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Abstract. Forecasting ground effects of severe meteorolog-modelling. The scientific community is therefore focusing
ical events with an adequate lead time is fundamental foiits attention on this issue in order to develop effective proce-
civil protection scopes and is therefore an important chal-dures for civil protectionKerraris et al(2002 andSiccardi
lenge for the scientific community. The paper focuses on theet al. (2005 among the others).

performance of some steps of a meteo-hydrological forecast- A forecasting chain designed to evaluate, in a probabilistic
ing chain that can be applied in small watersheds to assegfsamework, the hydrological risks connected to a predicted
hydrological risk deriving by an intense storm predicted atmeteorological event is depicted in Fity. the oval shapes
the large meteorological scale. The proposed procedure inrepresent the procedure steps while the rectangles show the
tegrates large-scale rainfall fields, as those produced by nuinformation passing from one step to the next one. Actually,
merical weather prediction (NWP) models, with statistical information flows through different kinds of models: NWP
rainfall downscaling and hydrological modelling. More in model (step 1), downscaling model (step 2), rainfall-runoff
details, assuming a large scale rain rate as the input of thenodel (step 3) and postprocessing model (step 4). The fore-
process, the forecasting chain produces an ensemble of hyasting chain can be viewed as a Monte Carlo system that
drographs that are post-processed in order to give a probaallows determining the exceedance probability associated to
bilistic representation of mean streamflow maxima for dif- a given flow peak threshold or to a given discharge volume
ferent time windows. The outcome of this procedure can beflowing in a fixed time window.

thus applied to assess the risk that some critical streamflow Rainfall fields predicted by NWP models at step 1 repre-
thresholds may be exceeded. The procedure has been testgght the initial information useful for the hydrological steps
on more than one thousand recorded events in the Araxispf the forecasting chain. Nevertheless meteorological and
catchment in Sardinia, Italy. Results and performances ar¢ydrological models should not be directly coupled to fore-
presented and discussed. cast floods in small watersheds. Actually, due to numeri-
cal diffusion, NWP models are not able to provide reliable
predictions at their own grid resolution, thus rainfall fields
need to be reaggregated to a coarser resolution. The gap be-
tween these large scales where NWP predictions become re-

In order to properly identify and manage hydrogeological liable and the small scales required by the hydrological mod-

risk, potential ground effects caused by intense meteorolog€!ling should be filled in by downscaling procedures (step 2

ical events have to be predicted with an adequate lead timd" F9- 1). Multifractal models can be successtully applied at
In case of small watersheds this aim cannot be achieved b{/iS SCOPe, since they are able to reproduce rainfall probabil-

means of rainfall and streamflow real time telemetered obsery distributions at unresolved small scales. Starting from a
vations. In fact, short catchment response times do not alloypPrecipitation event Pred'CtEd over a large space-t!me scale by
monitoring systems to provide flood forecast in time to put on@ NWP model, multifractal models allow generating a set of
the alert and to set up the required protection measures. Thi€veral equally probable rainfall realizations at scales com-
task can be pursued by means of forecasting chains that intdatible with rainfall-runoff modelling. Uncertainty due to
grate Quantitative Precipitation Forecast (QPF) given by Ny-unresolved space and time small scales is thus described with

merical Weather Prediction (NWP) models and hydrological® statistical approach in a Monte Carlo system.. )
At step 3 each (synthetically downscaled) rainfall scenario

Correspondence tdR. Deidda is transformed into a corresponding hydrograph at a catch-
(rdeidda@unica.it) ment outlet by means of a rainfall-runoff model. In such a

1 Introduction
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Step 1 - NWP model

J

Rainfall volume at large scale LXLXT

-

Step 2 — Downscaling model

-

A set of equally probable high resolution rainfall
fileds at watershed response scale A ;X A g X T,

-

Step 3 — Rainfall-Runoff model

-

A set of equally probable synthetic hydrographs

-

Step 4 — Postprocessing model

-

Flow—-Duration-Frequency curves
Synthetic hydrographs at given probability

-

Risk assessment

way, a set of equally probable hydrographs is generated start-
ing from the same meteorological prediction.

