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Abstract. The polarized phase function of atmospheric
aerosols has been investigated for the atmosphere of Zanjan,
a city in northwest Iran. To do this, aerosol optical depth,
Ångström exponent, single-scattering albedo, and polarized
phase function have been retrieved from the measurements
of a Cimel CE 318-2 polarized sun-photometer from Febru-
ary 2010 to December 2012. The results show that the maxi-
mum value of aerosol polarized phase function as well as the
polarized phase function retrieved for a specific scattering
angle (i.e., 60◦) are strongly correlated (R = 0.95 and 0.95,
respectively) with the Ångström exponent. The latter has a
meaningful variation with respect to the changes in the com-
plex refractive index of the atmospheric aerosols. Further-
more the polarized phase function shows a moderate nega-
tive correlation with respect to the atmospheric aerosol opti-
cal depth and single-scattering albedo (R =−0.76 and−0.33,
respectively). Therefore the polarized phase function can be
regarded as a key parameter to characterize the atmospheric
particles of the region – a populated city in the semi-arid area
and surrounded by some dust sources of the Earth’s dust belt.

1 Introduction

Physical and optical properties of the atmospheric aerosols
are from the major uncertainties in the global climate
changes (IPCC, 2007). In order to reduce the lack of exten-
sive and reliable information about aerosols and their im-

pacts on atmosphere, they have been widely investigated
by ground-based measurements and satellite remote sens-
ing suites (Heintzenberg et al., 1997; Kaufman et al., 2002).
Ground-based measurements are ideal for reliable and con-
tinuous derivation of local aerosol optical and physical prop-
erties due to negligible effects of surface background on the
measurements, and satellite measurements provide less ac-
curate information about aerosols but in a global coverage
(Holben et al., 1998; Dubovik et al., 2002). Satellite remote
sensing and ground-based measurements are complementary
methods to study aerosols properties and their effects on
climate. They have been investigated by using active (e.g.,
spaceborne and ground-based lidars) (Bösenberg et al., 2003;
Winker et al., 2007) and passive (e.g., spaceborne spectrom-
eters and ground-based sun-photometers) instruments (Hol-
ben et al., 1998; Prospero et al., 2002; Ginoux et al., 2012).

Iran is located within Earth’s so-called dust belt. Many
cities in the western, eastern, southern, and central parts of
this country have been subjected to dust events of different
strengths, especially during the recent years. Previous ob-
servations show that the Tigris–Euphrates basin in the west,
the Arabian Peninsula in the south and southwest, and the
arid region between the Caspian and Aral seas in the north
are the main external sources for the observed dust activi-
ties in this region (Prospero et al., 2002; Leon and Legrand,
2003; Goudie et al., 2006; Bayat et al., 2011; Abdi et al.,
2011, 2012; Sabetghadam et al., 2012; Masoumi et al., 2013).
There are also some minor active dust sources inside the
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Iranian Plateau (Abdi et al., 2011, 2012; Masoumi et al.,
2013). Zanjan, a city in northwest Iran, is located in a moun-
tainous region at 36.70◦ N, 48.51◦ E, and 1800 m above the
mean sea level (a.m.s.l). Based on the recordings of Zanjan’s
Meteorological office, the average of sunlight hours for this
city is more than 7 h per day (Samimi et al., 1997). Consid-
ering the geographical location as well as the climatological
conditions and lack of measured data for the region, ground-
based measurements in this city provide valuable information
on the dust activities as well as aerosol types and their optical
and physical properties.

Aerosol classification using ground-based remote sensing
techniques can help to improve the estimation of aerosol ra-
diative impact on climate and the accuracy of satellite re-
trievals (Dubovik et al., 2002; Cattrall et al., 2005; Giles
et al., 2012). Various methods based on aerosol optical and
physical properties have been used to classify different types
of aerosols from ground-based sun-photometer (SPM) mea-
surements. The extinction of sunlight by aerosols when it
passes vertically through the atmosphere from the top of
the atmosphere to the surface is called the aerosol optical
depth (τa). This parameter and its spectral dependence with
respect to wavelength (i.e., the Ångström exponent,α) are
the commonly used parameters to distinguish the dominant
aerosol types (e.g.,Toledano et al., 2007; Kalapureddy et al.,
2009; Bayat et al., 2011; Boselli et al., 2012; Masoumi et al.,
2013). Studies (Gobbi et al., 2007; Basart et al., 2009) have
shown that the derivative ofα or the spectral difference of
α-wavelength pairs together withτa and the particle’s ef-
fective radius can be used to infer different aerosol types.
In other works, variations of aerosol single-scattering albedo
(the ratio of scattering to extinction coefficients of particles,
ω0) with respect to their sizes have been used to distinguish
aerosol types (Omar et al., 2005; Mielonen et al., 2009; Lee
et al., 2010; Russell et al., 2010; Giles et al., 2012). As a
result of the mentioned methods,τa, α, ω0, and size distri-
butions retrieved from non-polarized measurements of SPM
are commonly used to categorize different types of aerosols,
but the polarization ones are mainly neglected.

