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Abstract. The Precipitation Estimation at Microwave Fre- ern Apennines during winter. A binned analysis in the 0—
quencies (PEMW) algorithm was developed at the Institutel5 mm b range suggests that OPEMW tends to slightly
of Methodologies for Environmental Analysis of the Na- overestimate srivalues below 67 mmitand underestimate
tional Research Council of Italy (IMAA-CNR) for infer- sri above those values. With respect to rain gauges (weather
ring surface rain intensity (sri) from satellite passive mi- radars), the correlation coefficient is larger than 0.8 (0.9).
crowave observations in the range from 89 to 190 GHz. TheThe monthly mean difference and standard deviation remain
operational version of PEMW (OPEMW) has been running within +1 and 2 mm h with respect to rain gauges (respec-
continuously at IMAA-CNR for two years. The OPEMW tively —2—0 and 4 mm h' with respect to weather radars).

sri estimates, together with other precipitation products, are
used as input to an operational hydrological model for flood
alert forecast. This paper presents the validation of OPEMW

against simultaneous ground-based observations from a nel-  Introduction

work of 20 weather radar systems and a network of more

than 3000 rain gauges distributed over the Italian Peninsuld he accurate estimation of rainfall is crucial for many appli-
and main islands. The validation effort uses a data set covercations, including its short-term assessment and long-term
ing one year (July 2011-June 2012). The effort evaluates dimonitoring. A summary of recent activities, ongoing re-
chotomous and continuous scores for the assessment of rafiarch, and future plans about precipitation measurement and
detection and quantitative estimate, respectively, investigattodeling is given by Michaelides et al. (2009) and Tapiador
ing both spatial and temporal features. The analysis demongt al. (2012), while comprehensive overviews of precipita-
strates 98 % accuracy in correctly identifying rainy and non-tion remote sensing from satellite and its applications are
rainy areas; it also quantifies the increased ability (with re-9iven by Levizzani et al. (2007), Kidd and Levizzani (2011),
spect to random chance) to detect rainy and non-rainy area@nd Kucera et al. (2013). Nowadays, operational precipi-
(0.42-0.45 Heidke skill score) or rainy areas only (0.27—0.29tation products are routinely delivered through large pro-
equitable threat score). Performances are better than avera§édms, such as the US National Oceanic and Atmospheric
during summer, fall, and spring, while worse than averageAdministration (NOAA) operational hydrological products

in the winter season. The spatial-temporal analysis does ndferraro etal., 2005) or the Satellite Applications Facility on

show seasonal dependence except over the Alps and nortiUPPOrt to Operational Hydrology and Water Management
(H-SAF; Mugnai et al., 2013). However, rainfall estimation
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3182 D. Cimini et al.: Validation of satellite OPEMW precipitation product

