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Abstract. Forecasting ground effects of severe meteorolog-
ical events with an adequate lead time is fundamental for
civil protection scopes and is therefore an important chal-
lenge for the scientific community. The paper focuses on the
performance of some steps of a meteo-hydrological forecast-
ing chain that can be applied in small watersheds to assess
hydrological risk deriving by an intense storm predicted at
the large meteorological scale. The proposed procedure in-
tegrates large-scale rainfall fields, as those produced by nu-
merical weather prediction (NWP) models, with statistical
rainfall downscaling and hydrological modelling. More in
details, assuming a large scale rain rate as the input of the
process, the forecasting chain produces an ensemble of hy-
drographs that are post-processed in order to give a proba-
bilistic representation of mean streamflow maxima for dif-
ferent time windows. The outcome of this procedure can be
thus applied to assess the risk that some critical streamflow
thresholds may be exceeded. The procedure has been tested
on more than one thousand recorded events in the Araxisi
catchment in Sardinia, Italy. Results and performances are
presented and discussed.

1 Introduction

In order to properly identify and manage hydrogeological
risk, potential ground effects caused by intense meteorolog-
ical events have to be predicted with an adequate lead time.
In case of small watersheds this aim cannot be achieved by
means of rainfall and streamflow real time telemetered obser-
vations. In fact, short catchment response times do not allow
monitoring systems to provide flood forecast in time to put on
the alert and to set up the required protection measures. This
task can be pursued by means of forecasting chains that inte-
grate Quantitative Precipitation Forecast (QPF) given by Nu-
merical Weather Prediction (NWP) models and hydrological
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modelling. The scientific community is therefore focusing
its attention on this issue in order to develop effective proce-
dures for civil protection (Ferraris et al.(2002) andSiccardi
et al.(2005) among the others).

A forecasting chain designed to evaluate, in a probabilistic
framework, the hydrological risks connected to a predicted
meteorological event is depicted in Fig.1: the oval shapes
represent the procedure steps while the rectangles show the
information passing from one step to the next one. Actually,
information flows through different kinds of models: NWP
model (step 1), downscaling model (step 2), rainfall-runoff
model (step 3) and postprocessing model (step 4). The fore-
casting chain can be viewed as a Monte Carlo system that
allows determining the exceedance probability associated to
a given flow peak threshold or to a given discharge volume
flowing in a fixed time window.

Rainfall fields predicted by NWP models at step 1 repre-
sent the initial information useful for the hydrological steps
of the forecasting chain. Nevertheless meteorological and
hydrological models should not be directly coupled to fore-
cast floods in small watersheds. Actually, due to numeri-
cal diffusion, NWP models are not able to provide reliable
predictions at their own grid resolution, thus rainfall fields
need to be reaggregated to a coarser resolution. The gap be-
tween these large scales where NWP predictions become re-
liable and the small scales required by the hydrological mod-
elling should be filled in by downscaling procedures (step 2
in Fig. 1). Multifractal models can be successfully applied at
this scope, since they are able to reproduce rainfall probabil-
ity distributions at unresolved small scales. Starting from a
precipitation event predicted over a large space-time scale by
a NWP model, multifractal models allow generating a set of
several equally probable rainfall realizations at scales com-
patible with rainfall-runoff modelling. Uncertainty due to
unresolved space and time small scales is thus described with
a statistical approach in a Monte Carlo system.

At step 3 each (synthetically downscaled) rainfall scenario
is transformed into a corresponding hydrograph at a catch-
ment outlet by means of a rainfall-runoff model. In such a
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Fig. 1. The proposed forecasting chain structure is illustrated: the oval shapes represent the procedure steps

while the rectangles show the information passing from a step to the next one.
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Fig. 2. Two possible scenarios of the same large scale event: synthetic hyetographs generated at the Araxisi

catchment scale.
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Fig. 1. The proposed forecasting chain structure is illustrated: the
oval shapes represent the procedure steps while the rectangles show
the information passing from a step to the next one.

way, a set of equally probable hydrographs is generated start-
ing from the same meteorological prediction.