Polarized sky radiance resulting from interaction between
sunlight and atmospheric particles strongly depends on the
presence of aerosols in the atmosphere, and can be mon-
itored by looking at the aerosol polarized phase function,
qa(2) (Vermeulen et al., 2000; Li et al., 2004, 2006). The
qa(2) is indicative of the linear polarization of the scattered
light that has been generated by the atmospheric aerosols (Li
et al., 2004). Based on the relationship between the polar-
ized sky radiance measured by SPM and its theoretical es-
timation from applying the Mie scattering theory,Li et al.
(2004) showed thatqa(2) is sensitive to the aerosol size dis-
tribution and aerosol complex refractive index. Therefore,
qa(2) has been introduced as another effective and unique
aerosol parameter for the accurate retrieval of the aerosols’
physical parameters (Li et al., 2004, 2006). In this work,
both non-polarimetric and polarimetric measurements of a

Cimel CE318-2 SPM at 870 nm have been used to retrieve
ω0 and qa(2) of the aerosols for the atmosphere of Zan-
jan. These parameters have been retrieved from recordings
of sun-scattered radiance measurements at 870 nm in the so-
lar principal plane (SPP) mode of the sun-photometer in the
period from February 2010 to December 2012. The SPP is a
sweep of sky in a plane that includes the sun and the zenith
direction. It should be mentioned that 870 nm has been cho-
sen because it is the only polarized measurement channel on
the SPM. Here, we are looking for potentials of the polarized
phase function in categorizing of different aerosol types in
the atmosphere of Zanjan, a populated city (about 500 000
people) (Fathi et al., 2010) in a semi-arid area. To charac-
terize the atmospheric aerosols, we looked at the correlation
betweenqa(2) andα as well asqa(2) andτa. Also the cor-
relation betweenqa(2) andω0 has been considered.

The rest of the manuscript is organized as follows: in
Sect. 2, the instrumentation and recording data are described.
The retrieval algorithm of aerosol parameters is explained in
Sect. 3. The results obtained are discussed in Sect. 4, and
finally the conclusions of this work are presented in Sect. 5.

2 Instrumentation and data

In this work, we have investigated the data recorded by
a polarized sun-photometer (Cimel CE318-2) from Febru-
ary 2010 to December 2012. The SPM records the sun
and sky radiances at five wavelength channels, 440, 675,
870, 936, and 1020 nm, where the 870 nm channels consist
of one non-polarized and three polarized channels to mea-
sure the Stokes parameters (Holben et al., 1998). The SPM
is installed at the Institute for Advanced Studies in Basic
Sciences, IASBS, (36.70◦ N, 48.51◦ E, and 1800 m a.m.s.l),
which from now on we will refer to as the IASBS site. The
SPM in the IASBS site has been registered on the AERONET
since 5 December 2009, and has been calibrated under the
protocols of the network for the mentioned period. It should
be added that from 9 October 2010 to 2 March 2011, and
18 January 2012 to 3 August 2012, the SPM was sent for
calibration1.

We used the sun mode data at 440, 675, and 870 nm wave-
length channels to obtainτa andα. Also the SPP sky radiance
measurements at 870 nm were used to retrieve aerosolω0 and
qa(2). It should be added that the optical absorption of the
atmospheric gasses at the polarized channel of the SPM at
870 nm is almost minimum in comparison to all other wave-
length channels of the SPM (Holben et al., 1998; Vermeulen
et al., 2000; Li et al., 2006). During the retrieval of the above-
mentioned parameters, most of the cloud-contaminated data
were eliminated using the AERONET cloud-screening algo-
rithm (Smirnov et al., 2000). After applying the screening

1The calibrations were carried out in the Photon Group, Labora-
toire d’Optique Atmosphérique (LOA) – UFR de Physique Univer-
sité des Sciences et Technologies de Lille (USTL) – CNRS.
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algorithm, some contaminations still remained in the data
due to the existence of inhomogeneous scattered clouds.
These have been identified and removed by fitting a robust
locally weighted regression to the radiance measurements in
the SPP mode (Li et al., 2004). After applying the above
procedure, a total of 305 measurements were left, for which
qa(2) of each them was retrieved, and its potential on classi-
fication of the aerosols in Zanjan’s atmosphere looked for.