In order to properly organize civil protection operations,
one would know whether or not a given threshold for flow
peak or discharge volume will be exceeded. Unfortunately,
due to uncertainties within the forecasting process (related to
unresolved scales or to the models characteristics), the an-
swer cannot simply be yes or not, but it can be given only
in a probabilistic framework. This issue is tackled in step 4
with the postprocessing model, which allows also determin-
ing the exceedance probability of discharge volumes flowing
in a range of different time windows.

Steps 2, 3 and 4 of the forecasting chain are evaluated for a
case study, the Araxisi catchment. We deliberately jump the
step 1 in order to avoid the propagation of errors and uncer-
tainties related to the meteorological forecast, and to better
assess the performances of the downscaling and hydrologi-
cal steps. Anyhow, it should be clear that the proposed fore-
casting chain can be operatively applied starting from NWP
forecasted rainfall fields. The downscaling model (step 2) is
briefly illustrated, applied and tested in Sezt.the hydro-
logical models performance (step 3) is analyzed in Sgct.
while Sect4 is devoted to the postprocessing model (step 4).
Finally in Sect5 the conclusions of the work are drawn.

2 Downscaling model (step 2)

As discussed above, NWP models alone are unlikely to pro-
vide rainfall fields with an adequate and reliable resolution
for an efficient application of rainfall-runoff models to small
basins. Multifractal theory has been proved to be a suit-
able framework for rainfall downscaling as witnessed by
many works in literaturel{(ovejoy and Mandelbro1985);
Schertzer and Lovejof1987); Gupta and Waymiré1993;
Over and Gupta(1996; Perica and Foufoula-Georgiou
(1996; Deidda (2000 among the others). A multifractal
model, able to correctly reproduce the observed small scale
rainfall variability, was therefore chosen as the second step of
the proposed forecasting chain. In the following, after some
brief recalls to multifractal theory, we present the application
and validation of the downscaling step on the Araxisi catch-
ment.

2.1 Downscaling model — theory

Let L, Ao < L be linear spatial scales afi 7o<T be times
scales. Given the rainfall volume (or mean rain rBt®ver

the large scaled. x L xT resolved by meteorological mod-
els (it may be also a re-aggregated output coming from high
resolution NWP model), a multifractal downscaling model
should be able to reproduce the probability distribution func-

Fig. 1. The proposed forecasting chain structure is illustrated: thetion of rainfall volumes over smaller scalggx Agx o cOM-

oval shapes represent the procedure steps while the rectangles shyatiple with the watershed space-time response scales.
the information passing from a step to the next one.

Let i(x, y, ) be the rainfall intensity at locatioqx, y)
and timer. Scale invariance properties are investigated on
the rainfall volumesu defined within a generic space-time
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regioni, xA,xt located inx;, y;, # (and smaller than the 2.2 Downscaling model — application
large scald. x L x T'), which can be written as:

it Yithy Wt Although over the last decade the skill of NWP systems to re-

Wik e by, T) = /X dx/‘ dy/ drit,y,n (1) produce physical processes has increased significaitty- (
mons and Hollingsworthi2002), precipitation is still one of
the most difficult atmospheric parameters to forecast. There-
fore, in order to better assess performances and uncertainties
of the downscaling and hydrological steps, in the study case
we used observed rainfall data instead of NWP forecast, thus
jumping the step 1 in the application of the proposed proce-

ure, as anticipated in the Introduction. In such a way, per-
ormances of step 2 and 3 are not affected by NWP errors.

Yj Ik

Usually, spatial isotropy is assumed, letting the two spatial
scales equal ta: ,=A,=A. Also the integration time scale

7 in Eq. (1) can be related to the spatial scaldy the re-
lationshipr=x/U, whereU is a space-time conversion pa-
rameter that may be or not a function xf In the simplest
scenario of self-similarity (or scale isotropy) is a scale-
independent parameter that can be introduced in order t
transfer the statistical properties observed at space stales
to coherent time scales=A/U and vice versa. In this case The rainfall database used here consists of daily records
the measure defined in Eq.)(becomes a function o¢f scale observed in 394 stations distributed all over Sardinia in the
only: 4 jk(Ax, Ay, T)V=p; j x(2). Hence the followingg- period (1982-1980). Thus the large scales of the down-
order partition functionss, (%) can be computed at different scaling process ar€=24hr in time (daily data) and con-

scales\: sequentlyL.=UT=416 km in space, having assumed a con-
1 N NG N(7) stant space-time homogenization paraméterl7.33 km/hr
S 5 Z i j k(W) (2) (Badas et a).2005. Mean rainfall intensities on this
NONQ@) H 3o large space-time domaibx L xT were computed for each

