
the combined effect of attenuation and complex orography.

We also investigated the spatial and temporal behavior of
the mean absolute difference between OPEMW and ground-
based reference sri products. Two geographical–seasonal fea-
tures are noticed: (i) mean absolute difference larger than
average over the Alps and northern Apennines during win-
ter, and (ii) larger mean absolute differences over Sicily than
for the rest of Italy with respect to RGN. The first feature is
consistent with the scores in Table 1 and the rain detection
results above. We attribute it to the combination of larger un-
certainty in both satellite estimates (residual spurious effects
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Figure 11: As in Fig. 7 but with respect to RNC. Clockwise from top-left panel: Summer, Fall, 3 

Winter, and Spring. The vertical color bar is in mm/h. 4 
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Fig. 11.As in Fig. 7 but with respect to RNC. Clockwise from top-left panel: summer, fall, winter, and spring. The vertical color bar is in
mm h−1.
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Figure 12: Monthly mean difference (circles) and its standard deviation (error bars) of OPEMW sri 4 

product with respect to RGN (blue) and RNC (red) products. Mean difference is computed as RGN 5 

(or RNC) minus OPEMW. 6 
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Fig. 12. Monthly mean difference (circles) and its standard devia-
tion (error bars) of OPEMW sri product with respect to RGN (blue)
and RNC (red) products. Mean difference is computed as RGN (or
RNC) minus OPEMW.

caused by snow on the ground) and ground-based measure-
ments (complex orography, frozen precipitation) in mountain
regions during winter. Conversely, we attribute the feature
over Sicily to larger errors affecting the rain gauges deployed
in Sicily rather than to inaccurate satellite estimates, though
we were not able to retrieve information about possible in-
strumental differences.

Finally, we investigate the monthly mean difference be-
tween OPEMW and ground-based reference sri products.
With respect to RGN, the monthly mean difference remains
within ±1 mm h−1 throughout the year. OPEMW underesti-
mates RGN from September to May, while the opposite is the
case in June, July, and August. Conversely, OPEMW seems
to overestimate RNC throughout the year, with monthly
mean difference ranging from 0 to−2 mm h−1. These results
are likely influenced by the large amount of relatively low
sri dominating the statistics, for which OPEMW agrees quite
well with RGN but is larger than RNC. The systematic dif-
ference between OPEMW and RNC is mostly attributed to
the likely systematic underestimation of sri by RNC caused
by radar attenuation issues. The STD of the monthly mean
difference do not seem to show an evident seasonal behav-
ior, with values between 2 and 4 mm h−1 for both RGN and
RNC.
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In conclusion, the validation effort presented here extends
the results of Di Tomaso et al. (2009) – which validated the
PEMW algorithm limited to a few case studies – to a full
year of operational OPEMW sri products. The rain detection
and estimation performances over the Italian territory and
four seasons indicate that the OPEMW sri product is suit-
able for the deployment in an integrated system supporting
numerical hydrometeorology and flood-hazard-alert systems.
However, discrepancies with respect to ground-based refer-
ences have been identified and discussed. Besides the uncer-
tainty attributed to the ground-based reference observations,
we identified the following features for OPEMW: (a) large
false alarm ratio and mean absolute error during winter, and
(b) considerable underestimation of intense rainfall at FOV
scale (sri > 10 mm h−1). These features represent the starting
point of our ongoing and future work to improve the overall
performances of OPEMW. In fact, solutions to mitigate these
features are under study, as for example an adaptive screen-
ing designed to remove the residual contamination by snow,
and additional training giving more weight to extreme rain-
fall cases.

Appendix A

Definitions of statistical scores

This appendix summarizes the statistical scores used for
evaluating surface rain intensity (sri) estimated from satel-
lite by OPEMW with respect to ground-based measurements
from rain gauge (RGN) and weather radar (RNC) networks.
These include the accuracy, the frequency bias score, the
probability of detection (POD), the false alarm ratio (FAR),
the Heidke skill score (HSS), and the equitable threat score
(ETS). Equations for the above scores are taken from Ebert
et al. (2007) and references therein. Every satellite–RGN
(or satellite–RNC) match-up duplet, obtained as described
in Sect. 3.1, can be classified as a hit (H, observed rain cor-
rectly detected), miss (M, observed rain not detected), false
alarm (F, rain detected but not observed), or correct null (N,
no rain observed nor detected) event. The sum H+M+F+N
is equal to the sample size S. The accuracy score is defined
as (H+ N) / S, and it indicates the fraction of total sample
that has been correctly identified as rainy or non-rainy. The
FB score is defined as (H+ F) / (H + M), and it is the ratio of
the detected to observed rain areas, thus indicating whether
there is a tendency to over- or underestimate the area subject
to rain (bias score > 1 or < 1, respectively). The probability of
detection, POD= H / (H + M), gives the fraction of rain oc-
currences that was correctly detected, while the false alarm
ratio, FAR= F / (H + F), measures the fraction of rain de-
tections that was actually false alarms. By considering the
number of hits that could be expected due purely to random
chance, given by He= (H + M) (H + F) / S, the HSS score
is defined as

HSS=(H+N − He)/(S-He),

indicating the fraction of correctly detected FOVs (as rainy or
non-rainy) but after eliminating the fraction correctly identi-
fied due to random chance. Similarly to this, the ETS is de-
fined as

ETS=(H -He)/(H+M+F -He),

indicating the fraction of correctly detected FOVs (as rainy),
adjusted for the number of hits that could be expected due
purely to random chance. ETS is more severe than HSS since
it does not take into consideration the corrected negatives.
The ETS is commonly used as an overall skill measure by
the numerical weather prediction community, with accuracy,
FB, POD, and FAR providing complementary information
on bias, misses, and false alarms.
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