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Abstract. There are various problems with process-based
models at the landscape scale, including substantial com-
putational requirements, a multitude of uncertain input pa-
rameters and the limited parameter identificability. Clas-
sification And Regression Trees (CART) is a recent data-
based approach that is likely to yield advantages both over
process-based models and simple empirical models. This
non-parametric regression technique can be used to simplify
process-based models by extracting key variables, which
govern the process of interest at a specified scale. In other
words, the model complexity can be fitted to the informa-
tion content in the data. CART is applied to model spatially
distributed percolation in soils using weather data and the
groundwater depths specific to the site. The training data was
obtained by numerical experiments with Hydrus1D. Percola-
tion is effectively predicted using CART but the model per-
formance is highly dependant on the available data and the
boundary conditions. However, the effective CART models
possess an optimal complexity that corresponds to the infor-
mation content in the data and hence, are particularly suited
for environmental management purposes.

1 Introduction

1.1 Motivation

The modelling of soil-hydrological processes at landscape
scales is seeing an increased need for water related manage-
ment purposes, such as for reducing the environmental im-
pact of agricultural irrigation or improving water quality in
drinking water reservoirs.

However, the application of process-based models at the
landscape scale is difficult due to requirements of both large
computational efforts and many uncertain input parameters.
A common situation in soil-hydrological modelling at the
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plot or landscape scale is the use of too complex models
and the existence of problems in the ability to properly iden-
tify model parameters, since the information content of field
measurements for calibration is often limited (Vrugt et al.,
2004; Schulz and Jarvis, 2004).

The non-parametric regression technique Classification
And Regression Trees (CART) (Breiman et al., 1984) may
be used to simplify process-based models, i.e. extracting the
important information and key variables, that govern the pro-
cess of interest at a specified scale. In other words, the model
complexity can be fitted to the information content in the
available data.

In this study we have applied CART for modelling spa-
tially distributed percolation in soils. CART was used to
simplify detailed predictions of percolation previously ob-
tained by process-based modelling. Furthermore we have in-
vestigated, how dependant these effective CART models are
on the available data and its boundary conditions. CART is
used to assess the model complexity required for spatially
distributed modelling of percolation. Furthermore key vari-
ables may be provided that govern the variance of soil water
fluxes at the landscape scale.

1.2 Background

The relationship between model complexity and the uncer-
tainty of predictions is illustrated in Fig. 1, where increasing
the model complexity leads to a decrease of the model error
(i.e. bias of the model with respect to reality) due to the re-
sulting structural improvements in the model. The model er-
ror results from the various assumptions and simplifications
that are made to make models manageable. Simultaneously,
the input error (i.e. uncertainty in model parameters/ inputs)
rises as a consequence of the increasing number of uncer-
tain model inputs. Thus, the prediction error (overall uncer-
tainty) increases at some level of model complexity since the
error consists of the two error components: the model er-
ror and the input error. At some intermediate complexity



38 B. Selle and B. Huwe: Optimising soil-hydrological predictions using effective CART models

 

13 

 

 1 

 2 

 3 

Figure 1, Selle et al. 4 
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Fig. 1. Schematically: uncertainty of model predictions vs. model
complexity.

the minimal-prediction-error model exists, i.e. an effective
model supported by the available data.

The assumed relationship between uncertainty and model
complexity is known from statistics as the bias variance
trade-off and can be formulated as follows. The prediction
error, expressed as Mean Squared Error (MSE), can be de-
composed into variance and bias
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where the variance termE
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)]2 measures how much

the predictionŝy vary when using different data samples of
a population. If the variance is high, the predictions (and the
model) are changing significantly from one data sample to
another. In other words, it assesses the sensitivity ofŷ to
the noise on the data and thus, describes the prediction er-
ror due to uncertainties in the model input/parameters. This
input error is typically increasing when using more complex
models. The bias term
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is the systematic er-

ror in the predictions and typically decreases as the model
complexity grows. It is the distance of the average predic-
tion E

(
ŷ
)

using different data samples from the unknown
true average valueE (y) of the population and it usually oc-
curs with a restricted flexibility that can not properly model
the observed data (model error). More generally, increasing
the model complexity potentially leads to an increase of the
variance term but typically the bias tends to decrease. Thus,
both terms cannot be minimised at the same time and the pre-
diction error has to be minimised in order to find a trade off
between bias and variance.
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Figure 2, Selle et al. 4 
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Fig. 2. The study site “Weißenstädter Becken” in Germany. Spatial
distribution of the sampled sites with groundwater depth.