. . day averaging all daily data of the rain gage network of the
WhereN(A)zN(r)_ls the nL_meer of subregiorisxa xz of Sa)r/dinian gHy?jroIogic:}i/I Survey. The rr?osqc intense rainfall
the chosenk-parfunon, b_emgN(A)_ anc_:l N(@=NQ) the . __events were selected on the basis of a threshold mean inten-
number. of subgrid cells in each direction of space and 'umeSity =5 mm/day. The downscaling process was then applied
resp?ct|vely. d of ition f . . starting from the large scale rain rdtef those events whose
o e e £ETeSPONAG yagraph ecdsa e Avast catchmen
range wheres, (\)~A5@. Moreover, if multifractal expo- outlet were also av_allable. 1303 events were found to satisfy

4 . . ’ i both criteria on rainfall threshold and stramflow measures
nents¢(¢) are non linear functions aof, the measure: is

multifractal. This kind of behaviour was detected on space availability. The downscaling procedure was thus applied on

time rainfall events retrieved by radar or by high density rain these events from scalés416 krg andl'=24 hr up to scales
gauges network (sePeidda(2000; Deidda et al.(2009; ?fz_sli:?n; andro=45min, beingi; close to the Araxisi area
Badas et al(2005 200§ among the others). The identifi- '
cation of scale-invariant properties allows the calibration of ~For each of the selected events, the STRAIN model was
multifractal models, whose parameters are usually estimate@pPplied 3000 times in order to numerically reproduce the
fitting sample multifractal moments(¢) to their theoretical ~ Variability (and more in general the statistical properties) of
behaviour, which can be derived from the model generatofrainfall fields up toig andzo scales. In such a way, 3000
structure. synthetic samples, each one containing 1303 downscaled
The STRAIN model Deidda et al. 1999 Deiddg 2000 events, were obtained. The STRAIN model is based on alog-
was here chosen to reproduce the analysed rain fields. ThBoisson generatqe=p~, wherey is a Poisson distributed
model was successfully applied in its simplest form for the i.i.d. random variable with mean Multifractal analyses on
generation of homogeneous space-time rain fields in site§everal dataset©gidda(2000; Deidda et al(2004 2009
where orography does not exert any significant condition-Badas et al(2003) have shown that thg parameter can
ing on rainfall patterns@eidda 200Q Deidda et al.2004  be assumed equal to expl), becoming a model constant,
2005. Badas et al(2005 recently analysed several precipi- While sample estimates of theparameter follow decreasing
tation events occurred over complex terrain in the Sardiniafunctions of the large scale rainfall rate For the Sardinia
region and showed that the observed spatial heterogeneit{egion ac(/) relationship was determined tBadas et al.
due to the orography can be reproduced through the supe(20051 itis used here with a slight modification in the coeffi-

imposition of a modulating functiod on generated fields: ~ cients due to the larger domalnx L x 7. Homogeneous and
_ isotropic rainfall fieldso(x, y, t) generated by the STRAIN

i(x,y, 1) =&(x, y) iolx, y,1) ) model up to scalesg and g are then transformed into oro-
whereig(x, y, t) represents the homogeneous and isotropicgraphic conditioned fieldgx, y, ¢) by equation Eq.3). The
rain rate field generated by the STRAIN model at location required modulating functiog(x, y) was estimated on the
(x,y) and time¢, the dimensionless modulating function basis of each grid cell mean elevation followiBgdas et al.
£(x, y) is computed on the basis of the corresponding terrain(2005. The valuet= 1.35 resulted for the elevation of the
elevationz(x, y), andi(x, y, t) is the resulting rain intensity  grid cellAgx Ao (13 kmx 13 km) corresponding to the Araxisi
that takes into account orography conditioning. catchment.
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Table 1. Intensity ranges and numerousness of the classes used in ,AS an examplle., Fig3 illustrates the comparison f‘?r the
the validation process. third class: empirical CDF of the control dataset (daily pre-