In order to properly organize civil protection operations,
one would know whether or not a given threshold for flow
peak or discharge volume will be exceeded. Unfortunately,
due to uncertainties within the forecasting process (related to
unresolved scales or to the models characteristics), the an-
swer cannot simply be yes or not, but it can be given only
in a probabilistic framework. This issue is tackled in step 4
with the postprocessing model, which allows also determin-
ing the exceedance probability of discharge volumes flowing
in a range of different time windows.

Steps 2, 3 and 4 of the forecasting chain are evaluated for a
case study, the Araxisi catchment. We deliberately jump the
step 1 in order to avoid the propagation of errors and uncer-
tainties related to the meteorological forecast, and to better
assess the performances of the downscaling and hydrologi-
cal steps. Anyhow, it should be clear that the proposed fore-
casting chain can be operatively applied starting from NWP
forecasted rainfall fields. The downscaling model (step 2) is
briefly illustrated, applied and tested in Sect.2; the hydro-
logical models performance (step 3) is analyzed in Sect.3;
while Sect.4 is devoted to the postprocessing model (step 4).
Finally in Sect.5 the conclusions of the work are drawn.

2 Downscaling model (step 2)

As discussed above, NWP models alone are unlikely to pro-
vide rainfall fields with an adequate and reliable resolution
for an efficient application of rainfall-runoff models to small
basins. Multifractal theory has been proved to be a suit-
able framework for rainfall downscaling as witnessed by
many works in literature (Lovejoy and Mandelbrot(1985);
Schertzer and Lovejoy(1987); Gupta and Waymire(1993);
Over and Gupta(1996); Perica and Foufoula-Georgiou
(1996); Deidda (2000) among the others). A multifractal
model, able to correctly reproduce the observed small scale
rainfall variability, was therefore chosen as the second step of
the proposed forecasting chain. In the following, after some
brief recalls to multifractal theory, we present the application
and validation of the downscaling step on the Araxisi catch-
ment.

2.1 Downscaling model – theory

Let L, λ0 < L be linear spatial scales andT , τ0<T be times
scales. Given the rainfall volume (or mean rain rateI ) over
the large scalesL×L×T resolved by meteorological mod-
els (it may be also a re-aggregated output coming from high
resolution NWP model), a multifractal downscaling model
should be able to reproduce the probability distribution func-
tion of rainfall volumes over smaller scalesλ0×λ0×τ0 com-
patible with the watershed space-time response scales.

Let i(x, y, t) be the rainfall intensity at location(x, y)

and timet . Scale invariance properties are investigated on
the rainfall volumesµ defined within a generic space-time
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regionλx×λy×τ located inxi , yj , tk (and smaller than the
large scaleL×L×T ), which can be written as:

µi,j,k(λx, λy, τ ) =

∫ xi+λx

xi

dx

∫ yj +λy

yj

dy

∫ tk+τ

tk

dt i(x, y, t) (1)

Usually, spatial isotropy is assumed, letting the two spatial
scales equal toλ: λx=λy=λ. Also the integration time scale
τ in Eq. (1) can be related to the spatial scaleλ by the re-
lationshipτ=λ/U , whereU is a space-time conversion pa-
rameter that may be or not a function ofλ. In the simplest
scenario of self-similarity (or scale isotropy)U is a scale-
independent parameter that can be introduced in order to
transfer the statistical properties observed at space scalesλ

to coherent time scalesτ=λ/U and vice versa. In this case
the measure defined in Eq. (1) becomes a function ofλ scale
only: µi,j,k(λx, λy, τ )=µi,j,k(λ). Hence the followingq-
order partition functionsSq(λ) can be computed at different
scalesλ:

Sq(λ) =
1

N(λ)2N(τ)

N(λ)∑
i=1

N(λ)∑
j=1

N(τ)∑
k=1

µi,j,k(λ)q (2)

whereN(λ)2N(τ) is the number of subregionsλ×λ×τ of
the chosenλ-partition, beingN(λ) and N(τ)=N(λ) the
number of subgrid cells in each direction of space and time
respectively.