algorithms, validation strategies, and assimilation into nu-developed to infer rain rates from satellite passive microwave
merical weather prediction and hydrological high-resolution observations in the 89 to 190 GHz range (Di Tomaso et
models are topics still under investigation, especially overal., 2009). The PEMW algorithm relies on satellite obser-
land (e.g., Anagnostou, 2004). Moreover, the likely increasevations made by the Advanced Microwave Sounding Unit/B
of extreme events due to climate-related forcing brings ever{AMSU/B) or the Microwave Humidity Sounder (MHS) on-
more importance to rainfall retrieval as a means for moni-board the NOAA satellites and/or the European Polar Satel-
toring environmental hazards (e.g., Nunes and Roads, 2007)ite MetOp-A. The PEMW performances were tested (Di
Furthermore, the assessment of precipitation detection andomaso et al., 2009) at relative high latitudes against the
gquantitative estimation from space remains a major issudJK NIMROD radar network, and at tropical low latitudes
(e.g., Ebert et al., 2007). Precipitation estimate methods fronagainst rain gauges. The rain gauges, belonging to the US
passive sensors use observations at visible (VIS), infrared\tmospheric Radiation Measurement (ARM) program, are
(IR), and microwave (MW) frequencies. Among them, the deployed on the island of Nauru in the tropical western Pa-
microwave techniques provide the most direct observation otific. A total of 6 case studies were used for the validation
precipitation as microwave radiation is less affected by cloudof the PEMW algorithm against the NIMROD radar obser-
droplets and interacts with precipitation-sized hydrometeorsvations, while less than 30 satellite overpasses were used for
Regarding platforms, geosynchronous (GEO) and low Earttthe validation against the one-point rain gauge measurements
orbit (LEO) satellites offer complementary features in termsin Nauru. Since then, the operational version of PEMW
of revisit time and spatial resolution. While LEO satellites of- (OPEMW) has been running at IMAA-CNR in support to
fer low revisit time (only twice a day for a given place at mid- numerical hydrometeorology and flood-hazard-alert systems.
latitude) but high spatial resolution (0.25-1 km for VIS-IR, However, the validation of OPEMW over the geographical
10-50 km for MW), GEO satellites ensure high revisit time area where its estimates are actually utilized — i.e., the Ital-
(on the order of 15min) at moderate spatial resolution (1-ian territory — has never been tested before. Thus, similarly
4 km for VIS-IR, > 100 km for MW). Given this limitation, so  to what was proposed by Antonelli et al. (2010), this analysis
far MW sensors have been deployed on LEO satellites onlycarries out a detailed validation of the OPEMW product by
although GEO MW missions have been proposed (Savage etomparing the satellite estimation against the weather radar
al., 1995; Tanner et al., 2007). In the last decades, severand rain gauge networks deployed over the Italian territory.
microwave radiometers aboard LEO satellites have been ex- This paper is organized as the follows: Sect. 2 describes
ploited for rainfall remote sensing (e.g., Special Sensor Mi-the data set under consideration, Sect. 3 summarizes the
crowave Imager, Advanced Microwave Sounding Unit, Trop- methodology used for data comparison, Sect. 4 reports the
ical Rainfall Measuring Mission Microwave Imager, Ad- results of the data analysis, and Sect. 5 summarizes the quan-
vanced Microwave Scanning Radiometer) and numerous retitative results and draws the final conclusions.
trieval algorithms have been developed (e.g., Spencer et al.,
1989; Wilheit et al., 1991; Ferraro and Marks, 1995; Staelin
and Chen, 2000; Kummerow et al., 2001; Bennartz et al.2 Data set
2002; Bauer et al., 2005; Boukabara et al., 2007, 2011; Lavi-
ola and Levizzani, 2009). Two processes are used to iden2.1 OPEMW
tify precipitation from MW observations: emission from rain
droplets (leading to MW radiation enhancement) and scatterOPEMW is the software package developed at IMAA-
ing caused by precipitating ice aloft (leading to MW radia- CNR that implements and runs the PEMW algorithm oper-
tion depression). Emission is usually exploited over a coldationally. OPEMW has been running at IMAA-CNR since
background (such as ocean, e.g., Wilheit et al., 1991), while2010 in support to numerical hydrometeorology and flood-
scattering must be used over land, where the surface hdsazard-alert systems. The details of PEMW are described in
higher and more variable emissivity (Spencer et al., 1989;Di Tomaso et al. (2009). Here we just want to mention that
Ferraro and Marks, 1995). However, high-frequency MW PEMW consists in a precipitation estimation algorithm ex-
observations are less sensitive to the surface backgrounploiting passive MW observations in the frequency range 89
and thus can be exploited to retrieve precipitation over landto 190 GHz together with prior knowledge of the nature of
ocean, and even problematic backgrounds, such as coastlingsecipitation events. Radiative transfer simulations in a vari-
(Staelin and Chen, 2000; Laviola and Levizzani, 2009). ety of different atmospheric scenarios are used to fit an ex-
At the Institute of Methodologies for the Environmental tensive set of regression curves between rain rate and linear
Analysis of the National Research Council of Italy (IMAA- combinations of the radiances to be observed. Various atmo-
CNR) a number of approaches have been proposed to respheric and surface conditions (land and water) are consid-
trieve cloud and rainfall information from satellite observa- ered, including extreme events, in order to derive the domain
tions (Romano et al., 2007; Ricciardelli et al., 2008, 2010; for the regression coefficients. The procedure automatically
Di Tomaso et al., 2009). In particular, the Precipitation Es- selects the most appropriate scenario and hence the most suit-
timation at Microwave Frequencies (PEMW) algorithm was able coefficients fitting a model between the observations
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and rain rate. This selection is based on the assumption tha
given the real scenario, the regression curves all retrieve sim
ilar rain rates. Thus, PEMW is a specific version of a more
general approach that optimizes the distance of the param
eters of the regression curves with respect to the estimatec
rain rate. The advantages of PEMW include a good spa-
tial and temporal resolution, little influence from the back- s
ground surface, high sensitivity to light rain, and a rain rate _‘;{f"r,.
estimate that is consistent throughout the channels. Poten
tial weaknesses are inherent with issues related to the crosg
scan observations and to the instrumental absolute calibra
tion. PEMW was developed to work with observations from
AMSU/B, flying aboard the NOAA Polar Operational En-
vironmental Satellites (POES). PEMW was later adapted to
work with observations from MHS, flying aboard the most
recent NOAA POES satellites and the European Polar Sys-
tem (EPS) MetOp-A belonging to the European Organisa-
tion for the Exploitation of Meteorological Satellites (EU-
METSAT). POES and EPS are respectively the US and Eu-f
ropean contributions to the Initial Joint Polar-Orbiting Op-
erational Satellite System (IJPS). Here we just mention that
both AMSU-B and MHS are cross-track, line-scanning mi- Fig. 1. An example of the graphical output of OPEMW (the MHS
crowave radiometers measuring radiances in five channels ifOVs are represented as uniform circles along the scan line).
the frequency range from 89 to 190 GHz. AMSU-B and MHS The surfac_e rain intt_ensity (slri) product is color-coded according
exploit similar channels: center frequencies for the AMSU- ©© the vertical bar (in mmh®) and layered over the Meteosat
B channels are 89. 150. 1831. 183+ 3. and 183+ 7 GHz: Second Generation (MSG) 10.8 um image (in normalized inverted
. ’ ’ ’ ' ’ greyscale). Data obtained from MHS on NOAA N-18 overpass at
while for the MHS channels are 89, 157, 183, 183+3,  1.55 47¢ and MSG observations at 01:00 UTC on 5 July 2011.
and 190 GHz. Therefore, the two instruments differ only at
channel numbers 2 (150 vs. 157 GHz) and 5 (&8Bvs.
190 GHz); however, the differences are more technical rathe{centre of Excellence for the integration of remote sensing

than functional, and the two channel duplets show the sameng modeling for the prediction of severe weather) and also
fundamental features. AMSU-B and MHS fly at a nomi- giored in the IMAA-CNR archive. The present version (V4)
nal altitude of 850 km and they observe the Earth scanyf OPEMW has been running since May 2011. The data set
ning circa+50" across nadir, taking 90 consecutive fields considered here covers one full year, from July 2011 to June
of view (FOVs) per scan. The five channels are co-registerego12. For this period the three AMSU-B instruments were
with 1.1 antenna beam width. At nadir, the footprint cor- ynavajlable due to instrumental failures, and the MetOp-B
responds to a circle of diameter approximately 16 km. Dueyyas still in its pre-launch and commissioning phases; thus
to the cross-track observation geometry, away from nadir thgpe following analysis focuses on MHS observations from N-
FOVs have an ellipsoidal shape. The FOV axes range fromg N-19, and MetOp-A. An example of the operational sur-
1§ kmx 16 km at nadir to 51 knx 2&_3 km a.t maximum scan-  face rain intensity (sri, mmtt) map product by OPEMW
ning angle (Bennartz, 2000). The first axis refers to the crossjs shown in Fig. 1. Note that the horizontal resolution of
track and the second to the along-track direction. Further degpemw sri product is the same as for MHS (i.e., varying
tails on the instruments features can be found in the NOAAith scan angle). However, the operational graphical output

KLM user's guide (NCDC/NOAA, 2008) and the ATOVS g represented as uniform circles to clearly display the scan
Level 1b Product Guide (EUMETSAT, 2010). At the time |ine direction.