cipitation values observed on the Araxisi catchment) is com-
pared with the 90% confidence limits estimated from gener-

class 1 2 3 4 5 6 ; :
|[mm/day] 5-7 7-10 10-15 1520 20-30>30 ated sequences (i.e. CDFs of quantiggs andgo o5 of the
#ofevents 385 335 310 136 97 40 r-th order statistics). The logarithmic scale was chosen in or-

der to emphasize intense precipitation values. In the left plot
guantiles refer to spatially homogeneous rainfall fields gen-
From each downscaled space-time field, the time historyerated by the STRAIN model, while the modulating function
(rainfall hyetograph) over the Araxisi grid celdxio) was & is included in data plotted in the right image. It is now
selected: 3000 synthetic hyetographs were thus extracted fatpparent how the introduction of the modulating function is
each of the alalysed events. As an example, inFigro gen-  essential for a correct reproduction of observed data in do-
erated hyetographs (having resolutir45 min) are shown  mains with complex orography. Actually, order statistics of
as possible realization of the same large scale event.2Fig. observed data are within the confidence limits derived from
clearly shows how downscaled hyetographs of the same largsynthetic data including value, as it is apparent in Fi§.
scale event may differ not only for the inner sub-daily vari- for the third class. Similar results were obtained for all the
ability, but also for daily total depth (due to simultaneous other analysed classes, thus synthetic hyetographs including

downscaling in space and time). the modulating function properly represent observed events
at least at a daily scale and were used in the next step of the
2.3 Downscaling model — validation forecasting chain.

The performance of each step of the proposed forecasting .

procedure has been tested in order to identify possible crit3 Rainfall-runoff model (step 3)

ical points. With the aim to perform a comparison between

modelled and observed data, the 1303 selected events werel RR model —theory

grouped into six classes on the basis of large scale mean N the third step of the forecasting chain, hyetographs gen-

tensity /. Intensity ranges and numerousness of each class :
. . L . r h wnscaling model n ransform
are reported in Tabl&. This subdivision, which has been €rated by the downscaling model need to be transformed

used also in Secg, allows grouping similar events in terms into_hydrographs at the catchment outlet. This rainfall-
’ grouping runoff transformation involves many hydrological processes.
of STRAIN model parameters, sineés related to large scale . :
. . . Among the large number of rainfall-runoff models describ-
mean intensity/. Performance evaluation of each step of . . ; L :
. . ing with different levels of approximation the physical as-
the flood forecasting procedure has been pursued comparin :
. R . : ects of these processes, we choose here a very simple and
the cumulative distribution function (CDF) obtained for ob- _ . : S o
: s widely used approach. It consists first in the application of
served and synthetic data within each class. )
The ab t sub-dailv ob d rainfall data i CS curve number (SCS-CN) meth®(OS 1972 to derive
€ absence of sub-dally observed rainfall data IMpoSeq,, .5 rajnfall from observed rainfall, and then in the use of
to carry on the comparison on a daily scale. The control

o . " ~the unit hydrograph (UH) theory to represent the transfor-
dataset of precipitation occurring over the catchment durin ydrograph (UH) y P

: . Ymation of excess rainfall hyetograph into the corresponding
the selected events was computed from daily rain gage datairect runoff hydrograph

by means of the Thig_ssen method. On the o.ther side, down- The SCS method is based on the well known equation:
scaled rainfall intensities generated on a spatial sk%admse
to the catchment area and with time resolutiga-45 min, (P — I,)2
were integrated at the same daily scale as the control set. Fe = P_1)—=s
The comparison between observed and synthetic data was ¢
performed as follows. Leiv be the number of analysed whereP, is the excess rainfallP is the observed rainfall§y
events in each class reported in Tallle We have on one is the potential maximum retention after runoff begins and
hand a sample a¥ observed values (e.qg. for class 1 we have [, is the initial abstraction. Usually the initial abstraction
385 values of areal average daily rainfall depth), and on thds assumed as a fraction &f (1,=0.2S), in this caseS is
other hand 3000 synthetic samples each one contaiNing the only parameter that needs to be determined in the SCS-
generated values (i.e. rainfall downscaled@t Ao scale and  CN equation. The potential maximum retenti8ris related
reaggregated at the daily scale). Data of each sample (the orte a dimensionless CN parameter, ranging between 0 and
observed and the 3000 simulated) are sorted in ascending of:00: in case all the variables of E¢}) (are expressed in
der (x1<x2<---<xy) becoming an order statistics series. mm, this relationship becomes=(2540¢ C N)—254. Once
Our purpose is to estimate an equitailed confidence intervathe CN value is determined on the basis of hydrological
of ther-th order statisticsr&=1 - - - N). Confidence limits are  soil groups, land-cover and antecedent moisture condition
thus obtained from the quantileg andg1—, of the empirical  (AMC), Eq. (4) allows to determine the excess rainfall hyeto-
distribution of the corresponding 300&th order statisticsin  graph corresponding to each total rainfall hyetograph coming
synthetic samples. from the downscaling model.