3 Method

To investigate the strength of the polarized phase function in
categorizing the aerosols in the atmosphere of Zanjan,τa, α,
ω0, andqa(2) were retrieved from polarized SPM measure-
ments during a 26-month period, as mentioned in the pre-
vious sections.τa and α are two important parameters for
the atmospheric aerosols that can be obtained from the sun
mode measurements of the SPM. Theτa is a measure of the
total amount of the atmospheric aerosols and can be derived
after subtraction of the molecular optical depth from the to-
tal atmospheric optical depth at each wavelength (440, 675,
and 870 nm) channel (Bodhaine et al., 1999). In retrievingτa,
the ozone optical depth at 675 nm and NO2 absorption opti-
cal depth at 440 and 675 nm should be taken into account
(Burrows et al., 1999; Boersma et al., 2004). α was retrieved
from a linear fit to variations of logτa with respect to the log-
arithm of the wavelength at 440, 675, and 870 nm. The least-
squares method has been applied to find the best fit over data.
It should be added that the coefficient of determination,R2,
for the linear fit was greater than 0.95 in more than 93 % of
the measurements.

ω0 andqa(2) can be respectively retrieved from the unpo-
larized and polarized sky radiance (L andLp) measurements
in the SPP mode at 870 nm wavelength channels by using the
methods introduced byDevaux et al.(1998) andVermeulen
et al.(2000). The propagation of the solar radiation through-
out the atmosphere can be modeled by solving the vector ra-
diative transfer equation (VRTE) for a multilayer plane par-
allel atmosphere, where each layer is specified by its optical
depth, single-scattering albedo, and scattering matrix (Chan-
drasekhar, 1950; Zdunkowski et al., 2007). For randomly ori-
ented particles, in equal number to their mirror particles, the
Stokes vector of the scattered light can be obtained by trans-
forming its components for the incident light by means of


Is
Qs
Us
Vs

 =
�eff

4π


P11(2) P12(2) 0 0
P12(2) P22(2) 0 0

0 0 P33(2) P34(2)

0 0 −P34(2) P44(2)




I0
0
0
0

 , (1)

where2 is the scattering angle, and�eff indicates the ef-
fective solid angle associated with the scattering angle, and
can be obtained by the normalization of the phase func-
tion, pa(2) (i.e., theP11(2) term) (Van de Hulst, 1980;
Zdunkowski et al., 2007). Here, the aerosol polarized phase

function, qa(2), stands for theP12(2) term. For spheri-
cal particles,P11(2) = P22(2) andP33(2) = P44(2), the
Mie scattering theory can be used to calculate different ele-
ments of the scattering matrix (Liou, 2002). Also, Dubovik
et al.(2006) developed a code to calculate these elements for
the shape mixtures of randomly oriented spheroids with the
axis ratio ranging from∼ 0.3 (flattened spheroids) to∼ 3.0
(elongated spheroids) and the size parameter ranging from
∼ 0.012 to∼ 625 (Dubovik et al., 2006). We also compared
these two techniques for our measurements to investigate
how much the retrieved values ofqa(2) depend on the shape
consideration for the aerosols.I , Q, U , andV are the Stokes
parameters, and the subscript “s” refers to the scattered light.
Since the incident solar light at the top of the atmosphere is
unpolarized, its Stokes parameters would be represented by
[I0, 0, 0, 0]. At the ground level,L andLp are respectively
equal toIs andQs, which can be extracted from the unpo-
larized and polarized measurements of the SPM at 870 nm in
the SPP mode (Vermeulen et al., 2000; Li et al., 2007, 2009).
The total and polarized sky radiance in the SPP measure-
ment mode can be estimated by solving the VRTE and us-
ing the successive order of scattering method (Siewert, 1982;
Deuzé et al., 1989; Dubovik et al., 2000; Lenoble et al., 2007;
Zdunkowski et al., 2007). Table1 shows the required param-
eters that should be used in VRTE to estimate theL andLp.
Also, the corresponding measurement or retrieval technique
for each parameter is presented in Table1.