However, if we would have a perfect modelP but incorrect
model input/parametersfj , ..., fm, ŷ may be expressed as

ŷ = P
(
fj , ..., fm

)
(2)

TheMSE may be approximated by the Taylor method sup-
posing that the model inputs/parameters are uncorrelated:

MSE = E
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≈
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(3)

whereej is the error of thej th model input/parameter and
∂P

/
∂fj is the partial derivative ofP with respect tofj , i.e.

the sensitivity of the model outputŷ with respect to changes
in fj . If the MSE is, as usually, composed from two com-
ponents: model error (ME) and input error (IE)

MSE = IE + ME (4)

andIE can be estimated from (3), theMSE can be estimated
predicting on a independent validation sample and the model
errorME can be calculated by subtracting the former from
the latter. The input errorIE typically increases with more
and more uncertain input parameters, respectively. However,
the different error components are hard to assess since no
perfect model exists in practise.

2 Material and methods

2.1 General modelling approach

The CART model was derived from a training set obtained
from different Hydrus1D runs (Simunek et al., 1998) which
simulated water flow in one-dimensional soil columns. Hy-
drus1D was applied to a representative sample of soils and
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Figure 3, Selle et al. 4 
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Fig. 3. Principles of a regression tree with response variabley, the
predictive variablex and terminal nodest1...t3.

site conditions within the study site “Weißenstädter Becken”
and for the period 1998–2001. The daily percolationq at
time t and placex was modelled with CART using weather
data (precipitationp, potential evapotranspiratione) at dif-
ferent lag times (maximum time lag of 4 days) and ground-
water depths specific to the siteGDx .

qx,t = f
(
ex,t−i, px,t−i, GDx

)
for i=0, 1..., 4 (5)

In the CART-model we considered the landscape as a number
of non-interacting soil columns.

2.2 Site characteristics

The study site “Weißenstädter Becken” is an approx. 10 km2

plateau with a subdued relief at approx. 600–700 m a.s.l. in
the “Fichtelgebirge” (Northern Bavaria, Germany) (Fig. 2).
The primary land use is as pastureland. The water balance is
positive as a result of the high annual precipitation (ranging
from 900 to 1000 mm) and also due to the low mean annual
temperature which ranges from 5◦ to 6◦C. Cambisols occur
most frequently in the area, having developed on periglacial
muds from the acid bed rock parent material (granite, mica
slate) while Histosols and Gleysols occur only in conse-
quence of the topography. The database is very detailed due
to the large amount of previously completed studies (weather
data, groundwater depth, etc.).

2.3 Determination of the training set

First, 242 one meter deep soil profiles were obtained by
soil augering. Their bulk density and soil texture were
examined for each horizon using field identification meth-
ods. Second, the soil-hydraulic parameters according to
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Figure 4, Selle et al. 4 
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Fig. 4. Sub-tree of the CART model used to predict percolation
from precipitationp, potential evapotranspiratione and groundwa-
ter depthGD. Numbers behind the predictive variables denote lag
times.

Van Genuchten (1980) were obtained using these parameters
and the pedo-transfer functions from Rosetta (Schaap et al.,
1998). Third, percolation dynamics 1998–2001 (daily time
steps) for each soil profile were computed using Hydrus1D.
The upper boundary condition (weather data) was uniform
for all simulated soil profiles. Groundwater depth was taken
for the lower boundary condition. Lastly, percolation was
calculated for each profile at an uniform depth of 1 m.

2.4 Classification and regression trees

The CART method (Classification And Regression Trees) is
a recent non-parametric statistical technique, which can be
used to solve both regression and classification problems.
CART is so termed because the model can be displayed in
the form of a binary decision tree (Fig. 3). The decision
tree is obtained by recursive data partitioning, thereby split-
ting the data set into increasingly smaller subsets based on
the predictive variables. Different types of predictive vari-
ables (categorical and continuous) can be integrated into the
model. The predictions of the CART model are provided
by either the average of the response variable (regression)
or the most frequent class of the targets (classification) at
the terminal nodes, depending on the type of problem to be
solved. The theoretical background of CART is described in
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Figure 5, Selle et al. 4 
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Fig. 5. Prediction of the area-averaged percolation 2001 using Hy-
drus1D (crosses) and CART (shaded line). ME: Modelling Effi-
ciency (Nash and Sutcliffe, 1970).