4
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Fig. 2. Two possible scenarios of the same large scale event: synthetic hyetographs generated at the Araxisi catchment scale.
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Fig. 3. A comparison between observed and synthetic data is illustrated for events belonging to the third class: the horizontal axis contains
daily precipitation valueg, while the vertical one represents lggl—F (h)), whereF (h) is the CDF. The solid lines represent daily CDF
obtained from the control dataset while dashed lines refer to CDFs of the 5% and 95% quantiles obtained from generated sequences. In the
left plot synthetic data directly come from the STRAIN model, while the modulating funétisincluded in data plotted in the right image.

The unit hydrograph theory approximates the catchmentmodel is applied in order to transform these total rainfall
response with that of a linear system. The unit hydrographhyetographs into excess rainfall hyetographs (through the
(UH) is thus the direct runoff hydrograph resulting from a SCS-CN module) and then into direct runoff hydrographs
unit depth of excess rainfall at a constant rate for a givenat the catchment outlet (by means of the UH model). As a
(small) time step and occurring uniformly over the catch- result, 3000 hydrographs for each event were thus obtained
ment. Hydrographs originated from a whatever event are obapplying the SCS, Clark and snyder UH respectively.
tained through the convolution of the excess rainfall hyeto- The CN value was determined by subdividing the Araxisi
graph with the unit hydrograph. In the present work threecatchment in small areas with homogeneous land-cover and
well known lumped UH models were calibrated on the Arax- hydrological soil group, and then making a weighted aver-

isi catchment: SCS, Clark, Snydetfow et al, 1988. age of the CN values obtained for each area by standard SCS
tables. The final CN values to be adopted for each event were
3.2 R-R model — application then corrected, according to the standard SCS-CN method,

on the basis of the 5-days antecedent precipitation that is as-
In Sect.2.2 for each of the 1303 events a set of 3000 equallysumed to be representative of the antecedent moisture condi-
probable hyetographs was generated. Here the rainfall-runoffion of the catchment.
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Fig. 4. Left. SCS Curve Number method application: separation of excess rainfall from total rainfall of a downscaled synthetic hyetograph
obtained for one of the selected events in the Araxisi catchment (event date: 16/02/1963). Right. Snyder’s, Clark’s and SCS UH: convolution
of the above obtained excess rainfall hyetograph.

10° . , .

v v digital filter proposed byNathan and McMahoif1990 for
T bsered CDF 0% lovel each of the 1303 events considered in SB@. In such a
way a control dataset of direct runoff hydrographs was con-
N ' ' ' structed for the rainfall-runoff model validation.

N For each class of events defined in S&c3.(Tablel), the
10 R\ 1 global performances of the forecasting chain are investigated
~ ‘ ‘ ‘ : by statistical comparison between measured and generated
v N runoff. In particular, flow maxima at different durations are
e DN ‘ ‘ , determined from the control dataset of direct runoff and com-
| N pared with the flow maxima extracted from generated hydro-
10 A\ ; N : 1 graphs. Using an approach similar to the one described in
A\ ‘ ; MU : Sect.2.3 data coming from synthetic generations are used to
3 : .~ determine 90% equitailed confidence intervals for the vari-
\ N able to be checked. As an example, the results obtained for
5 p : y” o s o a0 3-hour flow maxima are iIIu_strated in Figfor the third class
Q [ms] and Clark’'s UH model. Figure clearly shows how CDF Qf
measured flows lies out and far off the 90% confidence limits.
Unsatisfying results were also obtained for the other classes
ration at the outlet of the Araxisi catchment (third class of events).Of events and for flow maxima at different durations. Very