Using the obtainedL andLp, one may retrieveω0, pa(2),
and qa(2) (Devaux et al., 1998; Vermeulen et al., 2000).
For simplicity from now on we remove the argument2 and
write pa(2) andqa(2) as simplypa, andqa. In this method,
the contributions of ground reflectance, molecular scattering,
and aerosol multiple scattering have been eliminated from
the measurements to retrieve the single-scattering properties
of the atmospheric aerosols (Vermeulen et al., 2000). Since
the ratio (single scattering) / (total scattering) of the sky radi-
ance is nearly the same for measurements and calculations,
the relationship between the actual and estimated (marked
with a superscript *) sky radiance is given by

ω0

ω∗

0
pa =

L − (L∗
− L∗

0)

L0
∗

p∗
a +

L − L∗

L0
∗

τm

ω∗

0τa
pm, (2)

whereL is the measured andL∗ the estimated total sky ra-
diance.L∗

0, p∗
a, pm, andτm are the estimated sky radiance in

the absence of ground reflection, the estimated aerosol phase
function, the molecular phase function, and the molecular op-
tical depth, respectively (Vermeulen et al., 2000). Consider-
ing the normalization condition forpa, i.e.,

π∫
0

ω0pasin2d2 = 2ω0, (3)
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Table 1.The required parameters for solving VRTE to calculate theL andLp..

Parameter Measurement or retrieval technique Reference

τa(870 nm) Sun mode recordings Holben et al.(1998)

α Retrieved fromτa at 440, 675, 870 nm Toledano et al.(2007)

Surface pressure recorded data
τm from on site weather station Bodhaine et al.(1999)

(CIMEL, model: ENERCO 408p)

Solar zenith angle Astronomical Almanac’s algorithm Michalsky(1988)

Ground surface reflectance MODIS surface reflectance productLucht et al.(2000)

Molecular scattering matrix Rayleigh scattering theory Liou (2002)

Aerosol scattering matrix Spherical model Liou (2002)
Spheroid model Dubovik et al.(2006)

ω0
Spherical model Liou (2002)
Spheroid model Dubovik et al.(2006)

and Eq. (2) will lead to

2ω0

ω∗

0
=

π∫
0

(
L − (L∗

− L∗

0)

L∗

0
p∗

a +
L − L∗

L∗

0

τm

ω∗

0τa
pm)sin2d2, (4)

where 2 is the scattering angle. The right-hand side of
Eq. (4) has been calculated forω∗

0 = 0.6, 0.7, 0.8, 0.9, and 1.0,
and then an interpolation has been applied to the obtained
values to converge the value of the integral to 2, which would
lead toω∗

0 =ω0 on the left-hand side. Replacing the retrieved
value ofω0 in Eq. (2), the measured aerosol phase function
can be retrieved as

pa =
L − (L∗(ω0) − L∗

0(ω0))

L∗

0(ω0)
p∗

a +
L − L∗(ω0)

L∗

0(ω0)

τm

ω0τa
pm. (5)

In the same wayqa can be written as

qa =
Lp

L∗
p(ω0)

q∗
a +

Lp − L∗
p(ω0)

L∗
p(ω0)

τm

ω0τa
qm, (6)

whereq∗
a is the estimated polarized phase function andqm

is the molecular polarized phase function (Vermeulen et al.,
2000). It has already been shown that for a calibrated Cimel
SPM, the uncertainty inτa(870 nm) is±0.01, and the es-
timated total error of the retrievedω0 at 870 nm is about
±0.05. The uncertainty ofqa at 870 nm when 20◦ < 2 <

120◦ is about 10 % (Holben et al., 1998; Devaux et al., 1998;
Vermeulen et al., 2000; Li et al., 2006).

4 Results and discussions

The algorithm that has been used to retrieve the aerosol opti-
cal properties is not sensitive to the particle shape assump-
tions (Li et al., 2006). Figure 1 is a comparison between

the retrieved values ofqa(max) for the mentioned measured
data set in the IASBS site with two different assumptions on
the shape of the aerosols, spheres (blue empty squares), and
spheroids (black solid circles). The Mie scattering theory has
been used to calculateqa(max) for spherical particles by con-
sidering a bimodal log-normal size distribution with 22 bins,
with radii ranging from 0.05 to 15 µm, and the code that was
introduced byDubovik et al.(2006) has been implemented to
retrieve theqa(max) values for the shape mixtures of the ran-
domly oriented polydisperse spheroid model. For spheroid
particles, the calculations have been made for 25 bins of the
spheroid axis ratio ranging from∼ 0.3 (flattened spheroids)
to ∼ 3.0 (elongated spheroids) and for 22 narrow size bins
covering the radii from 0.05 to 15 µm. Figure1 shows that
the calculated results are almost insensitive to the assumed
shapes for the particles. The maximum difference between
the two models’ retrieved values forqa(max) is about 0.030,
which is of the order of the resolution of the retrieval proce-
dure. From now on for the rest of this manuscript, the atmo-
spheric particles have been considered as distributed spheres
of different sizes as mentioned before.