A linear trend of partition functionsSq(λ) versusλ in a
log-log plane identifies the existence of a scale-invariance
range whereSq(λ)∼λζ(q). Moreover, if multifractal expo-
nentsζ(q) are non linear functions ofq, the measureµ is
multifractal. This kind of behaviour was detected on space-
time rainfall events retrieved by radar or by high density rain-
gauges network (seeDeidda(2000); Deidda et al.(2004);
Badas et al.(2005, 2006) among the others). The identifi-
cation of scale-invariant properties allows the calibration of
multifractal models, whose parameters are usually estimated
fitting sample multifractal momentsζ(q) to their theoretical
behaviour, which can be derived from the model generator
structure.

The STRAIN model (Deidda et al., 1999; Deidda, 2000)
was here chosen to reproduce the analysed rain fields. The
model was successfully applied in its simplest form for the
generation of homogeneous space-time rain fields in sites
where orography does not exert any significant condition-
ing on rainfall patterns (Deidda, 2000; Deidda et al., 2004,
2005). Badas et al.(2005) recently analysed several precipi-
tation events occurred over complex terrain in the Sardinia
region and showed that the observed spatial heterogeneity
due to the orography can be reproduced through the super-
imposition of a modulating functionξ on generated fields:

i(x, y, t) = ξ(x, y) i0(x, y, t) (3)

wherei0(x, y, t) represents the homogeneous and isotropic
rain rate field generated by the STRAIN model at location
(x, y) and time t , the dimensionless modulating function
ξ(x, y) is computed on the basis of the corresponding terrain
elevationz(x, y), andi(x, y, t) is the resulting rain intensity
that takes into account orography conditioning.

2.2 Downscaling model – application

Although over the last decade the skill of NWP systems to re-
produce physical processes has increased significantly (Sim-
mons and Hollingsworth, 2002), precipitation is still one of
the most difficult atmospheric parameters to forecast. There-
fore, in order to better assess performances and uncertainties
of the downscaling and hydrological steps, in the study case
we used observed rainfall data instead of NWP forecast, thus
jumping the step 1 in the application of the proposed proce-
dure, as anticipated in the Introduction. In such a way, per-
formances of step 2 and 3 are not affected by NWP errors.

The rainfall database used here consists of daily records
observed in 394 stations distributed all over Sardinia in the
period (1982–1980). Thus the large scales of the down-
scaling process areT =24 hr in time (daily data) and con-
sequentlyL=UT =416 km in space, having assumed a con-
stant space-time homogenization parameterU=17.33 km/hr
(Badas et al., 2005). Mean rainfall intensitiesI on this
large space-time domainL×L×T were computed for each
day averaging all daily data of the rain gage network of the
Sardinian Hydrological Survey. The most intense rainfall
events were selected on the basis of a threshold mean inten-
sity I=5 mm/day. The downscaling process was then applied
starting from the large scale rain rateI of those events whose
corresponding hydrograph records at the Araxisi catchment
outlet were also available. 1303 events were found to satisfy
both criteria on rainfall threshold and stramflow measures
availability. The downscaling procedure was thus applied on
these events from scalesL=416 km andT =24 hr up to scales
λ0=13 km andτ0=45 min, beingλ2

0 close to the Araxisi area
(125 km2).