of writing there are five operational NOAA POES satellites

(namely the N-15, N-16, N-17, N-18, and N-19) spaced ap-2.2 \Weather radar network

proximately 2—6 h apart and carrying either the AMSU-B (N-

15, N-16, and N-17) or the MHS (N-18 and N-19) instru- Microwave weather radars are considered a fairly established

ments; in addition, there are two operational EPS satellitestechnique for retrieving rain rate fields over large areas from

MetOp-A and MetOp-B, both carrying the MHS instrument. measured reflectivity volumes. In the framework of the na-
The AMSU-B and MHS raw data are received in near- tional early-warning system for multi-risk management, the

real time at IMAA-CNR and processed with the AAPP code Italian Department of Civil Protection (DPC) was appointed

(UK Met Office, 2011). The level 1c data are then processedo complement the existing weather radar systems in or-

by OPEMW, and the rain rate product is sent to CETEMPSder to increase the coverage of the Italian territory. The
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resulting Italian national weather radar network is coordi-
nated by the DPC, in collaboration with regional authorities,
research centers, the Air Traffic Control service (ENAV),
and the Meteorological Service of the Air Force (CNMCA).
Once completed, the Italian radar network shall include 25 §
C-band ¢ 5 GHz) radars (including 7 polarimetric systems)
and 5 dual-polarized X-band-(10 GHz) radars, deployed
throughout the country (Vulpiani et al., 2008a). Currently,
the radar network is composed of 20 weather radars: 10 C
band radars belonging to regional authorities (5 of which
are polarimetric), 2 C-band radars owned by ENAV, and 6
C-band radars (two of which are polarimetric) plus 2 X-
band polarimetric radars owned directly by the DPC. The
DPC collects radar data in near real-time by satellite links
to the two national radar primary centers (RPC), one lo-
cated at the DPC headquarters in Rome and the other at th
Centro Internazionale in Monitoraggio Ambientale (CIMA) @
Research Foundation in Savona. Procedures for mitigating®
ground clutter, anomalous propagation, and beam blockage ;
effects are applied (Vulpiani et al., 2008b). The radar vol- 05 Iugli02l51/1 ore03:15_:ail:| rate (mm/h) + MSG (IR 10.8) ore 03:00
umes are then centrally processed to produce the so-called
radar network composite (RNC) of products such as the verFig. 2. An example of the graphical output of RNC (courtesy of
tical maximum intensity (VMI, dBZ), the constant altitude DPC). The surface rain intensity (sri) product is color-coded accord-
plan position indicator (CAPPI, dBZ), the surface rain in- ing to the vertical bar (in mmhl) and layered over the Meteosat
tensity (sri, mm hl), and the 1 h accumulated surface rain Second Generation (MSG) 10.8 um image (in normalized inverted
otal (). The s product s computed apaing the JEY°E0), e svered fon FC AV UTE e e e
;if;cg\ggyg:m:y (%;4112) rt?)l a:%%nlsg\;\?esﬁr%zc;?dm?é I;AL?;\/I) Fig. 1). Note that here the t_ime displayed at the bottom is in CEST
. . (Central Europe Summer Time).
product. The latter is the near-ground reflectivity map ob-
tained from the corrected radars volume data using the low-

est height reflectivity value in each vertical column. All prod- more than 3000 rain gauges (Vulpiani et al., 2012). Fig-
ucts are obtained over a grid of 14801400 knf with spatial  yre 3 shows the distribution of the rain gauges over ltaly.
resolution of~1km and temporal resolution of 15min; the The average distance between neighboring rain gauges is less
gridded products are then distributed to the hydrological andnan 10 km. These are a tipping bucket type of rain gauge
meteorological regional services. The RNC sri product, usedyith 0.2 mm b minimum detectable rain rate. A reduced
here, represents the best radar estimate available for the pget ¢~ 300) is provided with heating to prevent snow and
riod under analysis. It must be underlined that this was nofice clogging and to measure the water equivalent of frozen
adjusted to match rain gauge products, even though statistiyrecipitation. Rain gauge data acquisition and processing are
cal techniques are being tested (Marzano etal., 2012). Procgserformed by regional authorities at different temporal inter-
dures to improve the quality of the RNC sri product, includ- yas, ranging from 5 to 30 min. Typically 65-85 % of the to-
ing attenuation compensation, polarimetric rainfall inversion ta| number of rain gauges are available at the same time. The
techniques, and adaptive algorithms to retrieve mean verticalain gauge network (RGN) data are collected and centrally
profiles of reflectivity (VPR) are currently under validation processed in near-real time by the DPC. The set of 1 h accu-
at the DPC (Vulpiani et al., 2008a, 2012). An example of the myated rain for each rain gauge of the network represents
RNC sri product is shown in Fig. 2 for the same time interval the RGN surface rain intensity (sri, mm¥ product. The

of Fig. 1. DPC distributes the RGN sri product through DEWETRA,
) a Web-based software developed by CIMA Research Foun-
2.3 Rain gauge network dation on behalf of the DPC. Figure 3 also shows the RGN

sri (color-coded according to the accumulated rain thresholds
Several rain gauge networks have been deployed over thgsferring to the last 24 h) for the same 1 h period containing
Italian territory through the years, which belong to indepen-ine satellite overpass in Fig. 1 and the radar composite in
dent regional and national authorities. DPC was recently apgig. 2. The point measurements of rain gauges are upscaled

pointed to manage the existing rain gauge networks in colinto the satellite FOVs, as will be discussed in Sect. 3.1.
laboration with other regional and national authorities. This

integrated network is one of the densest in the world, with
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is usually found since the RNC sri product is available
every 15 min.

— Finally, the procedure searches for the RGN sri prod-
uct that corresponds to the 1 h time period in which the
satellite overpass has occurred.