Figure2 shows the correlation between the retrieved val-
ues ofω0 for the IASBS site obtained from the SPP mode
measurements and AERONET results that have been re-
trieved from the almucantar sky recordings at 870 nm. The
retrievedω0 accuracy from both mentioned algorithms de-
pends onτa; that is, the larger theτa, the better the accu-
racy (Devaux et al., 1998; Dubovik et al., 2002). The differ-
ence between the results obtained from the two mentioned
techniques is less than 0.05 for most of the cases. Further-
more, the differences can be due to the time difference of
about 10 min between these two measurement modes as well
as to the different impact of the surface reflectance on their
measurement geometries.
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Fig. 1. Comparison between the maximum values of the retrieved
aerosol polarized phase function,qa(max), for two assumptions
on the shape of the particles, spheres (blue empty squares), and
spheroids (black solid circles).

Aerosol properties includingτa at 870 nm,α (retrieved
from τa at 440, 675, and 870 nm),ω0 at 870 nm, andqa at
870 nm as well as their correlations have been studied in this
work to investigate how the polarized phase function can be
used to characterize the atmospheric aerosols in the atmo-
sphere of Zanjan. Temporal variations of theτa, α, qa, andω0
values appear in Fig.3a–d for the measurement period men-
tioned in Sect. 2.τa reaches its maximum value (∼ 0.60) by
the end of spring, and its lowest value almost in late autumn
(Fig. 3a). The Ångström exponent in Fig.3b also shows an
almost seasonal periodic variation during the year. In May
and June, it reaches its lowest values (∼ 0.07) as an indi-
cation of the existence of large atmospheric particles, and
its highest values are reached in late autumn and early win-
ter. The maximum value of the polarized phase function,
qa(max) in Fig. 3c shows a behavior quite similar to that of
α. Figure3d is somehow close to the mirror image of Fig.3b
and c with respect to the time axis. In other words, parti-
cles with higher values ofω0 (up to 0.99) mostly appear in
late spring and summer, but in autumn and winter, the at-
mosphere is mostly contaminated with particles with lower
values ofω0 (down to 0.90).

It should be noted that the city of Zanjan is located in a
semi-arid area, away from grasslands and forests as sources
of biomass burning aerosols as well as from seas as origins of
marine aerosols. Hence we do not expect to observe biomass
burning and marine aerosols in the region. Therefore, in
agreement with our previous works (Bayat et al., 2011; Abdi
et al., 2011, 2012; Masoumi et al., 2013) urban/industrial and
desert dust aerosols are the main particles in the atmosphere
of Zanjan. Looking back at Fig.3, one can conclude that
increases in the average size of the aerosols decrease their
optical absorption. This can be related to the excess of dust
loading into the atmosphere, especially in spring and summer
times. Also an increase inα and a decrease inω0 in autumn
and winter indicate the existence of urban/industrial aerosols
as the dominant atmospheric particles. However, a mixture
of the above-mentioned two types of aerosols are present in
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Fig. 2. ω0 values retrieved from measurements in almucantar
(AERONET) mode versusω0 extracted from SPP measurements
(our technique), IASBS site, February 2010 to December 2012.

the atmosphere throughout the year. Therefore, the particu-
late matter that may be loaded into the atmosphere of this
area can be categorized into three regimes: the first, dom-
inant urban/industrial aerosols (α > 1.2); the second, domi-
nant desert dust (α < 0.6), especially due to the transfer of
dust from the Tigris–Euphrates basin (Bayat et al., 2011;
Abdi et al., 2011, 2012; Masoumi et al., 2013); and the
last one, a mixture of urban/industrial and dust aerosols (0.6
≤ α ≤ 1.2). These three categories are presented in Table2.
Table2 indicates the minimum, maximum, and mean values
of τa, α, ω0, andqa(max) for each category as well as their
absolute and relative (in percent) occurrence for a total of
305 measurements from February 2010 to December 2012
at the IASBS site. Even though different aerosol types can
be classified usingτa andα (Table2); however, referring to
columns 10–12 of Table2, one can see thatqa(max) also well
categorizes the above-mentioned aerosol types.