Dashed lines indicates confidence intervals obtained from generategiMa!l differences were found among SCS, Clark and Snyder

hydrographs (by Clark’s UH model) for 5% and 95% quantiles. The UH models, because the three unit hydrographs have similar
horizontal axis contains direct runoff values while the vertical ~ base times and the convolution effect attenuate their differ-

one represents lgg(1—F (Q)), whereF (Q) is the CDF. ences.
With the aim to detect the problems that lead to the dis-
crepancies between the features of the generated hydro-
An application of the rainfall-runoff model to one of the graphs and those of the control dataset highlighted in5;ig.
events is illustrated in Figd: the excess rainfall derived by each phase of the rainfall-runoff step was analysed in more
applying the SCS-CN method on a total rainfall synthetic detail and some diagnostic comparisons were built.

hyetograph obtained from the downscaling model is shown The first aspect to be discussed and investigated regards

on the left, while the respective synthetic hydrographs ob-the effect of the SCS-CN Eq4), which is clearly a non-

tained with the application of the UH models is presented onjinear transformation with a lower threshold (when<1, it

the right. returns excess rainfal?,=0). This means that differences
in the probability distributions of total rainfalb may be in

3.3 R-R model — validation and determination of critical principle amplified or reduced in the resulting distributions

points of excess rainfall derived from Eg4), The results of the

application of Eqg. 4) to downscaled rainfall (on the Arax-

In order to validate the rainfall-runoff model described isi grid cell) were thus compared with those obtained ap-

above, we first extracted the direct runoff component fromplying the same equation to the control set of daily rainfall.

the hydrographs measured at the basin outlet by applying th&nce more, comparisons were performed in terms of CDFs

-F@Q]

log,, [1

Fig. 5. Empirical CDF (solid line) of flow maxima at 3-hour du-
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Fig. 7. A comparison between CDFs obtained for direct runoff com-

Fig. 6. CDFs of daily excess rainfal, computed by Eq.4): re- . . g
sults from the control dataset (solid line) are compared with theponent@R)_ and generated daily excess ra'nf‘ﬂl on_the A.raX'S'
catchment is presented. The horizontal axis contains direct runoff

90% confidence intervals obtained from downscaled rainfall on the . ) .
0 (DR) and excess rainfall value®y), while the vertical one repre-

Araxisi grid cell. . o
g sents logg(1—F), whereF is the CDF. The solid line represents

o ] ] daily CDF obtained for direct runoff from the control dataset, while
within the classes already introduced in Sec8 (Table 1). dashed lines refer to CDFs obtained for daily excess rainfall from
CDFs of excess rainfall obtained from the control dataset re-downscaled precipitation for 5% and 95% quantiles. The plot refers

sulted always within the confidence limits derived by down- to the third class of events.

scaled data, meaning that the behaviour of SCS-CN equation

is very similar for both the observed and the downscaled rain-

fall. This positive result is mainly due to the ability of the A confirmation of this conclusion comes also from an-
downscaling procedure in reproducing the same variabilityother, and last, kind of comparisons that is based on the scat-
of observed rainfall at the catchment scale. As an exampleterplots of the control set of direct runoff discharge at the
Fig. 6 shows the comparison for the third class of the eventsdaily scale against the excess rainfall obtained by the SCS-
recorded on the Araxisi catchment. CN Eg. @) when using the control daily rainfall. We should