Units for OPEMW, RNC, and RGN sri products are mrmith
and thus are comparable. However, OPEMW and RNC sri
products correspond to nearly instantaneous observations. In
contrast, the RGN sri product is computed as hourly accu-
mulated rainfall. The comparison between these products in-
herently includes the uncertainty related to rainfall variability
within an hour. The spatial colocation is obtained by convo-
luting either the RNC or RGN sri products to the satellite
FOVs, taking into account the antenna pattern, assumed as
Gaussian, and the ellipsoidal shape at different viewing an-
gles (Bennartz, 2000). For each FOV, the convolution usually
takes 200—-1000 RNC pixels and 5-180 rain gauges. Thus,
high surface rainfall intensity values (e.g., sri>50 mnih
that are detected locally at few RNC pixels or RGN sites are
typically smoothed by the convolution with the surrounding
Fig. 3. The distribution of more than 3000 rain gauges over ltaly. lower values falling within the same FOVs. Therefore, sri at
The figure shows 1h accumulated rain (sri) between 01:00 andhe scale of satellite FOV seldom exceeds 20 mt h
02:00UTC on 5 July 2011 (i.e., the 1h period containing both

Figs. 1 and 2). Rain gauges are indicated with circles and color-3.2 Data quality

coded as follows: grey>missing data; white—no rain; green

—0<sri<T1; yellow—T1<sri<T2; orange->T2<sri<T3; red  The single FOV estimate is in general prone to geolocation
—T3<sri; where T (with i =1-3) represent three thresholds for and colocation errors. In fact, satellite observations suffer
light, moderate, and intense rainfall, whose values differ dependingfrom considerable geolocation errors. Errors up to two pix-
on the respective catchment (data courtesy of DPC, image obtaineg|s can be in both the along- and the cross-track direction,
using DEWETRA). leading to considerable geographical misplacement. More-
over, additional geolocation uncertainty stems from the par-
allax error. This error increases proportionally with increas-
ing observation angle and altitude of the cloud melting layer,
The OPEMW sri product is validated against the sri prod-and it can contribute to the misplacement of raining areas
ucts from the radar network composite (RNC) and the rainof up to 10km (Antonelli et al., 2010). Additional uncer-
gauge network (RGN). The data set considered here cover@inty is related to the spatial heterogeneity; the so-called
one full year (July 2011-June 2012). Data from the threebeam-filling problem (Kummerow, 1998) refers to the fact
sources were treated for (|) Checking data qua”ty, (||) f|nd|ng that the observed precipitating area does not fill the satellite
space—time colocation, and finally (i) computing statistical FOV homogeneously, due to spatial variability in the sub-

1z

3 Methodology

scores. FOV scale. Finally, sources of inconsistencies between satel-
lite and ground-based observations may be related to erro-
3.1 Space-time colocation neous measurements.

Therefore, measures for data quality control are applied
The OPEMW surface rain intensity product is colocated with quring the spatial colocation procedure. Geolocation errors
the ground-based products so that each satellite FOV is assgre mitigated according to the platform during the produc-
ciated with the corresponding surface rain intensity valuesion of level 1c data. To minimize the inconsistency related
derived from RNC and RGN. The temporal colocation is ob- to heam-filling issues, we perform the following data screen-
tained as follows: ing with respect to RNC. The procedure discards the FOVs
that are only partially covered (less than 3/4 of the total area)
by RNC pixels. Furthermore, it considers only the FOVs that
contain nearly all (95%) clear or rainy RNC pixels (i.e.,
leaving 5 % tolerance with respect to considering completely
— Then, the procedure searches for a RNC sri productlear or rainy FOVs only). Similarly, with respect to RGN the
within 8 min before/after the satellite overpass, which procedure discards the FOVs with less than 10 rain gauge

— Each OPEMW sri product is associated with the time
of the satellite overpass, since it is a nearly instanta-
neous observation.
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measurements falling within the FOV area. Furthermore, itas rainy or non-rainy; however, the high occurrence of non-
considers only the FOVs for which more than 95 % of the rainy FOVs strongly influences this accuracy score. Similarly
associated rain gauges detected either rain or no rain. to this, the HSS indicates the fraction of correctly identified
Instrument errors may affect all the instruments consid-FOVs (as rainy or non-rainy), but after eliminating the frac-
ered here, i.e., satellite microwave radiometers and groundtion correctly identified due to random chance. The ETS in-
based radars and rain gauges. A first quality control (QC) iddicates the fraction of correctly identified FOVs as rainy after
performed by the data providers, which should ensure propeeliminating the fraction due to random chance. The FB score
functioning and calibration. The QC flags provided are usedindicates whether there is a tendency to over- or underesti-
to screen out potentially erroneous data. In addition, we disimate the area subject to rain (bias score >1 or <1, respec-
carded RGN data that resulted as suspicious due to telecontively). Finally, the POD quantifies the ability to detect the
munication problems (wrong coordinates or time/date, re-rainy FOVs only, while the FAR provides a measure for the
dundant data, etc.). Measuring errors related to weather corfraction of non-rainy FOVs that have been erroneously de-
ditions (such as wind, frozen precipitation) are not taken intotected as rainy.
account. In order to prevent unrealistic sri values entering The continuous scores, used for the assessment of sri esti-
the statistical analysis, the procedure discards RGN sri valmation accuracy, are applied to the data set after the “bin-
ues higher than 150 mnth, assumed to be the upper limit ning” following the approach introduced by Ferraro and
for 1 h accumulated precipitation. The same upper limitationMarks (1995). In this approach the reference data (RNC and
is adopted for the instantaneous RNC sri values. In addiRGN) are binned in 1 mmtt sri intervals and the corre-
tion, the radar echoes generated by non-meteorological taisponding satellite estimates are averaged and associated with
gets are discriminated from weather returns by combiningeach bin. The binned analysis is extremely useful, as it mini-
the static clutter map, the Doppler velocity, and the texturemizes match-up errors between ground and satellite obser-
of the reflectivity field (Vulpiani et al., 2012). Additionally, vations and it ensures equal emphasis on the entire range
a median filter is applied to remove residual clutter echoesof sri. The data set after the binning is used to compute
Partial beam-blocking sectors are identified through an emthe mean (AVG), standard deviation (STD), and root-mean-
pirical visibility map (EVM), which is derived directly from squared (RMS) difference, the correlation coefficient (COR),
the radar observations. Measures to mitigate the effects of atand the slope (SLP) and intercept (INT) of a linear fit. Fi-
tenuation are not applied to RNC at the current stage. Radamally, the full data set (i.e., before binning) was processed
attenuation likely causes a systematic underestimation of srito compute the monthly mean and standard deviation of the
The other instrument errors mentioned above are likely toRGN-OPEMW and RNC-OPEMW differences. These num-
produce random effects depending upon time, location, andbers provide quantitative information on the annual varia-
weather conditions; therefore we believe their effects are mittion of the accuracy of OPEMW sri estimate with respect
igated by the temporal and spatial averaging of the analysiso ground references.
described below.