Figure4 depicts variations ofqa versus the scattering angle
for two measurements with the sameτa but differentα. The
larger (smaller)α = 1.49 (α = 0.78) corresponds to the larger
(smaller) value ofqa(max) = 0.22 (qa(max) = 0.09). Figure4
is an example of such comparisons, and other measurements
also show similar behavior. To have a better understanding of
this behavior, the maximum values ofqa are plotted against
α in Fig. 5, and a robust linear fit has been applied to them.
As can be seen from Fig.5, a positive correlation (correla-
tion coefficientR = 0.95) exists between these parameters.
The color bar in Fig.5 corresponds toτa values on the loga-
rithmic scale. Also, the figure shows that asτa increases, the
average size of the atmospheric aerosols also increases, but
qa(max) has a decreasing trend.

In Fig. 6, variations ofqa at different scattering angles
have been compared for atmospheres with the sameα but
different τa. These results illustrate a moderate influence of
the variations ofτa on qa. Figure7 depicts the variations of

www.atmos-meas-tech.net/6/2659/2013/ Atmos. Meas. Tech., 6, 2659–2669, 2013
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Table 2. Minimum (min), maximum (max), and mean values ofτa, α, ω0, andqa(max) for 305 selected measurements in each dominant
category of aerosols in Zanjan’s atmosphere, February 2010 to December 2012, IASBS site.

τa α ω0 qa(max) Occurrence number
min max mean min max mean min max mean min max mean Absolute Relative (%)

Urban industrial (α > 1.2) 0.02 0.17 0.06 1.21 1.79 1.43 0.71 0.99 0.86 0.13 0.35 0.23 81 27
Desert dust (α < 0.6) 0.06 0.59 0.24 0.07 0.60 0.39 0.71 0.99 0.90 0.04 0.10 0.07 71 23
Mixed (0.6 ≤ α ≤ 1.2) 0.06 0.28 0.13 0.60 1.18 0.84 0.66 0.99 0.91 0.06 0.21 0.12 153 50

Total 0.02 0.59 0.14 0.07 1.79 0.89 0.66 0.99 0.90 0.04 0.35 0.14 305 100
6 A. Bayat et al.: Retrieval of aerosol optical properties from polarized sun-photometer measurements
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Fig. 3. (a)τa(870 nm), (b)α, (c) qa(max), and (d)ω0 retrieved values versus day of year, February 2010 to December 2012, IASBS site.

Table 2. Minimum (min), maximum (max), and mean values ofτa, α, ω0, andqa(max) for 305 selected measurements, in each dominated
category of aerosols in Zanjan’s atmosphere, February 2010to December 2012, IASBS site.

τa α ω0 qa(max) Occurrence number
min max mean min max mean min max mean min max mean Absolute Relative (%)

Urban industrial (α> 1.2) 0.02 0.17 0.06 1.21 1.79 1.43 0.71 0.99 0.86 0.13 0.35 0.23 8127

Desert dust (α< 0.6) 0.06 0.59 0.24 0.07 0.60 0.39 0.71 0.99 0.90 0.04 0.10 0.07 7123

Mixed (0.6≤α≤ 1.2) 0.06 0.28 0.13 0.60 1.18 0.84 0.66 0.99 0.91 0.06 0.21 0.12 153 50

Total 0.02 0.59 0.14 0.07 1.79 0.89 0.66 0.99 0.90 0.04 0.35 0.14 305 100

rameter to characterize the atmospheric aerosols. It mostly
depends on the particle composition and size distribution
(Dubovik et al., 2002). Figure 8 shows the correlation be-
tweenqa(max) andω0, where colors indicate the variations
of τa on the logarithmic scale. Also each data point has been5

specified by a solid circle whose diameter is mapped toα−1

as a qualitative measure of the particle size. Forτa > 0.30,
qa(max) is almost constant (∼ 0.05) and it is not sensitive to

ω0 variations. Also, a moderate negative correlation between
qa(max) andω0 can be observed, whenτa is less than 0.30.10