For each of the selected events, the STRAIN model was
applied 3000 times in order to numerically reproduce the
variability (and more in general the statistical properties) of
rainfall fields up toλ0 andτ0 scales. In such a way, 3000
synthetic samples, each one containing 1303 downscaled
events, were obtained. The STRAIN model is based on a log-
Poisson generatorµ=βy , wherey is a Poisson distributed
i.i.d. random variable with meanc. Multifractal analyses on
several datasets (Deidda(2000); Deidda et al.(2004, 2005);
Badas et al.(2005)) have shown that theβ parameter can
be assumed equal to exp(−1), becoming a model constant,
while sample estimates of thec parameter follow decreasing
functions of the large scale rainfall rateI . For the Sardinia
region ac(I ) relationship was determined byBadas et al.
(2005): it is used here with a slight modification in the coeffi-
cients due to the larger domainL×L×T . Homogeneous and
isotropic rainfall fieldsi0(x, y, t) generated by the STRAIN
model up to scalesλ0 andτ0 are then transformed into oro-
graphic conditioned fieldsi(x, y, t) by equation Eq. (3). The
required modulating functionξ(x, y) was estimated on the
basis of each grid cell mean elevation followingBadas et al.
(2005). The valueξ= 1.35 resulted for the elevation of the
grid cellλ0×λ0 (13 km×13 km) corresponding to the Araxisi
catchment.



364 R. Deidda et al.: Performance of a meteo-hydrological forecasting chain in a small catchment

Table 1. Intensity ranges and numerousness of the classes used in
the validation process.

class 1 2 3 4 5 6
I [mm/day] 5–7 7–10 10–15 15–20 20–30>30
# of events 385 335 310 136 97 40

From each downscaled space-time field, the time history
(rainfall hyetograph) over the Araxisi grid cell (λ0×λ0) was
selected: 3000 synthetic hyetographs were thus extracted for
each of the alalysed events. As an example, in Fig.2 two gen-
erated hyetographs (having resolutionτ0=45 min) are shown
as possible realization of the same large scale event. Fig.2
clearly shows how downscaled hyetographs of the same large
scale event may differ not only for the inner sub-daily vari-
ability, but also for daily total depth (due to simultaneous
downscaling in space and time).

2.3 Downscaling model – validation

The performance of each step of the proposed forecasting
procedure has been tested in order to identify possible crit-
ical points. With the aim to perform a comparison between
modelled and observed data, the 1303 selected events were
grouped into six classes on the basis of large scale mean in-
tensityI . Intensity ranges and numerousness of each class
are reported in Table1. This subdivision, which has been
used also in Sect.3, allows grouping similar events in terms
of STRAIN model parameters, sincec is related to large scale
mean intensityI . Performance evaluation of each step of
the flood forecasting procedure has been pursued comparing
the cumulative distribution function (CDF) obtained for ob-
served and synthetic data within each class.

The absence of sub-daily observed rainfall data imposed
to carry on the comparison on a daily scale. The control
dataset of precipitation occurring over the catchment during
the selected events was computed from daily rain gage data
by means of the Thiessen method. On the other side, down-
scaled rainfall intensities generated on a spatial scaleλ2

0 close
to the catchment area and with time resolutionτ0=45 min,
were integrated at the same daily scale as the control set.

The comparison between observed and synthetic data was
performed as follows. LetN be the number of analysed
events in each class reported in Table1. We have on one
hand a sample ofN observed values (e.g. for class 1 we have
385 values of areal average daily rainfall depth), and on the
other hand 3000 synthetic samples each one containingN

generated values (i.e. rainfall downscaled atλ0×λ0 scale and
reaggregated at the daily scale). Data of each sample (the one
observed and the 3000 simulated) are sorted in ascending or-
der (x1<x2< · · ·<xN ) becoming an order statistics series.
Our purpose is to estimate an equitailed confidence interval
of ther-th order statistics (r=1 · · ·N ). Confidence limits are
thus obtained from the quantilesqa andq1−a of the empirical
distribution of the corresponding 3000r-th order statistics in
synthetic samples.

As an example, Fig.3 illustrates the comparison for the
third class: empirical CDF of the control dataset (daily pre-
cipitation values observed on the Araxisi catchment) is com-
pared with the 90% confidence limits estimated from gener-
ated sequences (i.e. CDFs of quantilesq0.05 andq0.95 of the
r-th order statistics). The logarithmic scale was chosen in or-
der to emphasize intense precipitation values. In the left plot
quantiles refer to spatially homogeneous rainfall fields gen-
erated by the STRAIN model, while the modulating function
ξ is included in data plotted in the right image. It is now
apparent how the introduction of the modulating function is
essential for a correct reproduction of observed data in do-
mains with complex orography. Actually, order statistics of
observed data are within the confidence limits derived from
synthetic data includingξ value, as it is apparent in Fig.3
for the third class. Similar results were obtained for all the
other analysed classes, thus synthetic hyetographs including
the modulating function properly represent observed events
at least at a daily scale and were used in the next step of the
forecasting chain.