3.3 Statistical scores 4 Results

The validation of the OPEMW sri product against the The_ results of the validation of the OPEMW sri product
) against the ground-based RNC and RGN reference prod-

ground-based RNC and RGN reference products is per- ; .
cts are presented for the 1yr data set under consideration

formed through the assessment. of a number of stat_|st|c July 2011-June 2012). Figure 4 presents the histograms of
scores. Here we present both dichotomous and continuou

o . PEMW, RGN, and RNC sri products for the full data set
scores, used to assess quantitatively the accuracy of rain des . . .
. L . after the colocation procedure. Note that the events with sri
tection and estimation, respectively.

The dichotomous scores are used for the assessment (I)e%rger than 15mmh" have been grouped in the last bin,

. . . o ) i i i <0. 9 [
rain detection accuracy. Rain detection is Boolean, as it as‘?s their number is quite small (<0.0029%), especially for

. . : PEMW (<10). The distributions of the three sri sources
sumes the value of 0 in the case of no rain and 1 in the case AR
. ) . : ook quite similar, except that OPEMW shows more cases
rain detected (i.e., sri>0mnTh). The dichotomous scores

; : at small values (s 1 mm hr1) and fewer cases at large val-
are computed from the contingency table, which reports the . 1 .

. : ues (srx> 15 mm i) relative to the other two sources. Note
number of hit, miss, false alarm, and correct null events of

OPEMW vs. RNC and RGN detections (see Appendix A). also that RG_N data are only available over land, while RNC
. ) data are available both over land and ocean (at ratld 2).
The dichotomous scores include the accuracy, the frequenc

bias (FB) score, the probability of detection (POD), the false§|nce precipitation estimates based on MW radiances are in-

alarm ratio (FAR), the Heidke skill score (HSS), and finally hgrently better over ocean .tha.m' over land, due to less uncer
. . tainty related to surface emissivity, we expect data over ocean

the equitable threat score (ETS). Equations for these scores o : .
. : . o to positively impact on the overall OPEMW-RNC compari-

are given in the Appendix A. The accuracy score indicates

the fraction of all the FOVs that has been correctly identified son.

Atmos. Meas. Tech., 6, 31813196 2013 www.atmos-meas-tech.net/6/3181/2013/



D. Cimini et al.: Validation of satellite OPEMW precipitation product 3187

The following sections report the results of the dichoto-
mous statistical assessment, the continuous statistical asses
ment, and a spatial and temporal analysis.

4.1 Dichotomous statistical assessment

N(OPEMW) [#]

The dichotomous statistical assessment was performed ove
the whole data set, containing more than 650 000 OPEMW-
RGN match-ups and more than 1600000 OPEMW-RNC
match-ups. We assume a detection limit of 0.5mrhh
which means that sri values smaller than this limit are set
to zero. The overall results are reported in Table 1, also di-
vided into four seasons: summer (July—September 2011), fall
(October—December 2011), winter (January—March 2012),
and spring (April-June 2012). Considering all data, the ac- 0 1 2 3 4 5 8 7 8
curacy score shows that OPEMW correctly identifies most
of the FOVs as rainy or non-rainy (accuracy of 98 % for both
RGN and RNC). However, the accuracy score is heavily in-
fluenced by the high occurrence of non-rainy FOVs (96 and
98 % for RGN and RNC, respectively), as previously antici-
pated. The fraction of correct detection after eliminating the
portion due purely to random chance is given by the HSS and
ETS scores, respectively considering or not the correct null 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15
events (no rain). The perfect value for HSS and ETS is 1.0, Surtace rain intensity fmmih]

while here these get to HSS0.42 (0.45) and ETS-0.27 Fig. 4. Histograms of OPEMW (top), RGN (middle), and RNC

(0-29) Wlth respect t_o RGN (to RNC). The perfect VaIL_Je for (bottom) sri products (vertical axis in log scale). Values larger than
FB score is 1.0, while here it becomes a bit larger with re- 15 mn1 are grouped in the last bin.

spect to both RGN and RNC, indicating that OPEMW has
a tendency to slightly overestimate the precipitating areas.
As a consequence, the FAR is rather high (64 %), while the
POD is within 55 % (60 %) for RGN (RNC). Table I also re-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

N(RGN) [#]

N(RNC) [#]

ports the dichotomous scores computed by breaking the dat: k 7 /
set into the four seasons introduced above, thus providing osef° \_,_ AR .
information on the seasonal behavior of the OPEMW perfor- .| NN ) IONCT oo
mances. All the scores indicate that performances better thar < > \ . /
the annual average are found for summer, fall, and spring, *7| -\ "\ __\//
while substantially worse than average for the winter sea- s A

son. In particular, the low values for POD and HSS together 4

with the high values for FAR and FB seem to suggest that g% \\/

i
7’6’_ |
OPEMW tends to overestimate the precipitating areas during 04
winter. 03
Note that the quantitative values of the above scores de-
pend upon the assumed sri detection limit. For example,

Fig. 5 shows the monthly mean POD as computed using three
different detection limits (0.5, 1.0, and 5.0 mm) with re-

[[—1.0

—05

—5.0

spect to either RGN or RNC. Figure 5 confirms the seasonal JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN

behavior of OPEMW estimates and the performance degral-:_g 5. Monthly POD as computed using three detection thresholds
: . . : 1g. o. Yy u usi I .

dation during the Wmt?r season (with respect to bOth RGN0.5 (black), 1.0 (blue), and 5.0 (red) mm Solid and dashed lines

and RNC). The behavior, however, becomes less evident as . .

he d ion limit i nall ideri h hol indicate OPEMW results as compared with RGN and RNC, respec-

the detection limit increases. |0:|na y(’) Con_S| erln.g the who etively. The value for RGN at 5 mmht threshold is missing in Jan-

data set, the POD reaches 60 % (66 %) with a sri threshold of,4ry que to insufficient data points.