Ripley (1995) and in the monograph of Breiman et al. (1984).
The CART technique was conducted using therpart package
(Therneau and Atkinson, 1997) from the R-environment1,
which is programmed according to the algorithms suggested
by Breiman et al. (1984).

The following steps must be taken in order to obtain the
optimum sized tree, which is the goal of the CART method.
Initially a maximum sized tree is generated through contin-
uous binary splitting of the data, where splits are inequal-
ity conditions on the predictive variables. After which the
maximum-sized tree is repeatedly pruned back to increas-
ingly smaller trees until only the root node remains. The op-
timum sized tree, i.e. the optimum number of terminal nodes,
is chosen from the sequence of sub-trees as the one that per-
forms best on a validation sample and thus provides the best
generalisation characteristics.

3 Results and discussion

CART was able to explain more than 40% of the spatial and
temporal percolation variance using only precipitation, po-
tential evapotranspiration and groundwater depths specific to
the site (Fig. 4).

The area-averaged percolation, estimated using the arith-
metic mean of all soil profiles, is satisfactorily predicted by
CART. This can be visually evaluated from Fig. 5.

The optimum-sized tree is selected as the sub-tree that per-
forms best on a validation set (Fig. 6). The model perfor-
mance is assessed by the Mean Squared Error (MSE) of the

1R is a language and environment for statistical computing and
graphics. It is an Open Source system written by a team of volun-
teers (www.r-project.org).
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Figure 6, Selle et al. 4 
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Fig. 6. Prediction errors (uncertainty of model predictions) vs.
model complexity for the CART model. Prediction error was evalu-
ated for the training data (1998–1999) and different validation sam-
ples (2000 and 2001).

Table 1. Dryness index (potential evapotranspiration/ precipitation
ratio) for different weather data sets.

Data 1998–1999 2000 2001
Dryness index 0.47 0.65 0.49

root node divided by the MSE of each sub-tree. Thus, the
model performance measures the proportion of the variance
explained by the different-sized sub-trees.

It is interesting to note, that the optimum-sized CART-
model depends on the validation data used, i.e. there are dif-
ferent minima and uncertainties associated with the valida-
tion sets 2000 and 2001, respectively (Fig. 6). Two theoreti-
cal reasons may explain this differences (Fig. 7).

First, the input errors may be different for 2000 and 2001
(Fig. 7, top), e.g. due to distinct measurement errors concern-
ing the inputs precipitation, potential evapotranspiration and
groundwater depths. However, the input error would be rel-
evant only if measurements of percolation instead of the Hy-
drus1D calculations were used to determine the prediction
error.

Second, the model errors may vary between 2000 and
2001 (Fig. 7, bottom). It may be assumed that the model
structure depends on the climatic boundary conditions. Thus,
climatic conditions 2001 are more similar to the conditions
in the training period 1998–1999 than in the validation pe-
riod 2000. This assumption can be confirmed by measures
of climatic wetness (dryness index) for the different weather
data (Table 1).

www.r-project.org
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Figure 7, Selle et al.4

Fig. 7. Two reasons for obtaining different prediction errors when
using different validation sets.

4 Conclusions

Percolation is effectively predicted with CART using
weather data and the groundwater depths but the model per-
formance is not robust with respect to changes in the data
samples and the climatic boundary conditions. Therefore,
CART is likely to yield satisfactory predictions only inside
the range of variations in boundary conditions of the training
sample (interpolation), while it seems not to be an appropri-
ate method for extrapolation outside this range.

However, we have demonstrated, how soil hydrologic
predictions can be optimised by choosing an appropriate
model complexity with CART. We hypothesise, that these

CART models may result in better predictions than calibrated
process-based models, if the number of inputs and model pa-
rameters is significantly reduced (see Eq. 3). Furthermore,
the effective models are particularly suited for environmental
management purposes due to their simplicity, transparency
and easy manageability On the other hand, process-based
models describe the whole system providing predictions for
more than just one process (e.g. percolation and actual evap-
otranspiration). Thus, one needs more variables and param-
eters to begin with, yet one also obtains more information
out of the model. However, to obtain a detailed process un-
derstanding and for scientific purposes there appears to be
no better alternative to process-based modelling whereas for
practical applications effective models may provide a more
appropriate process description.
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