3 Rainfall-runoff model (step 3)

3.1 R-R model – theory

In the third step of the forecasting chain, hyetographs gen-
erated by the downscaling model need to be transformed
into hydrographs at the catchment outlet. This rainfall-
runoff transformation involves many hydrological processes.
Among the large number of rainfall-runoff models describ-
ing with different levels of approximation the physical as-
pects of these processes, we choose here a very simple and
widely used approach. It consists first in the application of
SCS curve number (SCS-CN) method (SCS, 1972) to derive
excess rainfall from observed rainfall, and then in the use of
the unit hydrograph (UH) theory to represent the transfor-
mation of excess rainfall hyetograph into the corresponding
direct runoff hydrograph.

The SCS method is based on the well known equation:

Pe =
(P − Ia)

2

(P − Ia) − S
(4)

wherePe is the excess rainfall,P is the observed rainfall,S
is the potential maximum retention after runoff begins and
Ia is the initial abstraction. Usually the initial abstraction
is assumed as a fraction ofS (Ia=0.2S), in this caseS is
the only parameter that needs to be determined in the SCS-
CN equation. The potential maximum retentionS is related
to a dimensionless CN parameter, ranging between 0 and
100: in case all the variables of Eq. (4) are expressed in
mm, this relationship becomesS=(25400/CN)−254. Once
the CN value is determined on the basis of hydrological
soil groups, land-cover and antecedent moisture condition
(AMC), Eq. (4) allows to determine the excess rainfall hyeto-
graph corresponding to each total rainfall hyetograph coming
from the downscaling model.
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Fig. 1. The proposed forecasting chain structure is illustrated: the oval shapes represent the procedure steps

while the rectangles show the information passing from a step to the next one.
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Fig. 3. A comparison between observed and synthetic data is illustrated for events belonging to the third class: the horizontal axis contains
daily precipitation valuesh, while the vertical one represents log10(1−F(h)), whereF(h) is the CDF. The solid lines represent daily CDF
obtained from the control dataset while dashed lines refer to CDFs of the 5% and 95% quantiles obtained from generated sequences. In the
left plot synthetic data directly come from the STRAIN model, while the modulating functionξ is included in data plotted in the right image.

The unit hydrograph theory approximates the catchment
response with that of a linear system. The unit hydrograph
(UH) is thus the direct runoff hydrograph resulting from a
unit depth of excess rainfall at a constant rate for a given
(small) time step and occurring uniformly over the catch-
ment. Hydrographs originated from a whatever event are ob-
tained through the convolution of the excess rainfall hyeto-
graph with the unit hydrograph. In the present work three
well known lumped UH models were calibrated on the Arax-
isi catchment: SCS, Clark, Snyder (Chow et al., 1988).

3.2 R-R model – application

In Sect.2.2, for each of the 1303 events a set of 3000 equally
probable hyetographs was generated. Here the rainfall-runoff

model is applied in order to transform these total rainfall
hyetographs into excess rainfall hyetographs (through the
SCS-CN module) and then into direct runoff hydrographs
at the catchment outlet (by means of the UH model). As a
result, 3000 hydrographs for each event were thus obtained
applying the SCS, Clark and snyder UH respectively.