1 mmh L, while it reaches 83 % (88 %) with a sri threshold

of 5mm ! for RNC (RGN). This demonstrates the increas-

ing OPEMW detection skills as the rainfall becomes more

intense.
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Table 1. Results of the dichotomous statistical assessment for OPEMW sri product with respect to RGN (blue) and RNC (red) products.

RGN \ RNC
Sum. Fall Win. Spr. All| Sum. Fall Win. Spr. Al

Acc. 099 098 096 097 098 099 099 097 098 0.98
HSS 046 054 018 054 042 049 058 0.26 057 045
ETS 030 037 010 037 0.2f 033 041 0.15 040 0.29
FB 199 097 344 108 154 1.73 129 281 108 1.10
POD 0.70 055 044 057 05p 0.67 0.67 053 0.60 0.60
FAR 065 044 087 047 064 061 048 081 045 0.64
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Fig. 6. Top panels: percentage histograms of binned analysis for OPEMW sri against RGN (left) and RNC (right) sri products. Bottom
panels: standard deviation of OPEMW sri data falling into each 1 miidin of RGN (left) and RNC (right). Blue and red bars indicate all
and hits-only data, respectively.

4.2 Continuous statistical assessment available satellite estimates decreases. In particular, we lim-
ited the analysis to bins with a number of satellite estimates
As already mentioned, the continuous statistical assessmetarger than 5, causing the sri range to be bound in the 0-15
was applied to the data set after the “binning” following the mm h~1 range. Figure 6 also shows the standard deviation of
approach in Ferraro and Marks (1995). The data sets in FigOPEMW sri data falling into each bin, either considering all
4 have been processed such that the reference data, eitheéata or hits only. This standard deviation increases with sri
RNC or RGN sri products, are binned in 1 mmitsri inter-  for the first few bins and then it becomes nearly constant at
vals, and the corresponding satellite estimates are averaged4 mm L. The results of the binning analysis are shown
for each bin and the averaged OPEMW sri value is associin Fig. 7, where we compare OPEMW sri estimates against
ated with that bin. We choose 1 mmhbins to be consis- both RGN and RNC for the entire year under consideration.
tent with Di Tomaso et al. (2009), and thus produce resultsThe results are presented considering all data and hits only,
that are directly comparable. Larger sri bins or even rainfallwhose distribution and deviation are shown in Fig. 6. The
classes (e.g., light, moderate, heavy) could have been chddinned scatter plots show a reasonably good correlation be-
sen, though we do not expect the conclusions to be greatljween OPEMW and RGN/RNC sri products. However, it is
affected. The results of the binning are shown in Fig. 6 innoticeable that OPEMW tends to slightly overestimate lower
terms of percentage histograms, i.e., the percentage of a#iri values and, conversely, underestimate larger sri, with a
data that fell into each bin. Clearly, considering all the match-hinge point roughly around 6-7 mnth Up to 7mm 1
up data, including non-raining FOVs, a large portiong0—  OPEMW is well correlated with the ground reference, es-
70 %) falls in the first bin. Conversely, a more balanced his-pecially with RGN, while the scatter increases substantially
togram is obtained when considering hits only (i.e., rainingfor sri >10 mm i, likely due to the low number of cases (as
pixels correctly detected). In any case, the number of satellitsseen in Fig. 6). Overall, the mean difference is within 1.2—
estimates falling into each bin decreases drastically with in-3.3mmt! and the STD is within 2.7-3.5 mn7h, while
creasing sri values. Accordingly, the binning analysis is lesghe correlation is within 0.8-0.9. The agreement in terms of
and less reliable as the sri value increases and the number &MS is better with RNC than RGN. The bias for both RGN
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Binned scatter plot for 201107-08-09-10-11-12-01-02-03-04-05-06 mhsl1ic Binned scatter plot for 201107-08-09-10-11-12-01-02-03-04-05-06 mhslic
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Fig. 7. Scatter plot of binned analysis for the 1 yr period under analysis (July 2011-June 2012)aXé®=report the OPEMW sri product,
while thex axes report RGN sri (left) and RNC sri (right) products. Blue markers indicate results using all data, while red crosses indicate
results considering hits only. The following main statistics are shown: the number of available bins (N), the mean (AVG), standard deviation
(STD), and root-mean-squared (RMS) difference, the correlation coefficient (COR), and the slope (SLP) and intercept (INT) for a linear fit.
Numbers after the-/— sign indicate the 95 % confidence interval. Error bars indicate one STD of OPEMW sri values within each bin.

and RNC is lower when considering hits only. However, the plex orography causes, apart from substantial ground clutter,
results above are influenced by larger sri values, which agait range-dependent underestimation due to beam divergence
are less reliable due to much lower statistical significanceand altitude (Marzano et al., 2004). Mitigation measures are
Nevertheless, there may be reasons for the OPEMW undereurrently under testing at DPC, but are not applied to the cur-
estimation at high sri related to the precipitation mechanismrent version of RNC.

Although the synthetic training of the PEMW algorithm also

accounted for extreme scenarios (Di Tomaso et al. 2009)4.3 Spatial-temporal assessment