As a result, the existence of smaller and absorptive aerosols
that are commonly associated with lower amounts of aerosol
loading leads to larger values of the polarized phase func-
tion. Referring to Figs. 5, 7, and 8 and Table 2, one can
conclude thatqa(max) can be chosen as a good candidate15

to classify different types of aerosols in the atmosphere of

Fig. 3. (a)τa (870 nm),(b) α, (c) qa(max), and(d) ω0 retrieved values versus day of year, February 2010 to December 2012, IASBS site.
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Fig. 4. Retrievedqa at 870 nm versus the scattering angle in the
atmosphere of Zanjan for two measurements with sameτa and dif-
ferentα, IASBS site.

qa(max) at different values ofτa. Colors in this figure are
mapped to different values ofα on a linear scale. By looking
at Fig.7, one can conclude thatqa(max) has a linear nega-
tive correlation (correlation coefficientR =−0.76) withτa on
the logarithmic scale. The results of Fig.7 are in agreement
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Fig. 5. Strong positive correlation betweenqa(max) at 870 nm and
α. Colors are mapped toτa on the logarithmic scale, February 2010
to December 2012, IASBS site.

with Fig. 5. It may be concluded that when the atmosphere
in Zanjan area has lowerτa values (lower aerosol loading),
it is mostly contaminated with fine-mode particles that are
mostly urban/industrial particles.

Aerosol single-scattering albedo is another crucial pa-
rameter to characterize the atmospheric aerosols. It mostly
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depends on the particle composition and size distribution
(Dubovik et al., 2002). Figure8 shows the correlation be-
tweenqa(max) andω0, where colors indicate the variations
of τa on the logarithmic scale. Also, each data point has been
specified by a solid circle whose diameter is mapped toα−1

as a qualitative measure of the particle size. Forτa > 0.30,
qa(max) is almost constant (∼ 0.05), and it is not sensitive to
ω0 variations. Also, a moderate negative correlation between
qa(max) andω0 can be observed, whenτa is less than 0.30.
As a result, the existence of smaller and absorptive aerosols
that are commonly associated with lower amounts of aerosol
loading leads to larger values of the polarized phase function.
Referring to Figs.5, 7, and8 and Table2, one can conclude
that qa(max) can be chosen as a good candidate to classify
different types of aerosols in the atmosphere of Zanjan. This
can be seen from the mean values ofqa(max) in three se-
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Fig. 9. qa(60◦) versusα for 305 retrieved data points (colored cir-
cles). Lines are calculated for three different assumed refractive in-
dices based on the Mie scattering theory.

lected categories of Table2, where its corresponding values
are 0.23, 0.07, and 0.12, related to an atmosphere with domi-
nant anthropogenic, dominant dust, and combinations of both
anthropogenic and dust aerosols, respectively. As a result, the
qa(max) itself can be used to characterize urban/industrial
and desert dust aerosols as two dominant aerosol types in the
atmosphere of the cities that are located in arid/semi-arid ar-
eas. It should also be noted thatqa is frequently used as a key
parameter to obtain more accuracy in the retrieval of other
important aerosol properties (Li et al., 2006; Dubovik et al.,
2006).
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Figure 9 gives more information about the atmospheric
aerosol characterization using the polarized phase function.
In this figure the variations of the polarized phase function
at a scattering angle of 60◦, qa(60◦), versusα has been
plotted for three different refractive indices (m1 = 1.40−

i0.010, m2 = 1.45− i0.005, and m3 = 1.55− i0.001) based
on the Mie scattering theory. The plots have been overlaid
on the retrieved valuesqa(60◦) for the measurements in the
IASBS site. The chosen refractive indices m1, m2, and m3 al-
most correspond with anthropogenic (Dubovik et al., 2002),
Southeast Asian (AERONET network, Chen-Kung site in
Taiwan), and dust aerosols (Dubovik et al., 2002), respec-
tively. Figure 9 shows that the events with 0.6≤ α ≤ 1.2
are almost close to the curve corresponding to m3 (dust),
but asα increases, the retrieved data points get close to the
m2 and m1 curves that correspond to the aerosols resulting
from incomplete burning of fuel and urban/industrial activi-
ties. To confirm this behavior, the root-mean-square distance,
RMSD, of the retrieved data points from each curve (m1, m2,
and m3) has been calculated for the mentioned spans ofα.
Table3 shows the results obtained. Forα < 0.6, the curves
in Fig. 9 cannot distinguish between different aerosol types.
This is in agreement with the results obtained byDubovik
et al.(2006) on the behavior of the degree of linear polariza-
tion, −P12/P11, for different aerosol sizes. They also found
that −P12/P11 cannot categorize the coarse-mode particles.
Figure10 shows the calculated values ofqa(60◦) for differ-
ent relative sizes (α) of aerosols and five complex refrac-
tive indices with a fixed value for the real part of the re-

Table 3. Root-mean-square distances of retrievedqa(60◦) values
from the curves corresponding to m1, m2, and m3 refractive indices
(Fig. 9) for three different spans ofα.