The CN value was determined by subdividing the Araxisi
catchment in small areas with homogeneous land-cover and
hydrological soil group, and then making a weighted aver-
age of the CN values obtained for each area by standard SCS
tables. The final CN values to be adopted for each event were
then corrected, according to the standard SCS-CN method,
on the basis of the 5-days antecedent precipitation that is as-
sumed to be representative of the antecedent moisture condi-
tion of the catchment.
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Fig. 4. Left. SCS Curve Number method application: separation of excess rainfall from total rainfall of a downscaled synthetic hyetograph
obtained for one of the selected events in the Araxisi catchment (event date: 16/02/1963). Right. Snyder’s, Clark’s and SCS UH: convolution
of the above obtained excess rainfall hyetograph.
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Fig. 5. Empirical CDF (solid line) of flow maxima at 3-hour du-
ration at the outlet of the Araxisi catchment (third class of events).
Dashed lines indicates confidence intervals obtained from generated
hydrographs (by Clark’s UH model) for 5% and 95% quantiles. The
horizontal axis contains direct runoff valuesQ, while the vertical
one represents log10(1−F(Q)), whereF(Q) is the CDF.

An application of the rainfall-runoff model to one of the
events is illustrated in Fig.4: the excess rainfall derived by
applying the SCS-CN method on a total rainfall synthetic
hyetograph obtained from the downscaling model is shown
on the left, while the respective synthetic hydrographs ob-
tained with the application of the UH models is presented on
the right.

3.3 R-R model – validation and determination of critical
points

In order to validate the rainfall-runoff model described
above, we first extracted the direct runoff component from
the hydrographs measured at the basin outlet by applying the

digital filter proposed byNathan and McMahon(1990) for
each of the 1303 events considered in Sect.2.2. In such a
way a control dataset of direct runoff hydrographs was con-
structed for the rainfall-runoff model validation.

For each class of events defined in Sect.2.3 (Table1), the
global performances of the forecasting chain are investigated
by statistical comparison between measured and generated
runoff. In particular, flow maxima at different durations are
determined from the control dataset of direct runoff and com-
pared with the flow maxima extracted from generated hydro-
graphs. Using an approach similar to the one described in
Sect.2.3, data coming from synthetic generations are used to
determine 90% equitailed confidence intervals for the vari-
able to be checked. As an example, the results obtained for
3-hour flow maxima are illustrated in Fig.5 for the third class
and Clark’s UH model. Figure clearly shows how CDF of
measured flows lies out and far off the 90% confidence limits.
Unsatisfying results were also obtained for the other classes
of events and for flow maxima at different durations. Very
small differences were found among SCS, Clark and Snyder
UH models, because the three unit hydrographs have similar
base times and the convolution effect attenuate their differ-
ences.

With the aim to detect the problems that lead to the dis-
crepancies between the features of the generated hydro-
graphs and those of the control dataset highlighted in Fig.5,
each phase of the rainfall-runoff step was analysed in more
detail and some diagnostic comparisons were built.

The first aspect to be discussed and investigated regards
the effect of the SCS-CN Eq. (4), which is clearly a non-
linear transformation with a lower threshold (whenP<Ia it
returns excess rainfallPe=0). This means that differences
in the probability distributions of total rainfallP may be in
principle amplified or reduced in the resulting distributions
of excess rainfall derived from Eq. (4). The results of the
application of Eq. (4) to downscaled rainfall (on the Arax-
isi grid cell) were thus compared with those obtained ap-
plying the same equation to the control set of daily rainfall.
Once more, comparisons were performed in terms of CDFs
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Fig. 6. CDFs of daily excess rainfallPe computed by Eq. (4): results from the control dataset (solid line) are

compared with the 90% confidence intervals obtained from downscaled rainfall on the Araxisi grid cell.
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Fig. 6. CDFs of daily excess rainfallPe computed by Eq. (4): re-
sults from the control dataset (solid line) are compared with the
90% confidence intervals obtained from downscaled rainfall on the
Araxisi grid cell.

within the classes already introduced in Sect.2.3 (Table1).
CDFs of excess rainfall obtained from the control dataset re-
sulted always within the confidence limits derived by down-
scaled data, meaning that the behaviour of SCS-CN equation
is very similar for both the observed and the downscaled rain-
fall. This positive result is mainly due to the ability of the
downscaling procedure in reproducing the same variability
of observed rainfall at the catchment scale. As an example,
Fig. 6 shows the comparison for the third class of the events
recorded on the Araxisi catchment.