Fig. 7 seems to suggest that it works better for stratiform (rel-

atively lower) rather than for convective (relatively higher) The spatial and temporal distribution of the retrieval uncer-
rainfall. The analysis of the influence of precipitation type tajnties are also important to characterize the OPEMW per-
on algorithm performances shall be the object of future ré-formances, especially over a territory with complex orogra-
search. , o . phy and large seasonal variability such as Italy. To investi-
The same analysis, but dividing the data set into the fourgate this, we have divided the geographical area in Figs. 1-3
seasons introduced earlier, is repeated in Figs. 8 and 9 againgfg 5 14 x 14° longitude—latitude grid with 0Lstep and
RGN and RNC, respectively. In Fig. 8 we see that OPEMW o mpyted for each pixel the mean absolute difference be-
agrees quite well with RGN in summer, winter, and spring, yeen OPEMW and ground-reference (either RGN or RNC)
showing mean difference within 1.1mmh STD within g1 products for each of the four seasons introduced above.
1.9mmh, RMS within 2.1 mm?, and correlation greater The results are shown in Figs. 10 and 11 with RGN and RNC
than 0.9. However, the range of valid sri is limited to less regpectively as reference. Note that, as anticipated, Fig. 11
than 10mm h* by the low occurrence of higher sri values. ghows that the agreement is generally better over ocean than
The r.esullts for the fall season resemble. those for the wholg)er 1and. Figures 10 and 11 do not seem to show any par-
year in Fig. 7. Note that fall is characterized by high occur-(icyjar geographical-seasonal effect, except for an increase
rence of heavy precipitation over Italy. Orographic precipi- iy mean absolute difference over the Alps and along the
tation and mesoscale convective systems play an importariorthern Apennines during winter. There are likely a num-
role due to steep slopes in the vicinity of large coastal ar-per of reasons concurring to this effect. In fact, precipitation
eas, often causing localized hailstorms with cluster organizegyer the mountains is often snow during winter, which in-
cells (Ferretti et al., 2013). Similarly, Fig. 9 shows results ¢reases the uncertainty of ground-based measurements. In
with respect to R'NC. Here differences between the four Seaact, tipping bucket rain gauges often get clogged by snow,
sons are less evident. Note, however, that OPEMW tends 19,4 even those provided with a heating system can only mea-
overestimate small sri values with respect t0 RNC (Fig. 9),gre the water equivalent of frozen precipitation, which is
but not so much with respect to RGN (Fig. 8). We attribute affected by substantial measuring errors (e.g., evaporation
this to the underestimation of the sri field by RNC related to loss). At the same time, radar quantitative precipitation esti-
the complex orography of the Italian territory; in fact com- mation is degraded in mountainous areas, due to (i) the more
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Binned scatter plot for 201107-08-09 mhsl1c Binned scatter plot for 201110-11-12 mhslic
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Fig. 8. Scatter plot of seasonal binned analysis with respect to RGN. Clockwise from top-left panel: summer (July-August-September 2011),
fall (October-November-December 2011), winter (January-February-March 2012), and spring (April-May-June 2012). Markers and statistics
are as in Fig. 7. Error bars have been omitted to improve figure readability.

complex orography, causing enhanced beam blockage anident during winter, but it seems to be present during the
ground clutter, and (ii) the presence of snow/ice hydrome-other seasons as well. Since there is no hint of this feature
teors, adding uncertainty to the assumptions concerning paiin Fig. 11, we attribute it to larger uncertainties affecting the
ticle size, distribution, and phase (Germann et al., 2006). Theain gauge network deployed in that region.
increased difference may also be caused by the presence of Finally, in order to quantify the accuracy of the sin-
snow on the ground, which is a well-known source of un-gle FOV estimate and to detect its seasonal features, we
certainty for passive microwave estimates of rainfall. As de-used the whole match-up data set (more than 650000 for
scribed in Di Tomaso et al. (2009) the PEMW algorithm ap- OPEMW-RGN and more than 1 600 000 for OPEMW-RNC)
plies methods to avoid snow on the ground being detecteénd computed the monthly mean difference between ground-
as rainfall, based on the observations from the channels lesgference (either RGN or RNC) and OPEMW sri products.
sensitive to ground emissivity. The effects of these methodsThe results are shown in Fig. 12, where the error bars in-
were shown by Di Tomaso et al. (2009), concluding that thedicate the STD of the monthly mean difference. Figure 12
number of false alarms is reduced considerably, but not comshows that, with respect to RGN, OPEMW tends to under-
pletely set to zero. The above reasons concur with the inestimate sri from September to May, while the opposite is
creased mean absolute difference over the main mountaithe case in June, July, and August, though the monthly mean
ridges, as well as to the relative larger FAR and smaller PODdifference remains withia: 1 mm 1. Conversely, with re-
reported in Table 1 and Fig. 4 during winter. spect to RNC, OPEMW seems to overestimate sri through-
In Fig. 10 we also notice larger mean absolute differenceout the year, with monthly mean difference withi¥?2 and
values over Sicily than for the rest of Italy. This is more ev- 0Ommh 1. These results are likely influenced by the large
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Binned scatter plot for 201107-08-09 mhsl1c Binned scatter plot for 201110-11-12 mhsl1c
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Fig. 9. Scatter plot of seasonal binned analysis as in Fig. 8, but with respect to RNC. Clockwise from top-left panel: summer, fall, winter,
and spring. Markers and statistics are as in Fig. 7. Error bars have been omitted to improve figure readability.

amount of relatively low sri dominating the statistics (see more than 650 000 OPEMW-RGN match-ups and more than
Fig. 6), for which OPEMW agrees quite well with RGN but 1600000 OPEMW-RNC match-ups. The distribution of sri
it is larger than RNC, as seen already in Figs. 7-9. As al-shows that OPEMW generates more cases at smaller values
ready anticipated, this feature is mainly related to the com<{sri~1mmh1) and fewer cases at larger values (sril5
plex orography of the Italian territory. The standard deviationmm h~?1) relative to the two ground-based references.
of the monthly mean difference does not seem to show an ev- The assessment of OPEMW rain detection is performed
ident seasonal behavior, with values between 2 and 4mmh over the whole data set, showing 98 % accuracy in correctly
(except for March 2012). identifying rainy and non-rainy FOVs. The FB score is larger
than unity, indicating that OPEMW has a tendency to slightly
overestimate the precipitating areas. Consistent results are
5 Conclusions obtained against RGN and RNC. As a consequence, the FAR
is rather high (64 %), while the POD is 55 % (60 %) with re-
One year of surface rain intensity (sri) data produced byspect to RGN (RNC). Taking RGN as reference, OPEMW
the operational procedure OPEMW developed at IMAA- shows an increase (with respect to random chance) in the
CNR has been validated against ground-based referencgbility to detect rainy and non-rainy FOVS (HS9.42) as
sri products from rain gauge (RGN) and weather radarwell as in the ability to detect rainy FOVs only (EES0.27).
(RNC) networks deployed over the lItalian territory. The Similar results are obtained when taking RNC as reference
data set spans from July 2011 until June 2012, exploit-(HSS=0.45 and ETS=0.29). When breaking the data set
ing more than 3000 rain gauges and 20 weather radarsnto seasons, all the dichotomous scores indicate perfor-
Ground-based observations have been temporally and spanances better than average in summer, fall, and spring, while
tially colocated with the satellite observations for a total of
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Months: 201107 201108 201109 (all data) Months: 201110 201111 201112 (all data)
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Fig. 10. Maps of seasonal mean absolute difference with respect to RGN. Clockwise from top-left panel: summer (July-August-September
2011), fall (October-November-December 2011), winter (January-February-March 2012), and spring (April-May-June 2012). The vertical
color bar is in mm i1, The black arrow in the lower-left panel indicates Sicily.