A second kind of investigations was aimed at compar-€xpect that all the points lie along the bisector line of the
ing the synthetic excess rainfall at daily scale (obtainedscatterplot, but results obtained for the six classes of events
through the application of Eq4) to downscaled rainfall) ~clearly show a great dispersion. Figu8eshows an exam-
with the daily discharge extracted from the correspondingple for the third class where it is apparent the distance of the
direct runoff hydrographs in the control dataset. This com-pPoints from the bisector line.
parison, which is illustrated in FigZ for the third class of We discuss some further considerations about the outcome
events, shows that CDFs derived from the control dataset aref this analysis. First, this last comparison is only based
not included in the confidence limits obtained through gener-on observed data, although they are manipulated and trans-
ated data. In order to better understand the aim of this comformed. Thus, results presented in the scatterplot illustrated
parison and to correctly interpret these results, some consid# Fig. 8 cannot be affected by any kind of errors introduced
eration are needed. First of all, since comparisons are peiin the meteo-hydrological forecasting chain by the NWP or
formed at the daily scale, while the catchment response timéhe downscaling step. Moreover, apart from the measure-
is about three hours, the differences between daily excesgent errors of rainfall and streamflow, the only causes of er-
rainfall depths and the corresponding daily discharge depthsors are to be ascribed to the direct runoff separation method
obtained by the UH model should be very small. Thus, theor to the SCS-CN method. Regarding the streamflow separa-
comparison of different kinds of variables (excess rainfall tion method, beside the digital filter Byathan and McMa-
and direct runoff) is in this sense allowed and we expect thahon (1990 another attempt was made implementing also
it does not introduce significant sources of error. Moreover,traditional separation technique, but despite some slight dif-
considering synthetic excess rainfall rather than synthetic diferences, the scatterplots were as much unsatisfying. Thus
rect runoff produced by the rainfall-runoff model allows to we exclude that the main cause of discrepancy could be re-
exclude potential problems that may arise from the appli-lated to the separation technique, and again we point out the
cation of the UH model. Thus, problems of rainfall-runoff SCS-CN method as the main source of errors.
model have to be searched in the SCS module rather than in Finally, in order to improve the performances of the SCS
the UH one. model, a lot of trials for a better calibration of its parame-
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Fig. 8. Scatterplot of observed daily excess rainfall obtained with
SCS-CN method against the corresponding direct runoff component
obtained with the application of the digital filter on the recorded
hydrographs. The comparison is illustrated for the third class of 4]
events recorded on the Araxisi catchment.
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ters were performed, using data of control dataset. The CN 20 :
parameter and also the rainfall thresholds for the three AMC
were recalibrated by a least square method on Bq.as- 101 1
suming the couplesH, P.) to be respectively the rainfall
Observations and the direCt rUnOff Components Of the same 0%:00 15‘:00 21:‘00 03‘:00 09:‘00 15:00 21;00 03‘:00 09:‘00 15:00
events. Nevertheless, even applying the rainfall-runoff model TIME (hr)

with SCS recalibrated parameters, we were not able to sig-

nificantly improve the unsatisfying results presented above. Fig. 10. Outcome of the forecasting chain: a 30% exceedence prob-
ability hydrograph on the Araxisi outlet is obtained subdividing dis-
charges derived from the flow-duration-frequency curve (Big.c-
cordingly the following proportions: 1/3 on the left-hand side of the
peak and 2/3 on the right-hand side.

4 Post-processing model (step 4)

The purpose of a forecasting chain is to assess the hydrolog-

ical risk caused by predicted heavy rainfall events. In orderyegentative for predicted discharges at any duration can be
to face this issue, we propose a simple technique providing @ptained. After deriving volumes corresponding to different
probabilistic framework useful for decision support. durations from FDF curves, the synthetic hydrograph can be

From the set of synthetic hydrographs, generated in thejrawn starting from the flow around the peak, which corre-
previous step of the forecasting chain, the flow-duration-sponds to the discharge extracted for the shortest duration,
frequency (FDF) curves are derived for different exceedenceynd then subdividing the increments of discharge derived for
probability levels. As an example, results obtained for onejarger durations between the left and right-hand side of the
of the selected events on the Araxisi catchment using theyeak. As an example, FigO shows the synthetic hydro-

Clark UH are illustrated in Fig9. Once critical streamflow  graph at 30% exceedence probability level obtained for one
thresholds have been identified for the catchment, the curvegf the selected events.

FDF provide the probability that these thresholds may be ex-
ceeded, and therefore are very useful in supporting decision
to issue alerts on the basis of hydrological risk assessment.5 Final remarks

Moreover, the FDF curves allow to derive synthetic hydro-
graphs to be used as input in overland flow models in ordefThe proposed procedure can be operatively applied in order
to simulate downstream overflowing areas. Once a probabilto predict and mitigate the adverse effects of meteorological
ity level is chosen, a synthetic hydrograph statistically rep-hazards occurring over small watersheds. Inherent in each
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