A second kind of investigations was aimed at compar-
ing the synthetic excess rainfall at daily scale (obtained
through the application of Eq. (4) to downscaled rainfall)
with the daily discharge extracted from the corresponding
direct runoff hydrographs in the control dataset. This com-
parison, which is illustrated in Fig.7 for the third class of
events, shows that CDFs derived from the control dataset are
not included in the confidence limits obtained through gener-
ated data. In order to better understand the aim of this com-
parison and to correctly interpret these results, some consid-
eration are needed. First of all, since comparisons are per-
formed at the daily scale, while the catchment response time
is about three hours, the differences between daily excess
rainfall depths and the corresponding daily discharge depths
obtained by the UH model should be very small. Thus, the
comparison of different kinds of variables (excess rainfall
and direct runoff) is in this sense allowed and we expect that
it does not introduce significant sources of error. Moreover,
considering synthetic excess rainfall rather than synthetic di-
rect runoff produced by the rainfall-runoff model allows to
exclude potential problems that may arise from the appli-
cation of the UH model. Thus, problems of rainfall-runoff
model have to be searched in the SCS module rather than in
the UH one.
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Fig. 7. A comparison between CDFs obtained for direct runoff com-
ponent (DR) and generated daily excess rainfall (Pe) on the Araxisi
catchment is presented. The horizontal axis contains direct runoff
(DR) and excess rainfall values (Pe), while the vertical one repre-
sents log10(1−F), whereF is the CDF. The solid line represents
daily CDF obtained for direct runoff from the control dataset, while
dashed lines refer to CDFs obtained for daily excess rainfall from
downscaled precipitation for 5% and 95% quantiles. The plot refers
to the third class of events.

A confirmation of this conclusion comes also from an-
other, and last, kind of comparisons that is based on the scat-
terplots of the control set of direct runoff discharge at the
daily scale against the excess rainfall obtained by the SCS-
CN Eq. (4) when using the control daily rainfall. We should
expect that all the points lie along the bisector line of the
scatterplot, but results obtained for the six classes of events
clearly show a great dispersion. Figure8 shows an exam-
ple for the third class where it is apparent the distance of the
points from the bisector line.

We discuss some further considerations about the outcome
of this analysis. First, this last comparison is only based
on observed data, although they are manipulated and trans-
formed. Thus, results presented in the scatterplot illustrated
in Fig. 8 cannot be affected by any kind of errors introduced
in the meteo-hydrological forecasting chain by the NWP or
the downscaling step. Moreover, apart from the measure-
ment errors of rainfall and streamflow, the only causes of er-
rors are to be ascribed to the direct runoff separation method
or to the SCS-CN method. Regarding the streamflow separa-
tion method, beside the digital filter byNathan and McMa-
hon (1990) another attempt was made implementing also
traditional separation technique, but despite some slight dif-
ferences, the scatterplots were as much unsatisfying. Thus
we exclude that the main cause of discrepancy could be re-
lated to the separation technique, and again we point out the
SCS-CN method as the main source of errors.

Finally, in order to improve the performances of the SCS
model, a lot of trials for a better calibration of its parame-
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Fig. 8. Scatterplot of observed daily excess rainfall obtained with
SCS-CN method against the corresponding direct runoff component
obtained with the application of the digital filter on the recorded
hydrographs. The comparison is illustrated for the third class of
events recorded on the Araxisi catchment.

ters were performed, using data of control dataset. The CN
parameter and also the rainfall thresholds for the three AMC
were recalibrated by a least square method on Eq. (4), as-
suming the couples (P , Pe) to be respectively the rainfall
observations and the direct runoff components of the same
events. Nevertheless, even applying the rainfall-runoff model
with SCS recalibrated parameters, we were not able to sig-
nificantly improve the unsatisfying results presented above.