substantially worse than average in the winter season. Lowl0 % when considering only the hit events. Better agreement
POD, HSS, and ETS values together with high FAR and FBis found with RNC rather than RGN; this result is partially
values all seem to suggest that OPEMW tends to overesdue to the smaller differences over ocean, though it is also
timate the precipitating areas during winter. These resultsstrongly influenced by the larger and statistically less sig-
including the seasonal trend, are comparable with numbersificant sri values. When breaking the data set into seasons,
found in Ebert et al. (2007), though those were obtained forthe estimation accuracy does not show substantial difference
24 h accumulated rain. It is also noted that the OPEMW de-from the results above, except that intense rainfall events are
tection skills become better for increasing rainfall intensity pretty much limited to the fall season. For low to moder-
(POD up to 66 and 88% for detection limit set to 1 and ate sri values (sti <8 mnTH), OPEMW agrees well with
5mm L, respectively). RGN but tends to overestimate RNC. The latter result may
The assessment of OPEMW estimation accuracy demonbe explained by the likely RNC sri underestimation due to
strates reasonable agreement with RGN/RNC sri productshe combined effect of attenuation and complex orography.
However, OPEMW tends to slightly overestimate lower sri  We also investigated the spatial and temporal behavior of
values, and conversely to underestimate larger sri, with ahe mean absolute difference between OPEMW and ground-
hinge point roughly around 6-7 mmth Up to 7mmh? based reference sri products. Two geographical-seasonal fea-
OPEMW is well correlated with the ground reference, es-tures are noticed: (i) mean absolute difference larger than
pecially with RGN; the dispersion increases substantially foraverage over the Alps and northern Apennines during win-
sri>10mm i, likely due to the low number of cases with ter, and (i) larger mean absolute differences over Sicily than
rainfall higher than 10 mmht. Taking RGN (RNC) as ref-  for the rest of Italy with respect to RGN. The first feature is
erence, the mean difference is 3.3 (2.2) mmhhthe stan-  consistent with the scores in Table 1 and the rain detection
dard deviation is 3.4 (2.7) mnTh, and the correlation is results above. We attribute it to the combination of larger un-
0.8 (0.9). In terms of RMS difference, results improve by certainty in both satellite estimates (residual spurious effects
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Months: 201107 201108 201109 (all data) Months: 201110 201111 201112 (all data)
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Fig. 11.As in Fig. 7 but with respect to RNC. Clockwise from top-left panel: summer, fall, winter, and spring. The vertical color bar is in
mmh1.

8 ‘ , caused by snow on the ground) and ground-based measure-
zgﬁg ments (complex orography, frozen precipitation) in mountain
T regions during winter. Conversely, we attribute the feature
over Sicily to larger errors affecting the rain gauges deployed
I T in Sicily rather than to inaccurate satellite estimates, though

I I we were not able to retrieve information about possible in-
strumental differences.

A Finally, we investigate the monthly mean difference be-
@ T Q tween OPEMW and ground-based reference sri products.
e T Lol i With respect to RGN, the monthly mean difference remains

T+ 1 & = -l L within £1 mm ! throughout the year. OPEMW underesti-
S | 1 + L mates RGN from September to May, while the opposite is the
T case in June, July, and August. Conversely, OPEMW seems
to overestimate RNC throughout the year, with monthly
‘ ‘ . - mean difference ranging from 0 te&2 mm L. These results
JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN are likely influenced by the large amount of relatively low
sri dominating the statistics, for which OPEMW agrees quite
Eig. 12. Monthly mean diﬁerepce (circles) and its standard devia- el with RGN but is larger than RNC. The systematic dif-
tion (error bars) of OPEMW sri prpduct W|tr_1 respect to RGN (blue) ference between OPEMW and RNC is mostly attributed to
;ﬁgh‘q?ﬂggg;’gﬁwts' Mean difference is computed as RGN (Orthe likely systematic underestimation of sri by RNC caused
' by radar attenuation issues. The STD of the monthly mean
difference do not seem to show an evident seasonal behav-
ior, with values between 2 and 4 mmfor both RGN and
RNC.
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In conclusion, the validation effort presented here extends
the results of Di Tomaso et al. (2009) — which validated the
PEMW algorithm limited to a few case studies — to a full HSSXH*N —He)/(5-He),
year of operational OPEMW sri products. The rain detectionindicating the fraction of correctly detected FOVs (as rainy or
and estimation performances over the lItalian territory andnon-rainy) but after eliminating the fraction correctly identi-
four seasons indicate that the OPEMW sri product is suit-fied due to random chance. Similarly to this, the ETS is de-
able for the deployment in an integrated system supportindined as
numerical hydrometeorology and flood-hazard-alert systems
However, discrepancies with respect to ground-based refer'—ETSz(H'He)/(H+M+F'He)’
ences have been identified and discussed. Besides the uncéndicating the fraction of correctly detected FOVs (as rainy),
tainty attributed to the ground-based reference observationgdjusted for the number of hits that could be expected due
we identified the following features for OPEMW: (a) large purely to random chance. ETS is more severe than HSS since
false alarm ratio and mean absolute error during winter, andt does not take into consideration the corrected negatives.
(b) considerable underestimation of intense rainfall at FOVThe ETS is commonly used as an overall skill measure by
scale (sri>10 mmht). These features represent the startingthe numerical weather prediction community, with accuracy,
point of our ongoing and future work to improve the overall FB, POD, and FAR providing complementary information
performances of OPEMW. In fact, solutions to mitigate theseon bias, misses, and false alarms.
features are under study, as for example an adaptive screen-
ing designed to remove the residual contamination by snow
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