α < 0.6 0.6 ≤ α ≤ 1.2 α > 1.2

m1 = 1.40 –i0.010 0.013 0.041 0.046
m2 = 1.45 –i0.005 0.016 0.029 0.035
m3 = 1.55 –i0.001 0.017 0.015 0.055

fractive index and various imaginary parts of the refractive
index, based on the Mie scattering theory. The figure shows
that increasing the imaginary part of the aerosol refractive
indices leads to increasedqa(60◦) values for all aerosol rel-
ative sizes. As a result of the figure, one can conclude that
the larger and non-absorptive aerosols cause the lower po-
larized phase function and vice versa. In other words the
polarized phase function has the potential to distinguish ab-
sorbing particles like soot or black carbon from particles like
dust or marine aerosols; however this needs more investiga-
tion (Li et al., 2004; Dubovik et al., 2006). Finally, looking
at Figs.5, 7, 8, 9, and 10, we conclude that as a power-
ful aerosol parameter, the polarized phase function can be
used to classify different aerosol categories in Zanjan’s at-
mosphere as a populated city located in the central part of
the Earth’s dust belt.

5 Conclusions

In this work, the potential of the polarized phase function in
the classification of the atmospheric aerosols for the Zanjan
area has been investigated. In doing this, the sun-photometer
measurements of the IASBS site from February 2010 to De-
cember 2012 have been used to retrieve the aerosol optical
depth, Ångström exponent, single-scattering albedo, and the
polarized phase function. In retrievingqa from the sky ra-
diance measurements in the SPP mode, the aerosols have
been considered as polydisperse spherical particles. Calcu-
lations of theqa values for shape mixtures of randomly ori-
ented spheroids did not lead to a significant difference from
the results of the Mie scattering theory for spherical particles
(Fig. 1). In this study, three different conditions have been
considered for the existence of the particulate matters in the
atmosphere, based on the variations of the Ångström expo-
nent. These include the contamination of the atmosphere ei-
ther mostly with dust or for clean atmosphere mostly with ur-
ban/industrial aerosols, and for the rest of the times a mixture
of dust and urban/industrial particles (Table2). The extremes
as well as the mean values ofτa, α, ω0, andqa(max) for these
three spans are shown in Table2. Referring to theqa(max)
values in Table2 (min, max, and mean) for the mentioned
three spans suggestsqa as a proper candidate to categorize
the different types of aerosols in Zanjan’s atmosphere. To
prove this, the correlations betweenqa andα, τa, andω0 have
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been considered (Figs.5, 7, and8). The polarized phase func-
tion is strongly correlated (R = 0.95) with the Ångström ex-
ponent, and it has a negative correlation (R =−0.76) withτa.
The observed correlations indicate that an increase in theqa
values is associated with the existence of fine-mode particles
(anthropogenic) and during dust events, whenτa increases
considerably, the polarized phase function has a decreasing
trend. Therefore the type of the existing aerosols in Zanjan’s
atmosphere can be specified by looking at the variations of
the maximum values of the polarized phase function. De-
pending on the atmospheric conditions,qa(max) usually oc-
curs at 50–70◦ scattering angles. Therefore to check whether
qa is sensitive to the particle type, the retrievedqa(60◦) val-
ues were overlaid on the variations of the theoreticalqa(60◦)

versusα for three different refractive indices correspond-
ing to dust as well as Southeast Asian and urban/industrial
aerosols. The results (Fig.9) show that for the conditions
with α > 0.6, qa(60◦) can distinguish between these three
types of aerosols. Analytical analysis in Fig.10 also shows
how qa(60◦) is sensitive to the imaginary part of the refrac-
tive index. In other words, the existence of more absorbing
particles like soot or black carbon should increase theqa
value, but this variation still needs more investigation. Thus,
as also suggested byLi et al. (2004, 2006) andDubovik et al.
(2006), we believe investigating the polarized phase function
provides valuable information about the concentration, size,
and type of the atmospheric aerosols.
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