4 Post-processing model (step 4)

The purpose of a forecasting chain is to assess the hydrolog-
ical risk caused by predicted heavy rainfall events. In order
to face this issue, we propose a simple technique providing a
probabilistic framework useful for decision support.

From the set of synthetic hydrographs, generated in the
previous step of the forecasting chain, the flow-duration-
frequency (FDF) curves are derived for different exceedence
probability levels. As an example, results obtained for one
of the selected events on the Araxisi catchment using the
Clark UH are illustrated in Fig.9. Once critical streamflow
thresholds have been identified for the catchment, the curves
FDF provide the probability that these thresholds may be ex-
ceeded, and therefore are very useful in supporting decision
to issue alerts on the basis of hydrological risk assessment.

Moreover, the FDF curves allow to derive synthetic hydro-
graphs to be used as input in overland flow models in order
to simulate downstream overflowing areas. Once a probabil-
ity level is chosen, a synthetic hydrograph statistically rep-
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Fig. 9. Flow-duration-frequency curves for different exceedence
probability levels are shown. These curves are derived from the set
of synthetic hydrographs generated by the forecasting chain (using
the Clark UH) for the event of 16/02/1963 on the Araxisi catchment.
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Fig. 10.Outcome of the forecasting chain: a 30% exceedence prob-
ability hydrograph on the Araxisi outlet is obtained subdividing dis-
charges derived from the flow-duration-frequency curve (Fig.9) ac-
cordingly the following proportions: 1/3 on the left-hand side of the
peak and 2/3 on the right-hand side.

resentative for predicted discharges at any duration can be
obtained. After deriving volumes corresponding to different
durations from FDF curves, the synthetic hydrograph can be
drawn starting from the flow around the peak, which corre-
sponds to the discharge extracted for the shortest duration,
and then subdividing the increments of discharge derived for
larger durations between the left and right-hand side of the
peak. As an example, Fig.10 shows the synthetic hydro-
graph at 30% exceedence probability level obtained for one
of the selected events.

5 Final remarks

The proposed procedure can be operatively applied in order
to predict and mitigate the adverse effects of meteorological
hazards occurring over small watersheds. Inherent in each
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part of a forecasting chain there is a degree of uncertainty.
When the modules of the procedure are aggregated, these un-
certainties are compounded. Thus it is fundamental to under-
stand the approximations of each step of the procedure and
to evaluate any source of error.

Regarding the NWP model, it would be useful to know
the probability distributions of errors of rainfall predictions
associated at different time-scale resolutions. Actually, iden-
tifying the best trade-off between reliability and resolution
of forecasted rainfall fields would help in choosing at which
space-time scales start the downscaling process. As for the
downscaling step, the STRAIN model has, in the proposed
configuration, only one free parameterc, which can be ex-
pressed in terms of a the large scale rainfall intensityI , a
variable readily available from the previous step. A modulat-
ing functionξ can be easily introduced in the STRAIN fields
to account for spatial rainfall heterogeneity induced by orog-
raphy. A re-calibration ofc andξ may be needed depending
on the region and on the large scale of the process.

With respect to the rainfall-runoff model step, several
problems were encountered applying the SCS method for
excess rainfall separation. Actually this procedure was ini-
tially proposed for design flow computation, coupling rain-
fall depth and discharge amounts with the same return time,
but not necessary belonging to the same event. The appli-
cation of the SCS model to continuous or event based sim-
ulations, a common practice in several public domain mod-
els, may fail in reproducing excess rainfall as described in
the review book byMishra and Singh(2003) and references
therein. This separation technique was identified as the main
critical point of the forecasting chain.

In order to give a probabilistic response, the postprocess-
ing module is here proposed. The approach is based on
the construction of flow-duration-frequency curves, which
allows to assess the risk that some critical streamflow thresh-
olds may be exceeded. Furthermore, the same curves allow
the derivation of synthetic hydrographs to be used as input in
overland flow models in order to simulate downstream over-
flowing areas. Both these approaches provide a probabilistic
framework helping decision support in managing intense hy-
drological events occurring over small watersheds.
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